
Aggregate Estimation Over a Microblog Platform

Saravanan Thirumuruganathan†, Nan Zhang††, Vagelis Hristidis‡, Gautam Das†

†University of Texas at Arlington ††George Washington University ‡University of California, Riverside
†{saravanan.thirumuruganathan@mavs, gdas@cse}.uta.edu ††nzhang10@gwu.edu

‡vagelis@cs.ucr.edu

ABSTRACT
Microblogging platforms such as Twitter have experienced a phe-
nomenal growth of popularity in recent years, making them attrac-
tive platforms for research in diverse fields from computer science
to sociology. However, most microblogging platforms impose strict
access restrictions (e.g., API rate limits) that prevent scientists with
limited resources - e.g., who cannot afford microblog-data-access
subscriptions offered by GNIP et al. - to leverage the wealth of
microblogs for analytics. For example, Twitter allows only 180
queries per 15 minutes, and its search API only returns tweets
posted within the last week. In this paper, we consider a novel prob-
lem of estimating aggregate queries over microblogs, e.g., “how
many users mentioned the word ‘privacy’ in 2013?”. We propose
novel solutions exploiting the user-timeline information that is pub-
licly available in most microblogging platforms. Theoretical anal-
ysis and extensive real-world experiments over Twitter, Google+
and Tumblr confirm the effectiveness of our proposed techniques.

Categories and Subject Descriptors
H.4 [Information Systems Applications]: Miscellaneous; H.2.8
[Database Management]: Database Applications—Data Mining

Keywords
Aggregate Estimation; Microblogs; Twitter; Random Walk

1. INTRODUCTION
The Microblogs Query Aggregation Problem: Online microblog-
ging platforms have experienced a phenomenal growth of popular-
ity in recent years, because they offer easy and compelling ways
for millions of users to post content and interact with each other. In
addition to providing attractive mediums for person-person interac-
tions, microblogging platforms also offer unprecedented opportu-
nities for microblog data analytics, i.e., big-picture views of what
people are saying, because they contain a deluge of opinions, view-
points, and conversations by millions of users, at a scale that would
be otherwise impossible to gather using more traditional methods
such as controlled surveys. In fact, microblog service providers
Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’14, June 22–27, 2014, Snowbird, UT, USA.
Copyright is held by the owner/author(s). Publication rights licensed to ACM.
ACM 978-1-4503-2376-5/14/06 ...$15.00.
http://dx.doi.org/10.1145/2588555.2610517 .

such as Twitter and their partners are already attempting to analyze
their data, ranging from public opinion to spatiotemporal popular-
ity of topics, and using the results to build advertising campaigns
or monitor the reputation of companies.

Although these are important applications for companies, mi-
croblogging platforms also provide free (but limited) public access
to their data in the form of restricted APIs, which offer great oppor-
tunities for other, often non-commercial applications, such as the
type of studies that would be most useful to a social scientist. For
example, a social researcher may wish to analyze publicly avail-
able microblog conversations and postings to determine the change
in general public’s attitudes on individual privacy before and af-
ter the news of Edward Snowden’s leakage of NSA surveillance
became public. Other examples can include studies of the spread
of obesity-promoting attitudes, the mechanisms of bullying in col-
leges or schools, and the early detection of suicidal discourse.

A core functionality to facilitate such analytics is to answer ag-
gregate queries over publicly available microblog data, which is
the focus of this paper. An example of aggregate query is “How
many Twitter users used the keyword privacy in 2013?”. We
shall consider SUM, COUNT, AVG queries on various attributes
of microblog users or posts (e.g., users’ age or posts’ length), with
selection conditions on keywords and other attributes like time.

We emphasize that our techniques will necessarily generate ap-
proximate answers; exact answers are infeasible since they require
access to the complete data (and are also often unnecessary in many
applications, since approximate aggregates are usually sufficient
for obtaining “big-picture” views of the data). Our methods should
be efficient in the following sense - the number of API calls made
to the microblogging service provider should be as few as possible
in generating the approximate aggregate.
Limitations of Existing Microblog APIs: Many of the popular
microblog sites like Twitter, Tumblr, Instagram, Yammer, Weibo,
Identi.ca (and some other social networking sites like Google+ and
Facebook that also offer microblogging features) offer search API
calls, which allow retrieving posts containing query keywords, but
the results are limited, e.g., past week in Twitter Search API [6].
Other microblogs limit the maximum number of search results one
could retrieve to at most a few thousands.

A notable exception to such search APIs is Twitter’s Streaming
API, which allows retrieving large numbers of posts given keyword
and other conditions1. Unfortunately, the streaming interface only
allows retrieving Twitter postings in the future, and there is no way
to obtain historical tweets. Thus, a a sociologist will never be able
to study the origin of a trending keyword unless he/she is somehow

1If no condition is specified, the streaming API returns a ∼1% sample of all
tweets - a ratio too small to reliably compute many aggregates (e.g., those
that are conditioned on a keyword).

1519

(magically) able to predict such a keyword ahead of time. Note that
there are companies like GNIP [2] and Datasift [1] that sell historic
microblog data; however the subscription fee is often rather high
(e.g., $3,000 per month for Twitter alone at Datasift.com [1]) for a
non-commercial setting such as social science research.
Limitations of Previous Research on Estimation of Aggregates
on Social Networks: There has been work on estimating aggre-
gate functions on social networks [13, 15, 17, 24]. These works
generally use random walk-based sampling on the social graph, or
adaptations of it like Metropolis-Hastings [12]. However, they are
inefficient for the type of aggregate queries that we study for the
following reasons: They only consider broad aggregates, that is,
aggregates on the whole social network, and not constrained by
keywords. Most of these techniques enable aggregate estimation by
drawing a random sample of all microblog users, and extrapolating
from the sample. For our purpose, however, aggregate queries have
keyword selection conditions that match only an extremely small
fraction of these users - e.g., the number of Twitter users who have
used the keyword privacy in their postings is only 0.4% of all
active users. A straighforward solution would be to only consider
users who satisfy the selection condition during the sampling ran-
dom walk. However, we found that this leads to a social subgraph
with tightly connected communities that that significantly increase
its convergence time (its burn-in period).
Outline of Our Results: We develop MICROBLOG-ANALYZER,
an efficient platform to enable the accurate estimation of aggregate
queries over an online microblogging service. Its design is based
on a central and novel idea: to leverage the user-timeline interface
(offered by most microblogging platforms) to bypass the above-
described limitations on the search API. The user-timeline API in-
puts a user-id and returns all (for all practical purposes as discussed
in §2) public posts generated by the user.

MICROBLOG-ANALYZER operates as follows: we start from
a user who recently generated a post satisfying the aggregate query
keyword condition (e.g., who is returned by the search API), and
then traverse a carefully constructed subgraph of the social graph,
where users are nodes and user connections are edges, according
to the aggregate query, in order to sample (and retrieve through the
user-timeline interface) a small number of user timelines based on
which we generate our aggregate estimation. There are two main
technical issues facing this design: (1) how to design the aggregate-
dependent subgraph, and (2) how to traverse such a subgraph, in
order to enable efficient and accurate aggregate estimations.

First, we propose a level-by-level subgraph to address the issue
of subgraph design. Specifically, we introduce a novel taxonomy
of user connections (i.e., edges) based on the aggregate being es-
timated and user timelines. A critical feature of this taxonomy is
our finding that, while certain types of edges are beneficial to effi-
cient sampling, others are detrimental to it and should be removed
from the graph. We adjust the original social graph according to
this taxonomy to produce the level-by-level subgraph and, by per-
forming simple random walks [20] over it, develop MICROBLOG-
ANALYZER-Simple Random Walk (MA-SRW), our first algorithm
for aggregate estimations over a microblog platform. We present
theoretical analysis and real-world experiments to demonstrate the
superiority of MA-SRW over several baseline graph designs.

Then, to address the graph traversal issue, we develop a topol-
ogy aware random walk over the level-by-level subgraph. Previ-
ous random walk techniques (e.g., as used in MA-SRW) are obliv-
ious and therefore generic to the topology of the underlying graph.
This often requires a large query cost for the so-called burn-in pe-
riod [12] in order for the sampling probability of each node to

converge to a stationary distribution, so that the sampled nodes
can be used for aggregate estimations. We show that, by lever-
aging knowledge of the underlying graph topology - specifically,
the level-by-level structure - our traversal algorithm removes the
need of this burn-in period (and the associated query cost) - en-
abling a significantly more efficient and accurate aggregate estima-
tion process. The execution of topology-aware random walk over
the level-by-level graph forms our final algorithm, MICROBLOG-
ANALYZER-Topology-Aware Random Walk (MA-TARW).
Summary of Contributions:

• We define the novel problem of aggregate estimation over his-
toric microblog data (§2). We develop a novel idea leveraging
the user-timeline access provided by online microblogs to by-
pass the limitations they place on the search API, and present a
platform to tackle the aggregate estimation problem (§3).

• To effectively sample the social graph according to an aggre-
gate query, we develop a level-by-level subgraph topology and
demonstrate through theoretical analysis and experimental re-
sults its superiority over a number of baseline graph designs (§4).

• To efficiently sample a level-by-level graph, we develop a topol-
ogy aware random walk which leverages the special properties of
a level-by-level graph topology to significantly outperform base-
line solutions such as traditional random walks (§5).

• We present comprehensive experiments on Twitter, Google+ and
Tumblr that show the significant improvement our methods offer
compared with the state-of-the-art (§6).

2. PROBLEM DEFINITION
In this section, we start with describing a data-access model that

abstracts the API interfaces provided by most popular microblogs,
and then define the problem of aggregate estimation.
Model of Microblog Data Access: In general, a microblogging
platform offers three functionalities: (1) share concise updates in
text (e.g., Twitter, Google+, Tumblr), image (e.g., Instagram), or
video (e.g., Vine); (2) form social connections with each other (e.g.,
follower/followee in Twitter, Circles in Google+, Likes in Tum-
blr); and (3) search, subscribe to, and consume the updates posted
by users. Correspondingly to these three functionalities, most mi-
croblogging platforms - e.g., Twitter, Tumblr, Instagram, Google+,
Weibo, Yammer etc. allow the following three types of queries:

1. SEARCH: Given a keyword (or keywords) w, return recent micro-
posts that contain w. Most microblog sites only return posts
in recent weeks – e.g., the last weeks posts in Twitter API [6].
Other microblogs restrict search to top-k results where k could
be in the low thousands. They do so for two main reasons: re-
cent data are generally more interesting to users, and many mi-
croblog service providers consider selling access to historic data
an important monetization channel [1, 2].

2. USER CONNECTIONS: Given a user u, return all other users
“connected” with u. Note that “connections” here are loosely
defined - they can be follower/followee relationships (as in Twit-
ter), friendships (as in Friendfeed), etc. Almost all real-world
microblogs, e.g., Twitter, Instagram, Tumblr, allow complete
access to all user connections (unless a user sets it to private).

3. USER TIMELINE: Given a user u, return all posts published
by u. To simplify the taxonomy, we assume that a user time-
line query also returns the user’s profile information (e.g., name,
demographics). Like user connection queries, real-world mi-
croblogs seldomly limit the returned user timelines, with one

1520

notable exception of Twitter which only publishes the most re-
cent 3200 tweets published by a user. Nonetheless, according to
recent studies, only a very small fraction of extremely prolific
users - 5% [4] - have posted more that 3,200 tweets and even for
these users only very old tweets are missing, in contrast to the
search API that only goes back one week [6] (e.g., even Justin
Bieber only posted 2,500 tweets between Apr and Dec 2013).
Given that in this paper we focus on aggregate estimations, it is
safe to assume that this small number of incomplete user time-
lines has little effect on the estimated aggregates.

Note that the above interfaces could alternatively be implemented
through web crawling of the microblog site if an API is not avail-
able. However, web search interfaces often have unknown selection
and ranking criteria that make them less desirable for aggregate es-
timations - e.g., in Twitter, posts may be missing from the web
search but not from the search API results [6]; similarly Tumblr
and other sites often perform unpredictable query expansion at their
Web search interface. Further, many sites do not allow web-page
scraping, e.g., as specified in Twitter (https://twitter.com/tos).

Another important interface limitation imposed by microblog-
ging APIs is an upper bound on the number of queries a user can
issue in a time period. For example, Twitter’s search API [6] allows
only 180 queries over a 15 minute window, and Reddit API allows
no more than one request every two seconds.
Problem Definition: In this paper, we address the problem of ag-
gregate estimations over microblogs by issuing queries through the
above-described limited microblog interface. Specifically, we con-
sider aggregate queries of the form SELECT AGGR(f(u)) FROM
U WHERE CONDITION where U is the set of all users, f(u)
is any function that returns a numeric measure for each user u
(e.g., age or #connections), AGGR is an aggregate function such
as COUNT, SUM or AVG, and CONDITION determines whether a
useru should be considered for (i.e., included in) the aggregate.

It is important to note that the above-described form covers not
only aggregates over users, but also aggregates over posts as well.
For example, the COUNT of posts containing keyword privacy
can be specified as follows: CONDITION returns TRUE if a user
has privacy appearing in its timeline, and FALSE otherwise;
f(u) returns the number of posts containing privacy in the user’s
timeline; and AGGR is SUM.

While many different predicates can be specified in CONDITION,
we highlight two specific types: (a) keyword predicates - i.e., a user
is included iff its timeline contains a pre-determined keyword (e.g.,
privacy in the above example); (b) time window - e.g., users who
mentioned privacy from Jul to Dec 2013. Keyword predicates
are prevalent in aggregates required by social science studies be-
cause most of these studies focus on one or a few topics specifiable
as keywords. For this reason, in this paper we focus on aggregate
queries with at least one keyword predicate, optionally a time win-
dow, as well as other other predicates on a user’s profile attributes
(e.g., gender, age, number of connections).
Performance Measures: The performance of an aggregate esti-
mation algorithm is measured in terms of efficiency and accuracy.
Given the query-rate limit enforced by most microblogging plat-
forms, the efficiency is the query cost - i.e., the number of queries
and/or API calls (on SEARCH, USER CONNECTIONS, and USER
TIMELINE) the algorithm issues to the microblog.

For accuracy, given estimation θ̃ of an aggregate θ, we apply the
standard measure of relative error |θ̃ − θ|/θ. Note that the error is
determined by two factors2: bias, i.e. E(θ̃− θ), and variance of θ̃.

2Specifically, the mean squared error MSE = bias2 + variance.

Hence, given an aggregate query with keyword and other predi-
cates, the objective of the microblog aggregate estimation problem
studied in this paper is to produce an estimation while minimizing
both query cost and relative error.

3. OVERVIEW OF MICROBLOG-ANALYZER
This section overviews MICROBLOG-ANALYZER, our system

for enabling analytics over a microblog by issuing queries through
its limited access interface. We start by presenting a key idea of
MICROBLOG-ANALYZER: estimating aggregates by sampling
user timelines. Then, we outline the design issues associated with
two main components of MICROBLOG-ANALYZER: (1) GRAPH-
BUILDER, i.e., the generation of a conceptual graph that connects
user timelines together, and (2) GRAPH-WALKER, i.e., the design
of an efficient sampling algorithm over such a graph. While §4 and
§5 describe these two components in detail, we discuss at the end of
this section how we prototyped MICROBLOG-ANALYZER over
Twitter and collected ground-truth for its evaluation.

3.1 System Architecture

Rate-
limited

Microblog
Interface

GRAPH-
BUILDER

GRAPH-
WALKER

user id

timeline &
connections

all of user's
connections

connections
in subgraph

MICROBLOG-ANALYZER

aggregate query
query budget
(system input)
aggregate
estimation
(system output)

user id

timeline

Figure 1: System Architecture

Figure 1 depicts the architecture for MICROBLOG-ANALYZER
which has two main components: (1) GRAPH-BUILDER that builds
a graph connecting users and (2) GRAPH-WALKER that performs
a random walk over such a graph. The system works as follows:

• It receives as input an aggregate query to be estimated (as defined
in §2), a query budget (i.e., the maximum number of queries
MICROBLOG-ANALYZER can issue to the microblog), as well
as one or a few “seed users” which have posted microblogs sat-
isfying the selection condition of the aggregate. Note that such
seed users can be easily identified through the limited search API
(e.g., for Twitter, users who posted a keyword in the past week).

• Given a seed user, MICROBLOG-ANALYZER uses the GRAPH-
BUILDER to determine which other users are its neighbors. As
we shall show later, the design of GRAPH-BUILDER can range
from simply using all social connections of the user to a care-
fully designed algorithm that takes into account the aggregate
being estimated and certain user timeline information to select a
subset of such social connections. We shall discuss the design of
this component in the next subsection and then in detail in §4.

• Given the neighbors, GRAPH-WALKER determines the proba-
bility for MICROBLOG-ANALYZER to “transit to” and sample
each neighbor for aggregate estimation. Once again, the design
ranges from simply choosing each neighbor uniformly at ran-
dom (i.e., simple random walk) to a carefully designed algorithm
that takes into account certain topological properties of the graph
produced by GRAPH-BUILDER. We shall discuss the design of
this component in the next subsection and then in detail in §5.

1521

Table 1: Components employed by proposed algorithms

GRAPH-BUILDER GRAPH-WALKER
MA-SRW Level-by-Level (§4) Level-by-Level (§4)
MA-TARW Simple RW [20] Topology-Aware RW (§5)

• The above process can be repeated multiple times until exhaust-
ing the query budget, so as to produce a more accurate aggregate
estimation as the final output of MICROBLOG-ANALYZER.

3.2 Key Idea: User-Timeline Based Analytics
Feasibility of User-Timeline Based Analytics: To address the of-
ten stringent limit on search query interfaces, a key data source
MICROBLOG-ANALYZER leverages is the user timeline - i.e.,
all historic posts published by a user - which, as discussed in §2, is
readily accessible through the access interface of many microblogs.

To understand why user-timeline information can be used to an-
swer aggregate queries (especially those with keyword predicates)
defined in §2, we start by considering an extremely inefficient tech-
nique which nevertheless demonstrates the feasibility of this idea.
Note that, as shown by many previous studies [13, 18, 24], the vast
majority of users in a microblogging service are linked in a con-
nected graph through social relationships revealed by the service
- e.g., follower/followee in Twitter, Circles in Google+, blog fol-
lowers in Tumblr, comments on same post in Reddit, etc. For
the purpose of this paper, we consider such a social graph to be
undirected. For directed relationships such as follower/followee on
Twitter, one can easily convert them to undirected edges by consid-
ering two users to be connected if either follows the other.

Given the social graph, one can simply start with one user and
recursively follow edges (using user connections API) to reach and
crawl the timeline of most users - making it possible to answer ag-
gregates based on the locally crawled data. While this brute-force
method demonstrates the feasibility of acquiring sufficient infor-
mation (for aggregate estimation) through user-timeline queries,
it unfortunately requires a prohibitively high query cost given the
access-rate limit discussed in §2. In addition, most crawled data
would be completely useless for aggregate estimation - e.g., even
for a broad query like the count of users who have tweeted privacy
in 2013, the vast majority of user timelines would be irrelevant be-
cause only a very small percentage (≈ 0.4% of its active users)
of all Twitter users satisfies the selection condition - leading to a
significant waste of resources.

To address this problem, MICROBLOG-ANALYZER only sam-
ples users who satisfy the keyword predicate specified in the aggre-
gate query, and then produce aggregate estimations according to
the collected sample. There are two design issues that are critical
for enabling the sampling-based method:
Design Issue 1 (Subgraph Generation): A straightforward method
to sample user timelines is to perform a random walk over the social
graph - e.g., a simple random walk [20] recursively jumps from one
user to one of its neighbors chosen uniformly at random - so time-
lines of sample users (taken after a sufficient number of “burn-in”
transitions [12]) can be used for aggregate estimations. A prob-
lem with this method, however, is that topology of the social graph
is very “unfriendly” for sampling and requires a high query cost
for random walks to “burn-in”. While we shall discuss this find-
ing in detail in §4, an intuitive explanation here is that the social
graph contains many “redundant” edges which may “trap” a ran-
dom walk inside a tightly connected component - i.e., preventing
the walk from efficiently sampling all nodes in the graph.

As such, to enable efficient sampling, the first design issue we
must address is how to “on-the-fly” remove the redundant edges
and find a subgraph that satisfies two conditions: (1) high recall: it
still includes most if not all users who satisfy the selection condi-
tion of the aggregate to be estimated, and (2) sampling-friendly: the
subgraph should have a “well-knit” [20,26] topology and therefore
facilitate an efficient random walk process. One can see that the
high-recall requirement ensures the closeness of estimations gener-
ated from the subgraph to the ground truth, while the friendliness
requirement ensures an efficient random walk process. We shall
develop a novel technique for subgraph construction in §4.
Design Issue 2: Sampling Design: In the above discussions, we
considered a direct application of traditional random walk tech-
niques (e.g., simple random walk [20] or Metropolis-Hastings ran-
dom walk [12]) over the user-timeline graph (or subgraph, once the
above design issue is addressed). While there has been a large body
of work on using these random walks for aggregate estimation over
large graphs [13, 15, 17, 19, 20] a key deficiency of it is the signifi-
cant query cost required by answering COUNT and SUM queries.

While samples collected by random walks can be directly used
to estimate AVG queries (as a weighted average of all sample tu-
ples), if one does not know the total number of nodes in the graph
(which is often the case in practice), generating estimations for
COUNT and SUM often needs to use a significantly more expen-
sive mark-and-recapture [9] based technique (e.g., [15]). How-
ever, in this method Ω(

√
n) samples are needed to produce just

one collision over an n-node graph - an extremely high query cost
even for a perfectly built subgraph containing only users satisfy-
ing the selection condition. For example, to estimate the COUNT
of all users who tweeted privacy in 2013 (about 894,000), this
means at least thousands of samples must be collected, incurring
a very high query cost. To address this deficiency, the second de-
sign issue is how to efficiently traverse the graph to estimate AVG,
COUNT and SUM aggregates. We shall develop a novel sam-
pling algorithm to achieve these objectives in §5. Table 1 shows
which subgraph generation (GRAPH-BUILDER) and graph sam-
pling (GRAPH-WALKER) components are employed by the two
key proposed algorithms of this paper.
Prototype Design for Twitter Experiments: Before presenting
out detailed design of MICROBLOG-ANALYZER in §4 and §5,
we would like to briefly discuss how we prototyped over Twitter,
the preeminent micro-blogging platform. Note that while we fo-
cus the rest of the paper on this Twitter prototype, the adaption to
other micro-blogging platforms is straightforward - e.g., we present
experiments in §6 over Google+ and Tumblr.

Twitter’s REST API [5] naturally fits into the data access model
detailed in §2. The search API retrieves tweets matching the given
keywords which were posted during the past week [6]. The user
timeline API provides access to a user’s historic tweets (up to the
last 3200). Since Twitter allows asymmetric relationship between
users, we have to use two APIs to retrieve all the users who follow
user u and all users who are followed by u, in order to collect all
user connections as defined in the undirected social graph. Each
API call returns up to 5000 connections while the vast majority
(upwards of 95% [4]) of users have fewer than 100.

We now briefly describe how we collected the ground truth for
evaluating our prototype’s effectiveness on estimating aggregates
such as “COUNT of all users who tweeted about privacy in
2013”. We used the streaming API to collect all public tweets
mentioning a diverse set of keywords (such as cities, celebrities,
organizations, etc.) between Jan 1, 2013 to Oct 31, 2013. Twitter
ensures that the stream returns all relevant tweets as long as their

1522

frequency is less than about 1% of the entire Twitter Firehose (total
volume) [7]. Our specified keywords were selective and did not re-
ceive any rate limit exception, which means that this is an accurate
ground truth to evaluate aggregate estimation algorithms.

4. LEVEL-BY-LEVEL SUBGRAPH
Recall that GRAPH-BUILDER aims to construct a subgraph (of

the social graph defined in §3) with two properties: (1) a high re-
call of (timelines of) users who satisfy the selection condition of
the aggregate query to be estimated, and (2) a topology that en-
ables efficient sampling of such users. In this section, we start by
describing a baseline method that achieves (1) but fails (2). The
deficiencies of this baseline motivate us to propose a novel level-
by-level subgraph to satisfy both. At the end of this section, we
present Algorithm MA-SRW which enables aggregate estimation
by performing simple random walks over the level-by-level graph.
Running example: Throughout this section and the next, we con-
sider as running example the estimation of the following aggregate
query over our Twitter prototype: AVG(number of followers) of
users who tweeted the keyword privacy in 2013.

4.1 Baseline Subgraphs and Their Deficiencies
We start with discussing term-induced subgraph, a straightfor-

ward subgraph construction which serves as a baseline for our study.
Simply put, unlike the original graph which includes all user time-
lines, the term-induced graph consists of only users who satisfy the
keyword selection condition of the aggregate query. In the running
example, this leads to a subgraph consisting of all users who have
tweeted privacy before. From a practical standpoint, this means
that, during the random walk process, we always start with a user
who has privacy in his/her timeline and only transit to users who
satisfy the same criteria.

The rationale for this baseline approach is simple: Since nodes
in the term-induced subgraph form a superset of those covered by
the aggregate, the subgraph has a high recall as long as it remains
connected or has a large connected component. On the other hand,
the sampling efficiency is likely to be improved because of the re-
duced graph size. The design of the subgraph balances between the
two objectives by filtering nodes only with keyword predicates (de-
fined in §2) - which, as shown below, vastly reduces the subgraph
size while keeping it connected - but not other conditions in the ag-
gregate query - e.g., a time-interval condition which, when overly
short, can result in a low recall.

Our experiments on Twitter confirmed the validity for the high-
recall assumption - for all keywords and hashtags we tested (from
popular ones such as Fiscalcliff, New York, Superbowl
to more obscure ones such as Tunisia, Simvastatin), the
largest connected component of the subgraph contains almost all
(on average 94% - see Table 2 for details) nodes in the subgraph
- demonstrating the high-recall of a term-induced subgraph. In-
tuitively, this is because of the strong correlation between social
relationships and co-mentioning of keywords - i.e., not only are
terms/hashtags likely propagated between followers and followees,
but users who have similar interests tend to be connected and use
the same keywords - leading to the high recall.

For sampling efficiency, our findings were mixed. While the
query cost is indeed much lower than the original social graph, it
is still very expensive. For the running example (average number
of followers for users who tweeted privacy), this subgraph re-
quired close to 49,000 queries to obtain an estimate with less than
5% relative error. While this value is significantly less than than the
144,000 queries required for the original graph, it is still high con-

Table 2: Statistics: Term Induced & Level-by-Level Subgraphs

Keyword Recall Avg#common
neighbors

% of intra &
cross-level

FiscalCliff 97% 16, 2 27%, 1%
New York 91% 49, 3 32%, 2%
Super Bowl 93% 34, 1 29%, 2%
Obamacare 96% 21, 5 22%, 1%
Tunisia 86% 11, 4 28%, 1%
Simvastatin 81% 19, 2 24%, 2%
Oprah Winfrey 91% 22, 4 29%, 3%

sidering Twitter’s rate limit. Figures 2 and 3 how the term-induced
subgraph performs on estimating AVG(number of followers) and
COUNT for users who tweeted privacy, respectively.

To understand why the efficiency problem remains with the term-
induced subgraph, we note that even though users who tweeted
privacy only represent a small percentage of all Twitter users,
the number of edges connecting them in the term induced graph is
still very large (e.g., close to 1 million edges connecting approxi-
mately 142 thousand nodes for the running example). With such a
large and dense graph, the efficiency of sampling critically depends
on whether the graph topology is carefully designed to enable effi-
cient random walks.

Unfortunately, we found a special topological property of the
term induced subgraph that is indeed very “unfriendly” for effi-
cient sampling: Note that, exactly because of the same reason why
the term-induced graph likely has a high recall, keywords are often
propagated among users that form tightly connected communities
(e.g., measured according to graph modularity [26]). This actually
requires a random walk to have a long burn-in period because it is
likely “trapped” inside a tightly connected community before hav-
ing a sufficient probability to propagate to other parts of the graph.
Our experiments on Twitter confirmed this finding. The burn-in pe-
riod (with Geweke threshold [11] Z <= 0.1) for the entire Twitter
graph and the term induced subgraph (for privacy) were approx-
imately 700 and 610 respectively. Similar behavior was observed
for other keywords also (see Figure 4 for details).

One can see from the above discussion that the straightforward
design of a term-induced subgraph cannot adequately address the
sampling-efficiency problem of the original social graph, mainly
because of the long burn-in dictated by traversing between tightly
connected communities. In the next subsection, we describe our
proposed methods for constructing a “sampling-friendlier” subgraph
topology - specifically, by exploiting time dimension of the term-
induced subgraph - i.e., the time order with which users posted a
specified term like privacy.

4.2 Level-by-Level Subgraph

4.2.1 Key Idea and Rationale
To develop our idea of a level-by-level subgraph, we start with

introducing a taxonomy of edges in the term-induced subgraph and
discuss how each type of edges affect the efficiency of random
walks. Consider a simple organization of all nodes (users) into
multiple levels according to the time when a user first qualified for
the keyword predicate (i.e., tweeted privacy in the running ex-
ample). Consider an arbitrary time interval, say 1 day. We partition
all users in the term-induced subgraph into multiple segments ac-
cording to the interval (e.g., users published privacy between
Jan 1, 13 and Oct 31, 13 will be partitioned into 303 segments).

1523

0.05 0.10 0.15 0.20 0.25

Relative Error

20000

40000

60000

80000

100000

120000

140000

160000
Q

ue
ry

C
os

t

Social Graph
Term Induced Subgraph
Level By Level Subgraph

Figure 2: AVG(followers): Users
who tweeted privacy

0.05 0.10 0.15 0.20 0.25

Relative Error

20000

40000

60000

80000

100000

120000

140000

160000

180000

Q
ue

ry
C

os
t

Social Graph
Term Induced Subgraph
Level By Level Subgraph

Figure 3: COUNT: Users who
tweeted privacy

0.0 0.2 0.4 0.6 0.8 1.0

Fraction of Intra-Edges Removed

20000

25000

30000

35000

40000

45000

50000

55000

60000

65000

Q
ue

ry
C

os
t

Privacy
Boston
New York

Figure 4: Impact of removing
intra-edges on Query Cost

1D 2D 1W 1M 12H 4H 2H
Time Interval

0

10000

20000

30000

40000

50000

60000

70000

Q
ue

ry
C

os
t

Privacy
Boston
New York

Figure 5: Impact of T on
query cost (H=hours, D=days,
W=weeks, M=months)

1 4

2

3

Jan 4

Jan 5

Jan 3

b

a

c

Figure 6: Level-by-Level View of term-induced Subgraph H .

If we draw each segment as a “virtual level” as in Figure 6, and
place these levels from top to bottom in chronological order, then
we can classify all edges in the subgraph into three categories: (a)
Adjacent-level edges connect two users in adjacent levels - e.g.,
Edge a in Figure 6 connects User 1 who first tweeted privacy
on Jan 3 and User 2 who did so on Jan 4. (b) Cross-level Edges
connect two users in unequal and non-adjacent levels - e.g., Edge
b in Figure 6. (c) Intra-level Edges connect two users in the same
level - e.g., Edge c in Figure 6.

The reason why we introduce such a ternary classification is be-
cause, interestingly, these three types of edges serve different roles
in facilitating or deterring the random walk process. Specifically,
we found that, for a “reasonable” time interval (>1 hour), (more)
intra-level edges are detrimental to the efficiency of random walks,
while (more) adjacent-level edges are beneficial to it. Cross-level
edges, on the other hand, contribute to more efficient random walks
but are relatively rare in practice (e.g., less than 1% for privacy.
See Table 2 for other keywords).

While we shall verify this finding both theoretically and exper-
imentally in §4.2.2, we would like to start here with an intuitive
explanation for the varying effects different types of edges have
on sampling efficiency. Intuitively, intra-level edges usually ex-
ist between users in a tightly connected component (as described
in §4.1), while adjacent- and cross-level edges are most often not.
This has been observed before - e.g., it was found in [3] that 92%
retweets produced by followers of a user occur within 1-hour of
the original tweet, demonstrating that most followers “respond”
within very short time, leading to intra-level edges between users
in a tightly connected component. Our experiments confirmed this
observation - e.g., Table 2 (column 2) contrasts, for various key-
words, the average number of common neighbors shared by two
users connected by an intra-level edge and those who are not. We
can observe that, on average, one in four edges in the term induced
subgraph is an intra-level edge. Further, the users connected by an
intra level edges have significantly more common neighbors.

One can see from this explanation that, to “burn-in” to a sta-
tionary distribution, a random walk needs to cross adjacent- and/or
cross-level edges and cannot get “stuck” inside a small group of
users tightly connected by intra-level edges. Combine this with
the fact that a substantial percentage of edges in a real-world term-
induced graph are intra-level ones (e.g., even for a short interval of
1 hour, more than 28% of edges for keyword privacy are intra-
level ones), a key idea for our subgraph design subgraph is to re-
move all intra-level edges from the term-induced graph. We refer
to this subgraph as the level-by-level subgraph because it only con-
tains edges between different levels. From a practical standpoint,
this means that the random walk needs to follow a simple rule: tran-
sit from a user to its neighbor if and only if they did not first tweet
privacy in the same day.

One can see that, to properly design a level-by-level subgraph,
one needs to address two key issues. One is, of course, to verify
that removing intra-level edges indeed improves the efficiency of
random walks. We shall discuss this verification in §4.2.2. The
other has to deal with the time interval used in defining intra-level
edges. Note that an intra-level edge could be classified as adjacent-
or even cross-level edge with a different time interval. We shall
develop the proper setup of time interval for an aggregate in §4.2.3.

4.2.2 Effect of Intra-Level Edges
We now analyze the effect of intra-level edges on the efficiency

of random walks in two steps. First, we present theoretical analysis
on a simple example of level-by-level graph to illustrate how the
removal of intra-level edges makes the graph more “well-knit” and
more efficient for random walks. Then, we present experimental
findings from our Twitter prototype to demonstrate the efficiency
improvements achieved by removing intra-level edges.

For theoretical analysis, we consider the change of graph con-
ductance [20] after the removal of intra-level edges. The conduc-
tance φ(G) of a graph G measures how “well-knit” G is - i.e.,
how fast a random walk can converge to its stationary distribution.
Specifically, we have

φ(G) = min
S⊆V

∑
vi∈S,vj∈S aij

min
(
a(S), a(S)

) (1)

where V is the set of vertices in G, S and S = V \S form a
partition of V into two disjoint subsets, aij = 1 if there is an
edge connecting vi and vj in G and 0 otherwise, and a(S) =∑

vi∈S

∑
vj∈V aij . In general, a simple random walk burns-in

faster on graphs with higher conductance [21].
Given the complexity of analyzing the conductance of an arbi-

trary graph, for the purpose of this paper, we consider a simple
example of a level-by-level subgraph G as follows. Let there be
n nodes in the graph which are distributed evenly across h levels

1524

(so each level contains n/h nodes). The adjacent-level edges in the
graph are constructed such that each node at Level i (i ∈ [1, h−1])
is connected with d nodes chosen uniformly at random from those
at Level i + 1. The intra-level edges, on the other hand, connect
each node at Level i with d′ other nodes chosen uniformly at ran-
dom from Level i. While this simple model does not match real-
world graph topologies, it nevertheless gives us an indication of
how intra-level edges affect conductance, as demonstrated in the
following theorem.

THEOREM 4.1. The conductance for G is

φ(G) =



h
(k+d)(h−1)n

if d ≤ n
2h

, k ≤ n
2h

min
(

2kh−n
kh+dn

, 2d
2d(h−1)+hk

)
if d ≤ n

2h
, n
2h

< k < n
h

min
(

2dh−n
kh+dn

, 2d
2d(h−1)+hk

)
if n

2h
< d < n

h
, k ≤ n

2h

min
(
(k − n

2h
) 2dh−n
kh+dn

, 2d
2d(h−1)+hk

)
if n

2h
< d < n

h
, n
2h

< k < n
h

(2)

After removing all intra-level edges, the conductance of G′ is

φ(G′) =

{
h

nd(h−1)
if d ≤ n

2h

min
(

2hd−n
nd

, 1
h−1

)
if n

2h
< d < n

h

(3)

PROOF. We give a proof sketch due to space limitations by show-
ing adding intra level edges to a level by level graph actually de-
creases conductance. For simplicity, we consider a level-by-level
graph (G′) with h levels where each level has exactly n/h nodes.
Each node is connected with d(d ≪ n/h) randomly chosen nodes
in adjacent levels. In order to compute the conductance of this
graph, we have to identify the cut that has the lowest conductance.
There are two possible cuts - horizontal (where the cut disconnected
two adjacent levels) or vertical (where the cut disconnects the graph
into subgraphs, each with h levels).

After some algebraic manipulations, we can notice that the con-
ductance of the horizontal cut is φ(G′)Sh = 1

h−1
. Similarly, the

conductance of vertical cut is:

φ(G′)Sv =

{
h

nd(h−1)
if d ≤ n

2h

min
(

2hd−n
nd

, 1
h−1

)
if n

2h
< d < n

h
.

(4)

The conductance of the graph is min(φ(G′)Sh , φ(G
′)Sv). In

order to analyze the impact of intra level edges, we assume a simple
model where each node has k randomly chosen intra-layer edges.
We can see that the horizontal cut for this graph: ϕ(G)Sh = 1/(h−
1+hk/(2d)). i.e. the horizontal cut with intra level edges decrease
the conductance. There are four possible cases for vertical cut de-
pending on the value of d and h. The second argument for min in
Equation 2 provides the value for ϕ(G)Sv . Comparing the equa-
tions, we can notice that the additional factor of k (introduced due
to intra level edges) actually reduces conductance.

One can see from the theorem, specifically the comparison be-
tween (2) and (3) that the removal of intra-level edges significantly
increases the graph conductance and thereby make the random walk
process more efficient. Our experiments on the Twitter prototype
verified this finding. Figure 4 shows, for various keywords , how
the removal of 10% to 100% randomly chosen intra-level edges af-
fect the query cost of simple random walks to achieve a relative

error of ≤ 5% on estimating the average number of followers for
all users who tweeted the keyword in 2013. One can observe from
the figure that as the query cost decreases dramatically when intra
level edges are removed. Even removal of subset of such edges is
actually helpful. We observed that this modification, on average,
reduces the query cost for most keywords by at least 20%.

4.2.3 Time Interval in Level-by-Level Subgraph
We now address the second issue - how to properly set the time

interval T which directly affects edge classification. Once again,
we start with theoretical analysis on optimal T based on the sim-
ple example of level-by-level graph described in §4.2.2. Then, we
verify the analysis with experimental findings over Twitter.
Theoretical Analysis: Note that the setting of T affects two pa-
rameters in this simple model: (1) the number of levels h - the
longer T is, the smaller h, and (2) d, the number of (randomly cho-
sen) Level i + 1 nodes a Level i node is connected with. Here
the relationship between T and d is not as clear: While a longer T
will in general lead to more nodes on Level i+ 1, it might actually
reduce d if most followers of the Level i node already responded
within the time interval corresponding to Level i. The following
corollary to Theorem 4.1 illustrates the relationship between h and
d in order to maximize conductance of the level-by-level subgraph.

COROLLARY 4.1. To maximize the conductance of G′, there is

d =
(2h− 1)(2h− 2)

h(2h− 9)
(5)

The proof follows directly from Theorem 4.1. Intuitively, this
means that instead of setting the T to a fixed value, we should ad-
just it according to the propagation pattern of the query term or
hashtag. Specifically, the average number of followers who “pick
up” the hashtag after the current time interval should be close to
its optimal value d as shown in (5). For example, if the average
degree is around d = 14, then there should be around h ≈ 5 levels
in the lattice structure. Of course, the real-world scenario is more
complex. For example, the average number of “pick ups” tends to
decline over time - indicating that the time interval should be dy-
namically changed throughout the duration of propagation [3, 18].

Another interesting observation from the corollary is that the
optimal value of d becomes very close to 2 (i.e., its limit when
h → ∞) when h is reasonably large. For example, we have d =
2.13 and 2.06 when h = 50 and 100, respectively. This means that
when the keyword of interest has been propagated for a long time
(e.g., privacy), we can set T according to a simple rule of d = 2.
Practical Design: Recall that GRAPH-BUILDER constructs the
best subgraph on-the-fly during aggregate estimation. First, we dis-
cuss a simpler problem where we are given a set of candidate val-
ues for T and aim is to identify which is best for estimating an
aggregate. Constructing the term-induced subgraph for each value
and comparing them is not ideal as it would require a prohibitive
query cost. Instead, we perform a pilot random walk using each of
the time intervals. Each of the pilot random walks uses a smaller
budget (e.g., 50 samples) and terminates quickly. Using the partial
topology revealed by each walk, we compute h and d and estimate
the value of conductance using (3). The time interval with the high-
est conductance is selected and used for the rest of the process.

We evaluated the effectiveness of this over Twitter. Specifically,
we identified a set of diverse time intervals varying from 1-hour
to 1-month. For each time interval, we estimated its efficacy in
sampling as against the theoretical value of the conductance. In
other words, we ordered the time intervals in the horizontal x axis
based on their conductance. We then performed random walk for

1525

each of these time intervals and compared the query cost to achieve
a relative error of less than 5%. Figure 5 shows the results for
three keywords. One can see that the orders based on theoretical
conductance and experimental performance are consistent.
Algorithm MA-SRW: Recall from §3 the two key components
of MICROBLOG-ANALYZER: GRAPH-BUILDER and GRAPH-
WALKER. In this section, we developed a level-by-level subgraph
for GRAPH-BUILDER. We now combine it with simple random
walk in GRAPH-BUILDER to produce Algorithm MICROBLOG-
ANALYZER-Simple Random Walker (MA-SRW). The samples ob-
tained are then used for aggregate estimation in the same way as
simple random walk [20]. Algorithm 1 depicts the pseudocode for
MA-SRW.

Algorithm 1 MA-SRW
1: Retrieve seed users
2: while Remaining query budget > 0 do
3: Retrieve samples using simple random walk. At each transi-

tion, only select from edges that belong to the level-by-level
graph according to time interval T .

4: end while
5: Perform aggregate estimation as in simple random walk [20].

5. TOPOLOGY-AWARE RANDOM WALKS
To understand the key ideas of our Topology-Aware random walk

algorithm, we start by briefly discussing the deficiencies of exist-
ing techniques, specifically the direct application of simple ran-
dom walk or Metropolis-Hastings random walk to the level-by-
level subgraph we constructed in Section 4. Then, we develop the
key ideas for a novel topology-aware, level-by-level, random walk
and present our MA-TARW algorithm.

5.1 Deficiencies of Traditional Random Walks
As mentioned in the introduction, the existing techniques have

two main problems: (1) although they produce asymptotically un-
biased (according to their respective stationary distributions) sam-
ples after a burn-in period, the number of transitions required for
the burn-in is usually high [25]; and (2) while they can be com-
bined with mark-and-recapture [9] to estimate SUM and COUNT
queries based on the samples, the query cost often rises to a pro-
hibitively high level for practical purposes.

We note here that the fundamental reason underlying these prob-
lems is the inability of traditional random walk techniques to esti-
mate the probability for a node u to be chosen as a sample. Note
that while simple random walk is known to have a stationary dis-
tribution that assigns probability proportional to a node’s degree
d(u), it is still impossible to compute the exact probability for a
node to be accessed (i.e., d(u)/(2|E|) where E is the set of all
edges) unless one knows the total number of edges in the graph.
Similarly, to know the exact probability for a node to be accessed
by Metropolis-Hastings random walk (i.e., 1/|V | where V is the set
of all vertices), one has to know the total number of nodes in the
graph. Clearly, neither piece of knowledge is available a priori in
our case - and estimating them (e.g., by using mark-and-recapture)
requires a very high query cost.

To understand the importance of knowing the exact probability
for a node to be accessed, note that such knowledge indeed ad-
dresses both deficiencies outlined above. First, with knowledge
of p(u), the probability for a node to be taken as a sample, one
can simply apply the Hansen-Hurwitz estimator [14] to generate
an unbiased estimation for any SUM or COUNT query defined in

§2 as f(u)/p(u), where f(u) is the result of applying the SUM
or COUNT query over u itself3. This avoids the usage of mark-
and-recapture and, as a result, significantly reduces the query cost
required for answering SUM and COUNT queries4.

Similarly, the efficiency problem - i.e., the long burn-in period
required - is also (at least partially) caused by the lack of knowledge
on the probability for a node to be sampled at a certain step of the
random walk. Specifically, the lack of knowledge mandates a long
burn-in period for the sampling probability to converge to its target
stationary distribution. If one can compute p(u) during each step
of the random walk process, then an unbiased aggregate estimation
can be generated as long as p(u) > 0 for all u in the graph5 -
potentially saving significant query cost for the sampling process.

Admittedly, if one has no knowledge of the global graph topol-
ogy, it is impossible to compute or make any meaningful estima-
tion6 of p(u) without incurring as high a query cost as mark-and-
recapture [9, 15]. The reason is simple - without “recapturing” at
least some nodes accessed before, it is impossible to determine the
scale of the graph as, theoretically speaking, it is entirely possible
that the access cost we have incurred so far is still smaller than the
average pairwise distance between nodes in the graph (one can al-
ways construct such an extreme-case scenario), making it impossi-
ble to guarantee or even estimate the error of aggregate estimations.

Fortunately, the subgraph construction technique described in §4
affords us substantial knowledge of the graph topology - not the en-
tire node/edge sets - but knowledge of the level-by-level structure
all nodes and edges are organized by, and which level a node falls
into. As we shall show in the following subsection, such knowl-
edge gives us the ability to efficiently compute an unbiased esti-
mation of p(u), which in turns enables a significantly more effi-
cient (topology-aware) sampling process than the traditional ran-
dom walk techniques.

5.2 Key Idea: Level-by-Level Random Walk
In this section, we first develop a novel level-by-level random

walk process by leveraging knowledge of the subgraph topology
we constructed in §4. We also explain why this process requires
far fewer queries than traditional (simple or Metropolis-Hastings)
random walks. Then, we discuss how to estimate p(u) in a level-
by-level random walk - which in turn enables accurate aggregate
estimations.
Description of Level-by-Level Random Walk: To understand
the level-by-level random walk process, we start by considering
a simple example where a level-by-level subgraph constructed for
a given keyword has h levels and only edges between nodes of ad-
jacent levels. As shown in Figure 6, the top level consists of users
who mentioned the keyword earliest, while users at the bottom one
or few levels are guaranteed to be returned by Twitter’s search API
(which has a time limit of about 1 week [6]) - i.e., our random walk
process starts from these bottom levels. Note that every edge in the
graph is directed from top to bottom.

Our topology-aware, level-by-level, random walk follows a bottom-
top-bottom flow on the subgraph - i.e., a random walk instance
starts from the bottom level and moves up one level at a time, by
following the inverse direction of edges, until reaching a node with
no incoming edge. Then, it reverses traversal direction and starts
3e.g., if the aggregate is the number of posts containing privacy,
then f(u) is the number of u’s posts containing privacy.
4Note that AVG queries can be simply estimated as SUM/COUNT.
5Note that the requirement p(u) > 0 is here to ensure that the
sampling process can reach all nodes covered by the aggregate.
6Here we use “meaningful” to refer to estimations with statistical
guarantees on bias and/or variance.

1526

following the original edge directions to transit down, again one
level at a time, until it reaches a node with no outgoing edge - at
which time (this instance of) the random walk terminates. At each
transition during the random walk, a branch is chosen uniformly at
random. Note that all nodes we pass through during a random walk
will be used to generate one aggregate estimation - and one can ex-
ecute multiple instances of the random walk and average out the
results to produce more accurate estimations - the details of these
issues shall be described in the next subsection.

Before discussing the probability for each node to be chosen by
such a level-by-level random walk, we first note that the query cost
required by each instance of the random walk is much smaller than
that for traditional topology-oblivious random walks. Specifically,
our walk instance requires at most 2(h − 1) transitions, orders
of magnitude fewer than simple and Metropolis-Hastings random
walks, according to the results in §6.2.

There is a simple reason behind this advantage: by leveraging
knowledge of the level-by-level topology, our random walk process
is capable of transiting between different “clusters” of nodes much
faster than traditional topology-oblivious random walks. Specif-
ically, for a 2(h − 1)-step level-by-level random walk instance
over the above-described h-level graph, each of the first (or last)
h− 1 steps is guaranteed to draw from mutually exclusive subsets
of nodes. This makes the random walk process reach (with a posi-
tive probability) all nodes in the graph much faster than traditional
random walks which, despite improved subgraph designs, still have
a fairly high probability to return to their origin point after a small
number of transition steps [10].
Unbiased Estimation of p(u): We now consider the estimation
of p(u) - the probability for a level-by-level random walk instance
to reach a node u in the subgraph. To do so, we first define some
notation. We use ṕ(u) and p̀(u) to represent the probability for
a random walk to reach u during the bottom-top and top-bottom
phases, respectively. Also, we use ∇(u) and ∆(u) to denote the
set of neighbors of u on the levels above and below u, respectively.
The key observation for estimating ṕ(u) and p̀(u) is

ṕ(u) =
∑

v∈∆(u)

ṕ(v)

|∇(v)| , p̀(u) =
∑

v∈∇(u)

p̀(v)

|∆(v)| , (6)

which holds for all but two exceptions: (1) for a node u with no
incoming edges - i.e., when ∇(u) = ∅ - we have p̀(u) = ṕ(u),
and (2) for a node u with no outgoing edges - i.e., when ∆(u) = ∅
- it is either ṕ(u) = 1/s - where s is the number of seed nodes7

the random walk might start from - if u is one of the seed nodes, or
ṕ(u) = 0 otherwise.

Equation 6 illustrates a simple recursive process for producing
an unbiased estimation of p(u): Note that if we choose a node v
uniformly at random from ∆(u), then

ω(ṕ(u)) =
|∆(u)| · ṕ(v)

|∇(v)| (7)

is an unbiased estimation for ṕ(u) (same8 applies to p̀(u)). In ad-
dition, if we replace ṕ(v) in (7) with an unbiased estimation of it,
say ω(ṕ(v)), then |∆(U)| · ω(ṕ(v))/|∇(v)| remains an unbiased
estimation of ṕ(u) as long as the random selection of v from ∇(u)
is independent of the estimation of ω(ṕ(v)).

7Recall from §3 that seed nodes consist of users returned by the
limited search interface - e.g., for Twitter, those who tweeted the
keyword within the last week and thus returned by the Search API.
8i.e., if we choose a node v uniformly at random from ∇(u), then
|∇(u)| · p̀(v)/|∆(v)| is an unbiased estimation for p̀(u).

Algorithm 2 ESTIMATE-ṕ
1: Input: u
2: if ∆(u) == ∅ then
3: //u is a bottom level node

4: ṕ(u) =

{
1/s If u is one of the s seeds
0 Otherwise

5: else if ∇(u) == ∅ then
6: //u is a top level node
7: ṕ(u) = p̀(u)
8: else
9: Pick a node v randomly from ∆(u)

10: ṕ(v) = ESTIMATE-ṕ (v)
11: ṕ(u) = |∆(U)|·ṕ(v)

|∇(v)|
12: end if

As such, the recursive process works as follows: After each in-
stance of the level-by-level random walk terminates, we take Ú
and Ù , the sets of nodes the instance passes through during the
bottom-top and top-bottom phases, respectively. Then, for each
node u ∈ Ù , we start a bottom-top, level-by-level random walk
starting from u, this time for the sole purpose of recursively esti-
mating p̀(u). On the other hand, for each node u ∈ Ú , we start
a top-bottom level-by-level random walk to estimate ṕ(u) in a re-
cursive fashion. Algorithm 2 depicts the pseudocode for estimating
ṕ(u) (the algorithm for p̀(u) is similar). One can see that this pro-
cess can produce unbiased estimations of p̀(u) or ṕ(u) for every
node that the random walk instance passes through - i.e., every node
that will be used in the aggregate estimation process, as explained
in the next subsection.

Since the above discussions have established the unbiasedness of
f(u)/p̀(u) on SUM and COUNT estimations as well as the unbi-
asedness of ω(p̀(u)) on estimating p̀(u), we now consider the other
important factor affecting the error of aggregate estimation: vari-
ance. Specifically, the following theorem illustrates the estimation
variance produced by topology aware random walk for SUM ag-
gregates. Note that since COUNT can be considered as a special
case of SUM (when f(u) = 1), estimation errors of COUNT and
AVG (i.e., SUM/COUNT) aggregates can be derived accordingly.

THEOREM 5.1. For aggregate QA: SELECT SUM(f(u)) FROM
U WHERE cond, after r random walk instances, topology aware
random walk generates an estimation variance

σ2 =

(∑
u∈cond

(V + 1) · f(u)2

r · p̀(u)

)
− Q2

A

r
, where (8)

V =
∑

u∈cond

∑
ρ∈P(u)

p̀(u) · p(ρ) ·
(
p̀(u)

ω(ρ)
− 1

)2

(9)

when r is sufficiently large, where QA is the real aggregate value,
P(u) is the set of all bottom-top-bottom paths from u to one of the
seed nodes, ω(ρ) is the estimation of p̀(u) produced by Algorithm 2
when path ρ is taken for estimating p̀(u), and p(ρ) is the probability
for ρ to be taken.

We do not include the proof here due to space limit. Note that
an intuitive explanation for V in the theorem is the variance of
p̀(u)/ω(p̀(u)), where ω(p̀(u)) is the estimation of p̀(u) produced
by our algorithm, taken over the randomness of ω(p̀(u)). One can
observe from the theorem that a key factor determining the estima-
tion variance is the values of p̀(u) for nodes in the subgraph. To
understand why, note from (8) that, given V , σ2 is in general in-
versely proportional to p̀(u). Thus, if the subgraph happens to be

1527

highly skewed so as to have a node u with an extremely small p̀(u),
then the estimation variance σ2 (and thereby the aggregate estima-
tion error) can be very large. Fortunately, as we shall show in §6,
the variance is indeed fairly small in practice for the wide variety
of keywords we tested.

Before concluding this subsection, we would like to briefly dis-
cuss the additional query cost introduced by the probability estima-
tion process. One can see that, in order to estimate p̀(·) or ṕ(·) for
the (at most) 2h − 1 nodes the random walk passes through, this
process requires at most (2h − 1) · (h − 1) additional transitions.
While such O(h2) query cost surpasses that required by the level-
by-level random walk itself, it is unlikely to cause any efficiency
concern in practice because of the following two reasons.

First, as one can see from the results in §6.2, even a query cost of
O(h2) is still an order of magnitude lower than topology-oblivious
random walks, and second, the real-world query cost for estimating
p̀(·) or ṕ(·) is often lower than the worst-case scenario. To under-
stand why, consider a common scenario where the level-by-level
subgraph has one or a small number of roots at the top. Let there
be one root vr. Note that once we produce an estimation of p̀(vr)
(which is equal to ṕ(vr)), we can reuse it for estimating p̀(·) for
all nodes in the top-bottom phase of all random walk instances -
i.e., for these nodes, the probability estimation process only needs
to walk bottom-up and not top-bottom anymore - saving about half
of the query cost because of a single cache.

5.3 Algorithm MA-TARW
In this subsection, we put together the previous discussions of

level-by-level subgraph, topology aware random walk and the un-
biased estimation of selection probability p̀(u) to develop Algo-
rithm MA-TARW, which can be used to estimate SUM, COUNT
and AVG aggregates with or without selection conditions.

Algorithm 3 depicts the pseudocode for MA-TARW. First, it uses
a small number of bootstrapping transitions to identify the best time
interval T for the level-by-level subgraph (see §4.2.3 for details).
It randomly picks a bottom level node (a user who has recently
tweeted about the hashtag) and performs a bottom-top-bottom ran-
dom walk instance Ri as described in previous subsection. For
each node u in the walk Ri, it computes the selection probability
(ṕ(u) or p̀(u)). All nodes in Ri are used in computing a single
estimate of the aggregate query. This random walk process is then
repeated for multiple times - with the average estimate being out-
putted as the final aggregate estimation.

Algorithm 3 MA-TARW
1: Estimate best value of T using bootstrapping transitions
2: while Remaining query budget > 0 do
3: Perform a bottom-top-bottom random walk Ri

4: ṕ(u) = ESTIMATE-ṕ (u) ∀ u ∈ Ú of Ri

5: p̀(u) = ESTIMATE-p̀ (u) ∀ u ∈ Ù of Ri

6: // Remove nodes from Ú , Ù that does not match input query
7: f̃(Ri) = 1

|Ri|

(∑
u∈Ú

f(u)
ṕ(u)

+
∑

u∈Ù
f(u)
p̀(u)

)
8: end while
9: Return average of all previous estimates f̃(Ri)

6. EXPERIMENTAL EVALUATION

6.1 Experimental Setup
Hardware and Platform: All our experiments were conducted on
a computer with Intel Core(TM) i5 2.50 GHz CPU with 8 GB of
RAM. The algorithms were implemented in Python 2.7.

Datasets: We tested our algorithms on three real-world microblog-
ging platforms - Twitter, Google+ and Tumblr. These were cho-
sen due to their popularity and accessibility of their developer API.
While the majority of our experiments were conducted over Twit-
ter, we observed similar behavior on the other microblogs also.

Detailed discussion on how MICROBLOG-ANALYZER is in-
stantiated for Twitter is found in §3.2. We now briefly describe
how Google+ and Tumblr are instantiated. Google+ has an Ac-
tivity API (equivalent to the Twitter search API) that allows us to
search for posts that specify a particular keyword. It also has an
API to retrieve user profile information, as allowed by the privacy
setting of the user. However, some basic information such as dis-
play name are always available. Similar to Twitter, connections
in Google+ are asymmetric. Connections are grouped into various
groups, called Circles. Google+ has a courtesy rate limit of 10,000
queries per day and 5 per second. Due to the difficulty in retrieving
connections (the API only provides the connections of an authenti-
cated user), we define two users to be connected if they performed
some activity together in last year, i.e., they liked, shared or com-
mented the same post. Tumblr is another popular microblogging
platform where users host multiple blogs and can follow blogs of
other users. The posts in blogs correspond to tweets in Twitter
which can then be liked or reblogged by other users. Tumblr has
extensive API to retrieve various information about blogs. Requests
are rate-limited to one every 10 seconds.
Aggregate Queries and Ground Truth: In our experiments, we
focused on aggregate queries AVG, COUNT and SUM. We evalu-
ated aggregate measures such as the number of followers, display
name length, number of likes in the blog etc. For Twitter, we used
the streaming API to collect all public tweets mentioning a diverse
set of keywords (such as cities, celebrities, organizations etc) be-
tween Jan 1 - Nov 1, 2013. Since Twitter ensures that the stream
returns all relevant tweets as long as their frequency is less than
1% of the Twitter Firehose and our keywords are not too frequent,
this provides a reasonable ground truth over which aggregate esti-
mation algorithms can be evaluated. Figure 7 shows the frequency
of three keywords used in the evaluation over time - privacy (a
relatively low frequency term with occasional spikes), New York
(a perpetually popular and high frequency keyword) and Boston
(keyword that has medium frequency but had a singular spike on
Apr 15, 2013 when the Marathon Bombing occurred). For Google+
and Tumblr, no convenient way to collect ground truth exists. To
get a reasonable approximation, we instantiated multiple samplers
that performed simultaneous random walks until they converged to
their stationary distribution (with Geweke threshold Z ≤ 0.05).
The average estimate from all the walks serves as ground truth.
Performance Measures: Our aggregate estimation algorithms were
evaluated according to two measures. Efficiency was measured as
the number of API interface calls. Notice that multiple API calls
could be required to obtain the result of a single query. For exam-
ple, Twitter’s followers API returns 5000 users per call and hence
multiple calls are required to retrieve all followers of a celebrity.
To measure accuracy, we use the relative error (see §2).
Algorithms Evaluated: We evaluated MA-SRW, MA-TARW and
the state-of-art baseline M&R described next. Recall from §4 that
MA-SRW outperformed SRW on the original or the term-induced
social graph. Hence, to keep the presentation clear, we do not
present any experiments on the original or the term-induced social
graph. To the best our knowledge, we have not found any research
that performs general aggregate estimation over microblogs. The
closest is [15] that performs size (COUNT) estimation for (entire)
social networks and does not directly support keyword-specific size
estimation. We adapted [15] to only consider nodes that match the

1528

Jan Mar May Jul Oct
Month

102

103

104

105

106

107
K

ey
w

or
d

Fr
eq

ue
nc

y
Privacy
Boston
New York

Figure 7: Frequencies of Chosen
Keywords

0.05 0.10 0.15 0.20 0.25

Relative Error

0

10000

20000

30000

40000

50000

60000

Q
ue

ry
C

os
t

Privacy (MA-SRW)
Privacy (MA-TARW)
NewYork (MA-SRW)
NewYork (MA-TARW)

Figure 8: Twitter: AVG(followers)

0 3K 6K 9K 12K 15K
Query Cost

0

20

40

60

80

100

E
st

im
at

ed
A

vg
Fo

llo
w

er
s MA-SRW

MA-TARW

Figure 9: Twitter: Estimated
AVG(followers)

0.05 0.10 0.15 0.20 0.25

Relative Error

0

20000

40000

60000

80000

100000

120000

Q
ue

ry
C

os
t

MA-SRW
MA-TARW
M&R

Figure 10: Twitter: Count(users)

0.05 0.10 0.15 0.20 0.25

Relative Error

0

5000

10000

15000

20000

25000

30000

35000

40000

Q
ue

ry
C

os
t

Privacy (MA-SRW)
Privacy (MA-TARW)
NewYork (MA-SRW)
NewYork (MA-TARW)

Figure 11: Twitter: AVG(Display
Name)

0.05 0.10 0.15 0.20 0.25

Relative Error

0

20000

40000

60000

80000

100000

120000

Q
ue

ry
C

os
t

Privacy (MA-SRW)
Privacy (MA-TARW)
NewYork (MA-SRW)
NewYork (MA-TARW)

Figure 12: Google+: AVG(Display
Name)

0.05 0.10 0.15 0.20 0.25

Relative Error

0

20000

40000

60000

80000

100000

120000

140000

160000

Q
ue

ry
C

os
t

MA-SRW
MA-TARW
M&R

Figure 13: Google+: COUNT
(male users who tweeted)

0.05 0.10 0.15 0.20 0.25

Relative Error

0

20000

40000

60000

80000

100000

120000

140000

Q
ue

ry
C

os
t

Privacy (MA-SRW)
Privacy (MA-TARW)
NewYork (MA-SRW)
NewYork (MA-TARW)

Figure 14: Tumblr: AVG(Likes)

Table 3: Average Percent Improvement of MA-TARW

KEYWORD MA-SRW
(AVG)

MA-SRW
(COUNT)

M&R
(COUNT)

Boston 39 44 72
Oprah 27 37 67
Simvastatin 29 41 74
$WMT 33 51 78
Lipitor 24 47 76
Tunisia 33 31 53
Tahrir 41 55 61

query and used it to measure the size of the term induced subgraph
and refer this algorithm as M&R (for mark and recapture); we only
include it for COUNT (as the algorithm was designed for).

6.2 Experimental Results
We start with Twitter. Table 3 shows the average percentage im-

provement in Twitter query cost achieved by MA-TARW over MA-
SRW and M&R for AVG(followers) and COUNT(users) queries
(from Jan 1, 2013 to Oct 31, 2013) involving diverse keyword con-
ditions to achieve a relative accuracy error of 5%. The results show
that MA-TARW outperforms both competing algorithms and con-
firm our theoretical analysis.

Next, we study in more detail specific aggregate queries. We use
MA-TARW to estimate the average number of followers of all users
who tweeted privacy. Figure 8 shows that MA-TARW signifi-
cantly outperforms MA-SRW. Figure 9 also validates this conclu-
sion by showing that MA-TARW converges to the true estimate and
has a lower variance in its estimate within few thousand queries.

We then perform a COUNT estimate of all users who tweeted
privacy. Figure 10 shows that MA-TARW outperforms both
MA-SRW and baseline M&R. Recall from Figure 3 that M&R re-
quires lower query cost when evaluated on the level-by-level sub-
graph than on term induced subgraph; this is why we execute M&R
on the level-by-level subgraph to better evaluate our topology-aware
navigation algorithm. We next consider an aggregate query to esti-
mate the average display name length of Twitter users who tweeted

privacy. In contrast to AVG(#followers) shown above, this re-
quires substantially smaller number of queries as this measure has a
lower variability than that of number of followers. Figure 11 shows
that MA-TARW seems to leverage this aspect by essentially “skip-
ping” such edges (which would have often been intra-level edges).

Next we evaluate our algorithms on Google+. Figures 12 and
13 show the performance of estimating the average display name
length and count of male users (gender is generally missing from
Twitter profiles, and hence we did not use it as a condition above)
who posted privacy during the time period. We notice that MA-
TARW outperforms the competing algorithms. It must be noted
that the absolute query cost is much higher than in Twitter. This
is to a large extent due to the fact that APIs of Google+ (such as
Activity search) returns at most 20 results per invocation compared
to 200 in Twitter’s timeline API.

Finally, we evaluate our algorithms on Tumblr. Here, we eval-
uated the average number of likes obtained by posts with textual
content containing the keyword privacy. Figure 14 shows that
MA-TARW has the best performance.

7. RELATED WORK
Graph Sampling Through Random Walks: A number of ex-
isting papers have studied the problem on sampling large graphs
[8, 17, 19, 20] while [13, 15, 25] specifically focus on online so-
cial networks. Sampling techniques and the ground truth definition
vary depending on whether the global topology is known [13, 19]
or unknown. For the latter, [13, 19] compared the efficiency of
various sampling techniques such as simple random walk (SRW),
Metropolis-Hastings (MHRW), BFS and DFS. [13] also studied the
problem of running multiple, parallel random walks. We used SRW
as the basis of MA-SRW as [13] reported that SRW is typically 1.5-
8 times faster than MHRW, which was observation as well.
Analytics of Twitter and Other Microblogs: While there has
been plethora of work on using social media data from Twitter and
other microblogs on specific analytics tasks (typically over current
and future data), our paper is the first to study the problem of ag-

1529

gregate estimation over historic data. [16] provides an high level
overview of possible analytics tasks over Twitter. Other analytics
tasks include monitoring trends [22], predicting stock prices [28],
topical expertise [27], measure information propagation in Twit-
ter [23], such as in the context of natural disasters. There has been
a set of paid and free third party services such as Sysomos, Topsy,
Trendsmap etc that allow you to perform simple analytics tasks
(such as monitor popular trends, analyze your tweeting/retweeting
behavior, visualize your social network etc). However, none of the
free ones allow analytics over historic data and even the paid ones
offer simple, canned analytic options.
Search Engine Analytics: Another category of related research is
analytics over a search engine’s corpus (e.g., [29]) - simply because
a microblog service can be considered as a search engine (col-
lecting, indexing and publishing documents posted by all users).
However, search-engine-analytics techniques cannot be directly ap-
plied because of the limitation of search interface provided by mi-
croblogging services. Note that a key assumption made by all exist-
ing search-engine-analytics techniques is that the search interface
can reveal all documents in the corpus (through answers to a very
large set of search queries). This, unfortunately, is not the case for
microblogging services. For example, Twitter search API is limited
to tweets published in the last week [6]. These limitations prevent
existing search-engine-analytics techniques from being applied.

8. CONCLUSIONS AND FUTURE WORK
We proposed novel solutions to perform aggregate query estima-

tion on microblogging data that exploit the provided user timeline
API calls. We showed how to define a conceptual level-by-level
subgraph of the social graph that allows dramatically more efficient
random walk-based sampling. Then, we further improved our so-
lution by proposing a novel topology-aware navigation strategy on
the level-by-level subgraph that significantly outperforms existing
random walk sampling methods. Theoretical analysis and experi-
ments over microblogs confirm the effectiveness of our solutions.

9. ACKNOWLEDGEMENTS
The work of Saravanan Thirumuruganathan and Gautam Das

was partially supported by National Science Foundation under grants
0812601, 0915834, 1018865 and grants from Microsoft Research.
Nan Zhang was supported in part by the National Science Foun-
dation under grants 0852674, 0915834, 1117297, and 1343976.
Vagelis Hristidis was partially supported by National Science Foun-
dation grant 1216007 and a Samsung GRO grant. Any opinions,
findings, conclusions, and/or recommendations expressed in this
material, either expressed or implied, are those of the authors and
do not necessarily reflect the views of the sponsors listed above.

10. REFERENCES
[1] Datasift pricing. In http://datasift.com/pricing/, 2013.
[2] Gnip. In http://gnip.com, 2013.
[3] Sysomos twitter retweet statistics. In

http://www.sysomos.com/insidetwitter/engagement/, 2013.
[4] Sysomos twitter usage statistics. In

http://www.sysomos.com/insidetwitter/, 2013.
[5] Twitter api. In https://dev.twitter.com/docs/api/1.1, 2013.
[6] Twitter search. In https://dev.twitter.com/docs/using-search,

2013.

[7] Twitter Streaming API. In
https://dev.twitter.com/docs/streaming-apis, 2013.

[8] E. M. Airoldi and K. M. Carley. Sampling algorithms for
pure network topologies: a study on the stability and the
separability of metric embeddings. ACM SIGKDD
Explorations Newsletter, 7(2):13–22, 2005.

[9] L. Cowen. Handbook of Capture-Recapture Analysis. The
Quarterly Review of Biology, (3):310.

[10] C. Domb. On multiple returns in the random-walk problem.
In Proc. Cambridge Philos. Soc, volume 50, pages 586–591.
Cambridge Univ Press, 1954.

[11] J. Geweke et al. Evaluating the accuracy of sampling-based
approaches to the calculation of posterior moments. Federal
Reserve Bank of Minneapolis, Research Department, 1991.

[12] W. R. Gilks. Markov Chain Monte Carlo In Practice.
Chapman and Hall/CRC, 1999.

[13] M. Gjoka, M. Kurant, C. T. Butts, and A. Markopoulou.
Walking in facebook: a case study of unbiased sampling of
osns. INFOCOM’10, pages 2498–2506, 2010.

[14] M. H. Hansen and W. N. Hurwitz. On the theory of sampling
from finite populations. AMS, 14(4):333–362, 1943.

[15] L. Katzir, E. Liberty, and O. Somekh. Estimating sizes of
social networks via biased sampling. WWW ’11, 2011.

[16] S. Kumar, F. Morstatter, and H. Liu. Twitter data analytics,
2013.

[17] M. Kurant, M. Gjoka, C. T. Butts, and A. Markopoulou.
Walking on a graph with a magnifying glass: stratified
sampling via weighted random walks. SIGMETRICS ’11.

[18] K. Lerman and R. Ghosh. Information contagion: An
empirical study of the spread of news on digg and twitter
social networks. ICWSM, 10:90–97, 2010.

[19] J. Leskovec and C. Faloutsos. Sampling from large graphs.
KDD ’06, pages 631–636, 2006.

[20] L. Lovász. Random walks on graphs: A survey. In
Combinatorics, Paul Erdős is Eighty, volume 2. 1996.

[21] L. Lovasz and R. Kannan. Faster mixing via average
conductance. In STOC, pages 282–287, 1999.

[22] M. Mathioudakis and N. Koudas. Twittermonitor: Trend
detection over the twitter stream. SIGMOD ’10.

[23] M. Mendoza, B. Poblete, and C. Castillo. Twitter under
crisis: Can we trust what we rt? In SOMA, 2010.

[24] A. Mislove, M. Marcon, K. P. Gummadi, P. Druschel, and
B. Bhattacharjee. Measurement and analysis of online social
networks. SIGCOMM ’07, pages 29–42, 2007.

[25] A. Mohaisen, A. Yun, and Y. Kim. Measuring the mixing
time of social graphs. In SIGCOMM ’10, 2010.

[26] M. E. J. Newman. Modularity and community structure in
networks. PNAS, 103(23), 2006.

[27] A. Pal and S. Counts. Identifying topical authorities in
microblogs. In WSDM, pages 45–54. ACM, 2011.

[28] E. J. Ruiz, V. Hristidis, C. Castillo, A. Gionis, and A. Jaimes.
Correlating financial time series with micro-blogging
activity. In WSDM, pages 513–522. ACM, 2012.

[29] M. Zhang, N. Zhang, and G. Das. Mining a search engine’s
corpus: Efficient yet unbiased sampling and aggregate
estimation. SIGMOD ’11.

1530

