Comprehensive Comparison of LSM Architectures
for Spatial Data

Qizhong Mao'$, Mohiuddin Abdul Qader?$, Vagelis Hristidis?
Computer Science and Engineering, University of California, Riverside, USA
Email: { 1qma0002, 2mabduOOZ, 3evangelo }@ucr.edu

Abstract—Spatial indexes in traditional relational databases
supported spatial queries in the pre-big data era. However, the
volume and ingestion rate of spatial data is increasing rapidly
in modern applications. Many big data systems use LSM tree
as their storage structure in order to support write-intensive
large-volume workloads, which are usually optimized for single-
dimensional data. Research has studied how to support spatial
indexes on LSM systems, but have mainly focused on the local
index organization, that is, how data is organized inside a single
LSM component. In this paper, we study various aspects of
spatial LSM indexing, including spatial merge policies, which
determine when and how spatial components are merged. We
consider both stack-based and leveled merge policies, which we
have implemented on the same big data system. We evaluate the
write and read performance on various workloads and discuss
our findings and recommendations. A key finding is that Leveled
policies are underperforming other merge policies for most types
of spatial workloads.

Index Terms—spatial index, LSM, merge policy, stack-based,
Binomial, leveled, R-tree

I. INTRODUCTION

The volume and ingestion rate of spatial data are increas-
ing rapidly due to applications such as navigation systems,
location-based review systems, and geo-tagged social media.
Database systems have been moving to log-structured merge
(LSM) tree [1] storage architectures to facilitate high write
throughput. Such systems include Bigtable [2], HBase [3],
Cassandra [4], LevelDB [5], RocksDB [6] and AsterixDB [7].
LSM systems provide superior write performance than most
relational databases. However, little attention had been paid to
the support of LSM spatial indexes.

In most applications, a spatial index cannot live alone and
must be created as a secondary index that is dependent on a
primary index to query any non-spatial attributes. Most LSM
systems do not have the direct support of the general secondary
index, not to mention the support of spatial index. LSM-
fication is a generic framework to convert a class of indexes to
LSM secondary indexes [8]. Using this framework, we have
two options to index spatial data. The first option is a BT -tree-
based solution that indexes single-dimensional data projected
from multidimensional spatial data through linearization. The
second option is a native spatial index, for example, R-tree,
as a local index. To the best of our knowledge, AsterixDB
is the only database system with native support of LSM R-
tree index; all other LSM-based systems only support BT -tree

§Both authors contributed equally.
978-1-7281-6251-5/20/$31.00 (© 2020 IEEE

index at most. Based on the results from [9], the R-tree-based
solution is the preferable option for LSM spatial index, hence
in this paper, we focus on LSM R-tree indexes.

In addition to the organization of the local index discussed
above, which determines how data is organized in a single
LSM component (file), another key design choice for spatial
LSM indexes is the merge policy, which determines when and
how components are merged. The two main merge paradigms
we consider are stack-based and leveled. In stack-based poli-
cies, components are organized as a stack, where the most
recent components are higher in the stack. Leveled policies
use fixed-size components, with newer components on higher
levels; lower levels have more components per level. Stack-
based LSM tree usually has better write performance and
good read performance. Leveled LSM tree is the most popular
paradigm in the industry with very good read performance, but
higher write amplification in general.

The typical query for spatial indexing is a region query,
where the region is typically expressed as a Minimum Bound-
ing Rectangle (MBR). For each component, we maintain
its MBR, so it is easy to filter components based on the
query MBR. This filtering is generally not effective in stack-
based policies, as most components have very large MBRs,
comparable to the whole space in many applications. On the
other hand, this filtering can be effective for Leveled policy,
because the components on the same level are mostly disjoint
in key ranges. In the case of R-tree indexing, this means that
the components at the same level have non-overlapping MBRs,
or possibly limited overall, depending on the partitioning
algorithm employed.

To achieve minimal spatial overlap in Leveled policies, we
employ spatial partitioning algorithms, specifically Sort-Tile-
Recursive (STR) [10]. There are several subtle implementation
decisions that significantly affect the merge performance. We
found that a critical one is the choice of comparator, which
compares two spatial records, because different comparator
performs differently in high and low selectivity queries; certain
combinations of comparator and partitioning algorithm in
Leveled policy can effectively create disk components of
disjoint MBRs, which improves filtering efficiency.

A key contribution of the paper is that we implemented sev-
eral LSM spatial indexing algorithms on a common database
system, AsterixDB, and compared them for read and write
performance using several spatial workloads. A key conclusion
is that stack-based policies generally perform better with

generally low write and read cost. Although Leveled policy
had very high write amplification, certain configurations could
achieve comparable write throughput to stack-based policies.
Its read performance was also very competitive in low selec-
tivity queries.

In summary, this work makes the following contributions:

1) We study how an LSM architecture can be extended
to support secondary spatial indexes (Section II-A). We
consider several design decisions and architectures.

2) We propose an optimized partitioning algorithm for
Leveled LSM R-tree index, which minimizes the over-
lap among MBRs while also minimizing the I/O cost
(Section II-C).

3) We implemented all compared LSM spatial indexing
policies on AsterixDB. Source code is available at [11].

4) We experimentally compared several LSM spatial index-
ing algorithms using a real-world dataset (Section III).

5) We discuss our observations and recommendations,
which challenge the current popularity of Leveled poli-
cies (Section IV).

II. LSM SECONDARY SPATIAL INDEX

In this section, we discuss R-tree-based spatial LSM in-
dexes. In Section II-A we explain how data is organized into
R-trees and how filtering works. Section II-B discusses details
about stack-based policies, while II-C focuses on leveled
policies and studies different ways to partition data across
components during merges. More details on how secondary
indexes are organized, relative to the primary index can be
found at [8, 12, 13].

A. Spatial LSM Index based on R-tree

A natural way of organizing spatial records is to place
nearby records into the same groups. R-tree [14] and R*-
tree [15] are widely used as local indexes for spatial data,
which partition records into disk blocks based on their spatial
locations. R-tree and R*-tree have similar implementation to
BT -tree, except they partition leaf nodes and creates internal
nodes by MBRs. Spatial queries may need to traverse multiple
paths to leaf nodes to find records. In most cases, R-tree (or
R*-tree) is the preferred option for spatial index [9]; hence in
this paper, we only focus on the LSM R-tree designs.

To bulk-write an R-tree, records are sorted by a comparator,
then packed into multiple partitions as leaf nodes and create
internal nodes accordingly in a bottom-up fashion. Common
comparators include space-filling curve comparators (Hilbert
curve or Z-order curve), and Simple comparator. A space-
filling curve comparator sorts records based on the relative
order in a space-filling curve. Since space-filling curve com-
parators are usually slow in computation (Section III-D), we
also consider the Simple comparator, which compares two
points by the value of each dimension, which is essentially
the Nearest-X algorithm [10, 16].

To determine the operational components (components
whose key ranges overlap with the query key or range) for
a spatial query, the key range of every disk component must

be checked. The key range of a disk component can be
represented by the minimum key K,,;, and the maximum
key K 4., where K represents an array of size 1 for single-
dimensional data, or multidimensional data otherwise. For spa-
tial data, they are the low and high points of the MBR. Given
two components C : (K min, Kmaz) and C' : (K. K.)
and the number of dimensions D > 1, the two components
are overlapping if and only if (1) is satisfied, or disjoint if and
only if (2) is satisfied.

Vd € [17 D] : Kmm[d} < Fﬁmam [d] /\?:mn

[d] < Kmaz[d] (1)
dVE

3d e [1,D]: Kpinld > K. in

max

[d] > Kpazld] (2)
B. Stack-based LSM R-tree Index

Stack-based merge policies merge consecutive disk compo-
nents and generate a single disk component. These policies
are unaware of disk components’ contents, that is, merges
are scheduled in the same way regardless of the type or
the dimensions of the data. Since it is unlikely that inserted
records are sorted, disk components have a high chance to have
overlapping MBRs, and hence MBR-based filtering of on-disk
components are less important. Also, R-tree employs MBR-
based filtering on the disk page level; only a small portion of
disk components is read even if the component size is large.
Hence, even though a spatial query usually needs to scan all
disk components, the read amplification is not high. To the
best of our knowledge, AsterixDB is the only system that uses
stack-based LSM R-tree indexes.

We select to use the Binomial stack-based merge policy [17]
in our experiments, which has been shown to outperform other
policies [18]. The Binomial policy maintains an optimal write
cost with very low read amplification,using only one parameter
k, which bounds the maximum number of disk components.

C. Leveled LSM R-tree Index

In a Leveled LSM tree [5, 6], every level is a sorted run
which contains multiple disjoint disk components of the same
size. The number of disk components in level i > 2 is B
times more than the number in level 7 — 1. There may also be
a buffer level 0 which contains By potentially overlapping disk
components, which holds flushed disk components as multiple
sorted runs. To the best of our knowledge, no current system
is using leveled LSM R-tree indexes, which is surprising given
the popularity of leveled merge policies. We have implemented
the Leveled policy on AsterixDB for our experiments.

A Leveled LSM R-tree index may have thousands of disk
components. A spatial query can potentially check all disk
components in the worst case, which leads to very high read
amplification and low locality. Two key design decisions are
(a) how to partition records into components during merges
and (b) what comparator to use to order records inside a
component to allow faster merges.

A first approach is to use Hilbert or Z-order curve compara-
tor and size-based partitioning, where we sort records based on
their Hilbert or Z-order values and split to components when
the maximum size of a component is reached. This approach

may lead to components overlapping with each other. A visual
example is available on the left of Figure 1. Merges may
create many overlapping disk components at the same level,
making MBR based filtering very inefficient and increasing
the read amplification significantly. To improve MBR based
filtering efficiency, a better partitioning algorithm that can
create spatially disjoint disk components can be very helpful.

|

STR Partitioning

S'i‘z'e ‘P'artitionin g |
Fig. 1: MBRs of disk components before and after a merge by Size and STR
partitioning, with Hilbert curve comparator. Every rectangle corresponds to a
disk component. The two sub-graphs are in different scales.

A second approach is to partition using Sort-Tile-Recursive
(STR) [10], which was originally proposed to pack pages in
R-tree for point data. We adopt this partitioning algorithm
in leveled LSM R-tree index. When disk components are
merged, we apply STR to partition all merging records to
multiple spatially disjoint groups and create a separate disk
component for each group. That way, all disk components
in one sorted run are disjoint, regardless of the comparator.
For non-point data, we apply STR to the center points of
spatial objects, but a component’s MBR is computed from the
points’ actual MBRs. Size partitioning only fetches one disk
page from each merging disk component at a time, so the
memory requirement is minimal. STR partitioning, however,
requires storing all records in memory. Each record requires
two copies, one from the input stream and one from the
partitioned groups. For the smallest case which a record is
24 bytes (2 double and 1 long), and a pointer of 8 bytes,
partitioning 1 million records would require at least 3 GB of
memory. In practice, the partitioning process may also require
disk I/O due to swapping. Moreover, the partitioned records
may need to be sorted again using the comparator to be bulk-
written into R-trees. Overall, STR partitioning demands much
higher CPU and memory usage than size partitioning and
is generally slower during construction. An example of STR
partitioning in a merge is illustrated in Figure 1 on the right,
which inputs are some overlapping disk components, outputs
are disjoint disk components.

A third approach is to create disjoint disk components
through a combination of Simple comparator and size par-
titioning. With this configuration, records are strictly ordered
and split by the first dimension value, such that (2) Koin 1] >
K maz[1] always holds, if C” is created later than C in the
same merge. Both STR partitioning and this combination have
a common problem as the way of organizing records are very
similar: they both tend to create very thin rectangles with very
small width but large height. Even though they can effectively
create disjoint disk components, a spatial query with relatively
wide MBR may cover a small portion of MBRs of many disk

components, potentially increasing the read amplification of
certain types of spatial queries.

III. EXPERIMENTAL EVALUATION
A. Dataset and Workloads

We used a geo-location dataset of exactly 100 million 2D
points in all experiments. It is a real-world dataset randomly
sampled from OpenStreetMap (OSM) [19]. Points in the OSM
dataset are highly clustered in urban areas all over the world,
especially in the United States and western Europe (Figure 2).

Fig. 2: Heatmap of the OSM dataset, from [—180°,—90°] to [180°,90°].

For the OSM dataset, we generated a workload with inter-
leaved reads and writes as follows:

1) A Load phase of 50,000,000 records. Each record is
associated with a unique ID in long type and a random
string of 1,000 bytes as a synthetic attribute (e.g., geo-
location description). Points are stored as two double
numbers. Every record is exactly one kilobyte long.

2) An Insert phase containing 500,000 records.

3) A Read phase containing 10,000 spatial intersection
queries. The query rectangle center is a point randomly
picked from all previously inserted points. The rectangle
size is determined by a random selectivity 1077, 0 €
{3,4,5}, that the width and height are 360 x 10~ and
180 x 1077, respectively.

The Load phase was executed once in the beginning, then
the Insert phase and Read phase were interleaved for 100
times that 100,000,000 total records were inserted (leading
to 100 GB primary index and 2.4 GB LSM R-tree index), and
1,000,000 queries were executed. This interleaved workload
guarantees the same data size in the corresponding insert phase
and read phase in all experiments for fair comparisons.

Read queries were generated in a way that every query can
return at least one record. We also tested other selectivity
values with 0 € {1,2} and o € [6,10]. We observed the
same results for o € {1,2} with ¢ = 3, and o € [6,10] with
o =5, hence we only reported results for o € {3,5} (c =4
and 0 = 5 are very similar). AsterixDB provides several
builtin spatial functions, only “spatial_intersect” operates on
the LSM R-tree index. Many other types of spatial query are
usually based on pruning using MBR intersections, such as
circle range, kNN and distance join, it is reasonable to focus
on this type of rectangular intersection queries.

B. Experimental Setup

Apache AsterixDB [20] is a full-function, open-source Big
Data Management System (BDMS) on LSM storage. The

primary index of a dataset is stored as LSM B™-trees, the
spatial index is stored as LSM R-trees. All secondary indexes
and the primary index share a global memory budget; thus they
are always flushed together. AsterixDB uses an eager strategy
to maintain secondary indexes. Spatial records are ordered by
a Hilbert curve comparator or a Simple comparator. MBR of
a disk component is computed from all records when it is
created from a flush or a merge.

All experiments were performed on 5 Amazon m5.large
instances in the same region. Each instance has 2 vCPUs
running on Intel Xeon Platinum 8175M, 8 GB of memory,
and 200 GB general purpose SSD (gp2). AsterixDB was
configured to use a single node. Other configurations were
set to the defaults. The average size of the flushed disk
components in LSM R-tree index was around 2 MB.

C. Merge Policies Compared

We applied Binomial policy [17, 18] with k£ € {4,10},
Leveled policy [5, 6] with By = 2, B = 10, Size and
STR partition to the LSM R-tree index. Both Hilbert curve
comparator and Simple comparator were paired with each
configuration. Binomial policy with £ = 8 was set for the
primary index in all runs. For runs of Leveled policy, we used
a selection algorithm to pick a disk component that overlaps
with the fewest disk components in the next level, aiming at
minimizing their write amplification.

D. Write Performance

Write Amplification: A merge policy with higher write
amplification writes more data, which may reduce the write
throughput, potentially slow down other operations as well.
We present the write amplification of policies with different
configurations in Figure 3. Write amplification of Binomial
is not affected by the dataset because it is content-unaware.
Comparators only affect the order of records in disk compo-
nents, but not component sizes. The write amplification of
Binomial are the same for each configuration, so they are
combined in the figure. Binomial with £ = 10 had the lowest
write amplification as they merged infrequently. Binomial with
k = 4 had slightly higher write amplification as they merged
more eagerly to bound the number of disk components.

=== Binomial (4) = Leveled (Hilbert, Size) e Leveled (Simple, Size)

Binomial (10) = [eveled (Hilbert, STR) e [eveled (Simple, STR)

5%
§ 20 1
‘—é“ 15
< 10
i’é 5 i ey
= 1 T T T T T T T T

0 200 400 600 800 1,000 1,200 1,400 1,600

Flushes - OpenStreetMap

Fig. 3: Write amplification of compared policies with different configurations.

All Leveled policy runs had much higher write amplification
than Binomial. Runs using size partitioning with Hilbert curve
comparator had the highest write amplification as this setting
failed to generate disjoint disk components. Runs using STR

partitioning with either comparator had slightly lower write
amplification because STR partitioning guarantees disjoint
disk components, so merge sizes were smaller. Runs using
size partitioning with Simple comparator achieved the lowest
among them because merging records were ordered by the
longitude values; thus, they were partitioned into disjoint
groups, creating almost disjoint disk components.

Write Throughput: We have further measured the write
throughput and listed the numbers in Table I. Binomial policy
showed a very high write throughput. For runs of Leveled
policy, write throughput of runs with Simple comparator was
very close to Binomial despite they had high write amplifica-
tion, runs with Hilbert curve comparator still got the lowest
throughput as expected.

Policy Bi Leveled
Comparator Hilbert Simple Hilbert Simple
Configuration 4 T 10 4 T 10 Size | STR Size | STR
Avg. records/sec | 5903 | 6,576 | 7.155 | 7,370 | 2,409 | 2,062 | 6,070 | 5,581

TABLE I: Average write throughput (number of records written per second)
for both policies with different configurations.

All indexes shared a global memory budget in AsterixDB;
any secondary index was always flushed together with the
primary index. The write throughput of an LSM secondary
index can be dominated by the throughput of the primary
index, as the primary index is much larger (2.4 GB v.s 100
GB). For this reason, write throughput of Binomial runs were
slowed down. We did not observe write stalls or spikes in
write throughput in the R-tree index either, which should be
common in stack-based policies like Binomial [21, 22].

Hilbert curve comparator is generally slower in computation
than Simple comparator as it needs multiple internal iterations
to compare two records, significant overheads could be added
to write throughput. To verify this hypothesis, we ran a set
of small experiments using the same source codes of both
comparators plus a Z-order curve comparator from AsterixDB
to sort arrays of 1,000,000 random points of 2, 3, and 4 di-
mensions. Results in Figure 4 showed that Simple comparator
is about six times faster than the other two.

B3 Z-Curve EEE Hilbert-Curve

B Simple

Total time (s)

T

2 3. 4
Dimensions

Fig. 4: Total time to sort arrays of 1,000,000 random points. AsterixDB’s
Hilbert curve comparator only supports 2 dimensional points.

E. Read Performance

We measured the read performance by the following two
metrics: (a) average (mean) read amplification, i.e., the number
of operational disk components of each spatial query, and (b)
average (mean) read latency, i.e., the total time spent to scan
all operational disk components. Latency here is different from

query response time that it measures the time accessing every
operational disk component and excludes the time of query
compilation and network latency.

High Selectivity (1073): A spatial query with higher
selectivity covers a more substantial area, which returns more
results on average. We measured the average number of
returned records of about 28,000 for the OSM dataset.

The average read amplification and latency for the OSM
dataset are shown in Figure 5. In general, the read amplifica-
tion of a stack-based LSM index is the same as the number
of disk components, because all disk component must be
scanned. For leveled LSM index, only 10 to 20 disk compo-
nents were scanned though over 1,000 disk components were
available; MBR based filtering was very efficient. Two runs
using size partitioning had the highest two read amplification.
Looking into latency, both policies with Hilbert curve com-
parator had lower latency than those with Simple comparator.
With Hilbert curve comparator, Binomial still had the lowest
latency numbers, the latency of Leveled policy using size
partitioning was not bad. Overall, for large selectivity queries,
Hilbert curve comparator would be preferred, read latency
is almost linearly correlated to the read amplification; thus
Binomial might be better.

Low Selectivity (10~°): Common spatial queries usually
return less than 100 results, which cover a relatively small area.
In our experiments, we measured an average of 12 results from
the OSM dataset.

Similar to high selectivity queries, write amplification of
Binomial remained the same, as almost all disk components
were scanned, as shown in Figure 6. Except for one run
of Leveled policy using size partitioning with Hilbert curve
comparator, the other three runs of Leveled policy became
competitive. Runs using STR partitioning, and the run using
size partitioning with Simple comparator, had much better
MBR based filtering for low selectivity queries.

Because of the lower read amplification and fewer returned
records, read latency numbers were all smaller than those in
the high selectivity queries. Runs with Simple comparator
were faster than those with Hilbert curve comparator. The
slower computation of Hilbert curve comparator became a
significant bottleneck for small selectivity queries, while it
showed superior efficiency for high selectivity queries. The
two Leveled runs using STR partitioning ranked second and
third among all. Queries could finally take advantage of their
better MBR based filtering capabilities to provide much faster
index access time.

IV. DISCUSSION

Between the two compared policies, Binomial was the win-
ner in almost all settings, showing the best read amplification
and latency, while maintaining the highest write throughput
and near-top write amplification. The Leveled policy had the
highest write amplification, but writes could still be fast with
proper configurations. In our experiments, the Leveled policy
only showed good read performance in low selectivity queries,
and therefore it may not be a good option for high selectivity

queries. There could be cases where it may suit better. Leveled
architecture is a perfect fit for object stores (Amazon S3,
Microsoft Azure, etc.). Comparing to stack-based policies, it
can manage records more efficiently via file (disk component)
based filtering, rather than relying on local indexes.

In terms of policy configuration, Hilbert curve comparator
performed better than Simple comparator in high selectivity
queries but was worse in low selectivity queries due to its
slow computation. If Leveled policy must be chosen, size
partitioning is generally a good option for high selectivity
queries, while STR partitioning is still very competitive,
especially in low selectivity queries. With a larger index size,
STR might be a better option because it guarantees to create
disjoint disk components to have better MBR based filtering
capability. However, its higher CPU and memory requirement
during merges must be considered.

LSM secondary index maintenance strategy may have a
major impact on the write and read performance of a secondary
index. With the eager strategy, write throughput may be
determined by the primary index, while with the lazy strategy,
read latency may be dominated by the time to verify returned
records against the primary index.

Limitations and Future Work: In this paper we focused on
the write and read performance of R-tree based LSM spatial
indexes. Based on the results from [9], we did not include
comparisons against indexes based on BT -tree, which may be
a more common approach on existing LSM database systems.
It may be worthwhile to revisit these designs on different LSM
architectures, since BT -tree usually has better write and read
performance than R-tree for certain types of non-intersection
spatial queries. The lack of optimizations on hardware and
operating system limited the MBR based filtering efficiency
for Leveled policy. We would expect some better results for
Leveled policy if some optimizations could be done, such as
hardware support for MBR based filtering (e.g. FPGA based
filtering) to utilize STR partitioning.

V. RELATED WORK

Several LSM systems have included support for spatial data,
but these approaches are mostly an after-thought, that is, they
are built on top of a standard key-value store. In contrast, our
work studies how spatial indexing can be a native indexing
approach. R-HBase [23] and BGRP-tree [24] partition the data
space into grid cells or regions and use an in-memory R-tree
to index the partitions, although the local indexes are still
built on BT -trees. Nanjappan implemented a separate R*-
tree index outside of Cassandra [25]. LevelGIS [26] uses a
three-layer hierarchical structure of R-tree index on LevelDB
to support spatial queries. Various open-source projects add
native spatial index support to LevelDB, RocksDB, and other
LSM systems, by creating a BT -tree with linearized spatial
data. To the best of our knowledge, none of these projects
have been deployed in practice. RocksDB used to provide a
utility called SpatialDB, but it was abandoned and removed
from GitHub in January 2019. Most works still focus on B+-
tree-based spatial index as an extension framework of existing

Leveled (Simple, Size)
Leveled (Hilbert, Size)
Leveled (Hilbert, STR)
Leveled (Simple, STR)
Binomial (Hilbert, 10)
Binomial (Simple, 10)

Binomial (Hilbert, 4)

Binomial (Simple, 4)

Average Read Amplification

Leveled (Simple, STR)
Leveled (Simple, Size)

Binomial (Simple, 4)
Binomial (Simple, 10)
Leveled (Hilbert, STR)
Leveled (Hilbert, Size)
Binomial (Hilbert, 10)

Binomial (Hilbert, 4)

T T T T T T
0 80 160 240 320 400 480 560

Average Latency (ms)

Fig. 5: OSM dataset, selectivity 1073,

systems [27, 28]. AsterixDB is currently the only BDMS that
adopts the native LSM R-tree approach.

VI. CONCLUSIONS

In this paper, we compared and evaluated secondary spatial
index performance of stack-based and leveled LSM architec-
tures with two representative merge policies, on a common
platform (AsterixDB). The results have shown that Binomial
policy is probably the best candidate for LSM R-tree-based
spatial index, even though it is not specifically optimized for
spatial data. With proper configuration, Leveled policy can
achieve close performance. MBR based leveled partitioning
can provide better filtering efficiency at the disk component
level to improve spatial query performance in proper settings.
We also showed that the choice of different comparators and
partitioning algorithms for a Leveled policy depends on spatial
queries’ selectivity.

ACKNOWLEDGMENT

This work was supported by NSF grants 1IS-1619463, IIS-
1838222 and I1S-1901379.

REFERENCES

[11 P. O’Neil et al., “The log-structured merge-tree (LSM-tree),” Acta Inf.,
vol. 33, no. 4, pp. 351-385, Jun. 1996.

[2] F. Chang et al., “Bigtable: A distributed storage system for structured
data,” ACM Trans. Comput. Syst., vol. 26, no. 2, pp. 4:1-4:26, Jun. 2008.

[3] L. George, HBase: the definitive guide: random access to your planet-

size data. O’Reilly Media, Inc., 2011.

A. Lakshman et al., “Cassandra: A decentralized structured storage

system,” SIGOPS Oper. Syst. Rev., vol. 44, no. 2, pp. 35-40, Apr. 2010.

[5] A. Dent, Getting started with LevelDB. Packt Publishing Ltd, 2013.

[6] S. Dong et al., “Optimizing space amplification in RocksDB.” in CIDR,
vol. 3, 2017, p. 3.

[71 S. Alsubaiee et al., “AsterixDB: A scalable, open source BDMS,” arXiv
preprint arXiv:1407.0454, 2014.

[8] S. Alsubaiee et al., “Storage management in AsterixDB,” Proceedings
of the VLDB Endowment, vol. 7, no. 10, pp. 841-852, 2014.

[9]1 Y.-S. Kim et al., “A comparative study of log-structured merge-tree-

based spatial indexes for big data,” in 2017 IEEE 33rd International

Conference on Data Engineering (ICDE). 1EEE, 2017, pp. 147-150.

S. T. Leutenegger et al., “STR: A simple and efficient algorithm for

R-tree packing,” in Proceedings 13th International Conference on Data

Engineering. 1EEE, 1997, pp. 497-506.

[4

=

[10]

Leveled (Hilbert, Size)
Binomial (Hilbert, 10)
Binomial (Simple, 10)
Leveled (Hilbert, STR)
Leveled (Simple, Size)
Leveled (Simple, STR)

Binomial (Hilbert, 4)

Binomial (Simple, 4)

Binomial (Hilbert, 10)
Leveled (Hilbert, Size)
Leveled (Hilbert, STR)

Binomial (Hilbert, 4)
Binomial (Simple, 10)
Leveled (Simple, Size)
Leveled (Simple, STR)

Binomial (Simple, 4)

[11]
[12]

[13]

[14]

[15]

[16]

(171

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

(28]

T T T T
0 2 4 6 8 10 12

Average Read Amplification

T T T
0 3 6 9 12 15 18 21 24 27

Average Latency (ms)

Fig. 6: OSM dataset, selectivity 1075.

Q. Mao, “Spatial index on AsterixDB,” 2020. [Online]. Available:
https://git.io/JUkaj

C. Luo et al., “Efficient data ingestion and query processing for LSM-
based storage systems,” arXiv preprint arXiv:1808.08896, 2018.

M. A. Qader et al, “A comparative study of secondary indexing
techniques in LSM-based NoSQL databases,” in Proceedings of the 2018
International Conference on Management of Data, 2018, pp. 551-566.
A. Guttman, “R-trees: A dynamic index structure for spatial searching,”
in Proceedings of the 1984 ACM SIGMOD international conference on
Management of data, 1984, pp. 47-57.

N. Beckmann et al., “The R*-tree: an efficient and robust access method
for points and rectangles,” in Proceedings of the 1990 ACM SIGMOD
international conference on Management of data, 1990, pp. 322-331.
N. Roussopoulos et al., “Direct spatial search on pictorial databases
using packed R-trees,” in Proceedings of the 1985 ACM SIGMOD
international conference on Management of data, 1985, pp. 17-31.

C. Mathieu et al., “Bigtable merge compaction,” arXiv preprint
arXiv:1407.3008, vol. abs/1407.3008, 2014.

Q. Mao et al., “Experimental evaluation of bounded-depth LSM merge
policies,” in 2019 IEEE International Conference on Big Data (Big
Data). 1EEE, 2019, pp. 523-532.

M. Haklay et al., “OpenStreetMap: User-generated street maps,” IEEE
Pervasive Computing, vol. 7, no. 4, pp. 12-18, 2008.

Apache Software Foundation, “Apache AsterixDB,” 2020. [Online].
Available: https://asterixdb.apache.org

C. Luo et al., “On performance stability in LSM-based storage systems,”
Proc. VLDB Endow., vol. 13, no. 4, p. 449-462, Dec. 2019.

T. Yao et al., “MatrixKV: Reducing write stalls and write amplification
in LSM-tree based KV stores with matrix container in NVM,” in 2020
USENIX Annual Technical Conference (USENIX ATC 20). USENIX
Association, Jul. 2020, pp. 17-31.

S. Huang et al., “R-HBase: A multi-dimensional indexing framework for
cloud computing environment,” in 2014 IEEE International Conference
on Data Mining Workshop. 1EEE, 2014, pp. 569-574.

A. Takasu et al., “An efficient distributed index for geospatial databases,”
in Database and Expert Systems Applications. Springer, 2015, pp. 28—
42.

A. Nanjappan, “R*-Tree index in Cassandra for geospatial processing,”
2019.

R. Xu et al, “An efficient secondary index for spatial data based
on LevelDB,” in International Conference on Database Systems for
Advanced Applications. Springer, 2020, pp. 750-754.

J. N. Hughes et al., “GeoMesa: a distributed architecture for spatio-
temporal fusion,” in Geospatial Informatics, Fusion, and Motion Video
Analytics V, vol. 9473. International Society for Optics and Photonics,
2015, p. 94730F.

M. B. Brahim et al., “Spatial data extension for Cassandra NoSQL
database,” Journal of Big Data, vol. 3, no. 1, p. 11, 2016.

https://git.io/JUkaj
https://asterixdb.apache.org

