
XSEarch: A Semantic Search Engine for XML

Sara Cohen Jonathan Mamou Yaron Kanza Yehoshua Sagiv

School of Computer Science and Engineering
The Hebrew University of Jerusalem

Jerusalem 91904, Israel
{sarina, mamou, yarok, sagiv}@cs.huji.ac.il

Abstract

XSEarch, a semantic search engine for XML,
is presented. XSEarch has a simple query lan-
guage, suitable for a naive user. It returns se-
mantically related document fragments that
satisfy the user’s query. Query answers are
ranked using extended information-retrieval
techniques and are generated in an order sim-
ilar to the ranking. Advanced indexing tech-
niques were developed to facilitate efficient im-
plementation of XSEarch. The performance
of the different techniques as well as the re-
call and the precision were measured exper-
imentally. These experiments indicate that
XSEarch is efficient, scalable and ranks qual-
ity results highly.

1 Introduction

It is becoming increasingly popular to publish data
on the Web in the form of XML documents. Cur-
rent search engines, which are an indispensable tool for
finding HTML documents, have two main drawbacks
when it comes to searching for XML documents. First,
it is not possible to pose queries that explicitly refer
to meta-data (i.e., XML tags). Hence, it is difficult,
and sometimes even impossible, to formulate a search
query that incorporates semantic knowledge in a clear
and precise way.

The second drawback is that search engines return
references (i.e., links) to documents and not to spe-
cific fragments thereof. This is problematic, since large
XML documents (e.g., the XML DBLP) may contain
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thousands of elements storing many pieces of infor-
mation that are not necessarily related to each other.
For example, an author is related to titles of papers
she wrote, but not to titles of other papers. Actually,
if a search engine simply matches the search terms
against the documents, it may return documents that
do not answer the user’s query. This occurs when dis-
tinct search terms are matched to unrelated parts of
an XML document, as illustrated in the next example.

Example 1.1 Suppose that a user is trying to find pa-
pers of Vianu on the topic of logical databases. This
might be formulated as the search query: “Vianu logi-
cal databases”. Consider the XML document fragment
below, an excerpt from the XML version of DBLP.

<proceedings>
<inproceedings>
<author>Moshe Y. Vardi</author>
<title>Querying Logical Databases</title>

</inproceedings>
<inproceedings>
<author>Victor Vianu</author>
<title>A Web Odyssey: From Codd to

XML</title>
</inproceedings>

</proceedings>

A standard search engine would regard the document
above as an appropriate response, since it mentions all
the search terms. However, we can easily see that al-
though the search terms appear, they do not all appear
in the same context. Thus, the document is not an
ideal response to the user’s query. The problem arises
since the document is treated as an integral unit.

Since a reference to a whole XML document is usu-
ally not a useful answer, the granularity of the search
should be refined. Instead of returning entire docu-
ments, an XML search engine should return fragments
of XML documents.

A query language for XML, such as XQuery, can
be used to extract data from XML documents. How-
ever, such a query language is not an alternative to



an XML search engine for several reasons. First, the
syntax of XQuery is by far more complicated than the
syntax of a standard search query. Hence, it is not
appropriate for a naive user. Second, rather exten-
sive knowledge of the document structure is required
in order to correctly formulate a query. Thus, queries
must be formulated on a per document basis. Finally,
XQuery lacks any mechanism for ranking answers—
an essential feature, since there are likely to be many
answers when querying large XML documents.

There have been several attempts to extend
XQuery-like languages with information-retrieval tech-
niques [5, 10, 11, 6, 15]. However, those languages still
suffer from a complex query syntax. Another approach
is to add capabilities of meta-data querying to search
engines [4, 2]. But answers to those search engines are
not required to consist of semantically-related pieces
of information, and thus suffer from the problem illus-
trated in Example 1.1.

In [9], we have investigated under what conditions
different elements of an XML document are semanti-
cally related. In this paper, we show how the theo-
retical results of [9] can be efficiently combined with
information-retrieval techniques to yield XSEarch—a
search engine for XML. The design and implementa-
tion of XSEarch involved several challenges. First,
we developed a syntax for search queries that is suit-
able for a naive user and facilitates a fine-granularity
search. The syntax allows, but does not require, the
user to specify how keywords are related to tags; in
fact, a search query may consist only of keywords.
Second, the theoretical results of [9] were adapted
so that XSEarch always returns, as answers, docu-
ment fragments that are semantically related, even
when only keywords (and no tags) are specified in the
query. Third, we have combined the notion of seman-
tic relationship with traditional information-retrieval
techniques to guarantee that answers are not merely
semantically-related fragments, but actually fragments
that are highly relevant to the keywords of the query.
Fourth, we developed a suitable ranking mechanism
that takes into account both the degree of the semantic
relationship and the relevance of the keywords. Fifth,
we developed index structures and evaluation algo-
rithms that allow the system to deal efficiently with
large documents, containing thousands of kilobytes of
information, and to generate answers in an order sim-
ilar to their ranking (thus, avoiding the overhead of
sorting all answers before returning any). Sixth, the
implementation of XSEarch is extensible in the sense
that it can easily accommodate different types of se-
mantic relationships.

Section 2 describes the syntax of search queries.
Section 3 presents the semantics of queries, which is
based on the theory developed in [9]. In Section 4, we
show how to rank answers by extending information-
retrieval techniques. In Section 5, the XSEarch system

implementation is presented. In Section 6, we present
our experimental results. Finally, Section 7 considers
related work and then concludes.

2 Query Syntax

The query language of a standard search engine is sim-
ply a list of keywords. In some search engines, each
keyword can optionally be prepended by a plus sign
(“+”). Keywords with a plus sign must appear in a
satisfying document, whereas keywords without a plus
sign may or may not appear in a satisfying document
(but the appearance of such keywords is desirable).

The query language of XSEarch is a simple exten-
sion of the language described above. In addition to
specifying keywords, we allow the user to specify la-
bels and keyword-label combinations that must or may
appear in a satisfying document.

Formally, a search term has the form l : k, l : or : k
where l is a label and k is a keyword. A search term
may have a plus sign prepended, in which case it is a
required term. Otherwise, it is an optional term. We
use t, t1, t2, etc., as an abstract notation for required
and optional terms. A query has the form Q(S) where
S = t1, . . . , tm is a sequence of required and optional
search terms. We sometimes refer to the above query
as Q, when S is clear from the context.

3 Query Semantics

This section presents the semantics of our queries. In
order to satisfy a query Q, each of the required terms
in Q must be satisfied. In addition, the elements sat-
isfying Q must be meaningfully related. However, it is
difficult to determine when a set of elements is mean-
ingfully related. Therefore, we assume that there is a
given relationship R that determines when two nodes
are related. We then show how to extend R for ar-
bitrary sets of nodes. We also give one natural ex-
ample of a relationship, which we call interconnection.
In our working system we use the interconnection re-
lationship. However, it is possible to use a different
relationship, with little impact on system efficiency.

3.1 Satisfaction of a Search Term

We model XML documents as trees in the standard
fashion.1 Each interior node is associated with a label
and each leaf node is associated with a sequence of
keywords. If k is a keyword in the sequence associated
with n, we will also say that n contains k.

In Figure 1 there is a tree that represents a small
portion of the XML document of the Sigmod Record.

1XML is sometimes modeled as a graph, instead of a tree,
by taking ID/IDREF and XLink links into consideration. In
principle, it is possible to use our system even when XML is
modeled as a graph. To simplify, we only consider XML trees
in this paper.
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Figure 1: Part of the Sigmod Record document tree.

We will refer to this tree as Tsr. The interior nodes
are numbered to allow easy reference.

Let n be an interior node in a tree T . We say that
n satisfies the search term l : k if n is labeled with l
and a descendent that contains the keyword k. We
say that n satisfies the search term l : if n is labeled
with l. Finally, we say that n satisfies the search term
: k if n has a leaf child that contains the keyword k.

Example 3.1 In the tree Tsr, node number 14
satisfies : Kempster and node number 9 satisfies
authors: Kempster. However, node 9 does not satisfy
: Kempster, position: or : position.

3.2 Meaningfully Related Sets of Nodes

Let T be a tree and R be a binary, reflexive and sym-
metric relationship on the nodes in T . We assume
that R contains pairs of nodes that are meaningfully
related. We present two different ways to extend R to
arbitrary sets of nodes.

We say that a set of nodes N is all-pairs R-related ,
denoted �R

a {N}, if (n1, n2) is in R, for every pair
of nodes n1, n2. Intuitively, this states that a set of
nodes is meaningfully related if every pair of nodes in
the set is meaningfully related. We say that N is star
R-related , denoted �R

s {N}, if there is a node n∗ ∈ N
such that the pair (n∗, n) is in R, for all nodes n ∈ N .
We call n∗ the star center. Intuitively, this states that
the nodes of a set are meaningfully related if all these
nodes are meaningfully related to a node in the set.

Depending on the structure of the documents in a

corpus, either the all-pairs relationship or star relation-
ship may be more appropriate. This will be discussed
in detail later on in Section 3.6.

3.3 Query Answers

Let Q(t1, . . . , tm) be a query. We say that a sequence
N = n1, . . . , nm of nodes and null values is an all-
pairs R-answer for Q if the nodes in N are all-pairs
R-related and for all 1 ≤ i ≤ m:

1. ni is not the null value if ti is a required term;

2. ni satisfies ti if it is not the null value.

Similarly, N is a star R-answer, when the nodes in N
are star R-related.

We use Ans a,R
T (Q) to denote the set of all-pairs

R-answers for the query Q over a tree T and use

Ans s,R
T (Q) to denote the set of star R-answers for

Q over T . It is not difficult to see that for all

trees T , relationships R and queries Q, Ans a,R
T (Q) ⊆

Ans s,R
T (Q). Actually, if R is a transitive relationship

then, Ans a,R
T (Q) = Ans s,R

T (Q).
Our query answers can have null values in their se-

quences. However, we are interested in answers that
have maximal information. Let Q(S) be a query and
let both N and N ′ be either all-pairs R-answers or
star R-answers. We say that an answer N ′ subsumes
N if N ′ is equal to N on all non-null values of N .
Intuitively, if N ′ subsumes N , then it contains more
information. We say that an answer N is maximal if
every answer that subsumes N is actually equal to N .
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3.4 The Interconnection Relationship

We present a relation which can be used to determine
whether a pair of nodes is meaningfully related. We
found this relation to be intuitive, and it gave appro-
priate results in our working system.

Let T be a tree and let n1 and n2 be nodes in T . The
shortest undirected path between n1 and n2 consists
of the paths from the lowest common ancestor of n1

and n2 to n1 and n2. We denote the tree consisting
of these two paths as T|n1,n2

. Intuitively, this tree
describes the relationship between the nodes n1 and
n2. For example in Tsr, depicted in Figure 1, the tree
T|8,13 consists of the nodes 7, 8, 9, 12 and 13.

We start by giving an intuitive understanding of
relationships in a document tree. One may view a
node in a tree as representing an entity in the world.
Two different nodes with the same label correspond to
different entities of the same type. If na is an ancestor
of n, then we may understand that n belongs to the
entity that na represents. Now, suppose that nodes n
and n′ have distinct ancestors na and n′

a, respectively,
such that na and n′

a have the same label. Suppose
also that n′

a is not an ancestor of n, and na is not an
ancestor of n′. We may conclude that n and n′ are
not meaningfully related since they belong to different
entities of the same type. Note that both na and n′

a

must be in the relationship tree of n and n′. Otherwise,
they would be ancestors of both n and n′ and would
not imply that n and n′ are unrelated.

We demonstrate and extend this intuition with a
few examples. Consider nodes 4 and 5 in Tsr (Fig-
ure 1). Their relationship tree does not contain two
nodes with the same label. Therefore, nodes 4 and 5
are related. However, nodes 4 and 22 are not related
since their relationship tree contains different nodes
with the label issuesTuple. This reflects the intu-
ition that 4 is the volume of the issue with number
node 5 and not the volume of the issue with number
node 22. Now, consider nodes 11 and 12 in Tsr. Node
11 belongs to the author node numbered 10. However,
12 is a different author node. Therefore, we may con-
clude that the position in node 11 belongs to node
10 and is not related to node 12. As a final example,
consider nodes 10 and 12. These nodes share the same
label. However, all their ancestors are the same, and
thus, they belong to the same entities. Therefore, we
may conclude that nodes 10 and 12 are meaningfully
related. In fact, nodes 10 and 12 represent different
authors, but they are related by virtue of belonging to
the same article.

We formalize this idea. Let n and n′ be nodes in T .
We say that n and n′ are interconnected if one of the
following conditions holds:

1. T|n,n′ does not contain two distinct nodes with
the same label or

2. the only two distinct nodes in T|n,n′ with the same
label are n and n′.

We use Ri to denote the interconnection relationship.
In the sequel, only the interconnection relationship be-
tween nodes will be considered. Hence, usually we will
not specify explicitly the relationship considered.

3.5 Complexity

In combined complexity both the document and the
query are considered as part of the input. This is of-
ten of interest since queries may be quite large. In
input-output complexity, we analyze the complexity
of a problem as a function of the input (i.e., query and
document) and the output. This complexity measure
is useful when both queries and query results are large.
The following complexity results are from [9].

Theorem 3.2 (Evaluation Complexity) Let T be
a tree and let Q(S) be a query.

• Determining whether MaxAns a,Ri

T (Q) 6= ∅ is NP-
complete under combined complexity.

• If S contains only optional terms, then

MaxAns a,Ri

T (Q) can be computed in polyno-
mial time under input-output complexity.

• The set MaxAns s,Ri

T (Q) can be computed in poly-
nomial time under input-output complexity.

3.6 Examples of Query Semantics

Example 3.3 Consider the query Q1, defined as
Q1(+title : , author : ). The query Q1 finds pairs of
titles and authors, belonging to the same article. Only
tuples where the title is non-null will be returned. For
both all-pairs and star semantics, the answers created
for Tsr are the same, namely (8, 10), (8, 12), (8, 14),
(17, 18) and (25,⊥).

Consider also the portion of the DBLP document
presented in Figure 2. The answers for Q1 over this
document would consist of (6, 3) and (6, 4). Observe
that although this document differs in structure from
Tsr, the correct pairs are found for both documents.

Example 3.4 Consider the query Q2 that looks
for volumes, authors with the name Kempster,
and authors who have published with Kempster:
Q2(+volume: , +author: Kempster, author : ).

The set of maximal all-pairs answers for Q2 over
Tsr only contains answers for which both authors ap-
pear under the same articlesTuple node. However,
the set of maximal star answers for Q2 over Tsr also
contains authors that appear in the same issue, but in
different articles. Thus, star answers require a “looser”
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relationship between the nodes in the answer, and can
be viewed as an approximation for all-pairs answers.

Currently, in the Sigmod Record, author elements
contain their position as an attribute and the name of
the author simply as data. However, author elements
could have been modeled slightly differently, with both
name and position as subelements, e.g.,

<author>
<name>Stirling</name>
<position>01</position>

</author>

Observe that Q2 would still retrieve the same answers.
However, Q3(+volume : , +name : Kempster, name : )
would not retrieve any answer under all-pairs seman-
tics with a non-null element in its optional-component.
Under star semantics, similar answers to those of Q2

would be retrieved.

Example 3.5 In Example 1.1 the user wished to find
papers of Vianu on the topic of logical databases. In
the absence of knowledge of the tags in the document,
the query Q4(+: Vianu, +: logical, +: databases)
would be used for this purpose. When applying Q4

to the document in Example 1.1, the answer will be
empty for both all-pairs and star semantics. We get
an empty result since the title node that matches
logical and databases is not interconnected to the
author node that matches Vianu. This conforms to
our intuition of the meaning of Q4.

4 Ranking Answers

In the previous section, we presented our semantics for
query answers. These semantics combined database-
like ideas (e.g., computing a projection of a document,
clear-cut semantics) with a heuristic for defining rela-
tionships between nodes. In this section, we extend
our semantics with extended traditional information
retrieval techniques to rank query answers.

4.1 Weight of a Keyword and of a Label

We compute the weight of a keyword (sometimes called
a term) k in a given leaf node nl using a variation of the

standard tfidf (term frequency, inverse document fre-
quency) formula. Normally, given a document D and a
keyword k appearing in D, the tfidf formula defines a
value tfidf (k, D) that represents both the frequency of
the keyword k in the document D (i.e., the tf ) and the
inverse frequency of the keyword in all the documents
in the given corpus (i.e., the idf ).

In XSEarch, subtrees of a document are returned
to the user. Hence, we compute the weight of key-
words at a lower granularity, i.e., at the level of the
leaf nodes of a document. This allows us to deter-
mine which subtrees of a document are more relevant,
thereby enabling us to properly rank query results.

Let k be a keyword and nl be a leaf node. We use
occ(k, nl) to denote the number of times that k appears
in nl. The term frequency of k in nl is defined as

tf (k, nl) :=
occ(k, nl)

max{occ(k′, nl) | k′ ∈ words(nl)}
.

This is a standard variation of the tf formula that gives
a larger weight to frequent keywords in sparse nodes
than to those in nodes with many keywords. Let N be
the set of all leaf nodes in the corpus. Then, we define

ilf (k) := log

(

1 +
|N |

|{n′ ∈ N | k ∈ words(n′)}|

)

.

Intuitively, ilf (k) is the logarithm of the inverse leaf
frequency of k, i.e., the number of leaves in the corpus
over the number of leaves that contain k.

Now we define tfilf (k, nl) as tf (k, nl)× ilf (k). Note
that by taking a log in the ilf factor, we increase the
overall importance of the tf factor. In XSEarch the
weight of each keyword in each node is stored in an
index. The actual weight stored is a normalized ver-
sion of the value tfilf (k, nl), denoted as w(k, nl). By
definition, w(k, nl) is 0 if k does not appear in nl. A
weight of 0 is not stored explicitly in our index.

Each label l is associated with a weight w(l) that
determines its importance. The label weights can be
either user defined or system generated. For example,
the user may choose to give the label title a greater
weight than the label section. As of now, if the user



does not specify label weights, then the system gives
the same weight to all labels. In the future we may
implement other methods to automatically determine
the label weight, such as giving higher weight to less
common labels. This information can be derived from
the indices we create.

4.2 Ranking Factors

A query can have many answers. Therefore, it is of
primary importance to rank the answers by their es-
timated relevance. The XSEarch Ranker gives a score
to each query answer N by taking into consideration
both the structure of the result as well as its contents.
The factors considered are described in detail below.

Query and Answer Similarity

We use the vector space model, common in informa-
tion retrieval [1], when determining how well an answer
satisfies a query. Let L be the set of all labels and K
be the set of all keywords. Each interior node n in the
corpus is associated with a vector Vn of size |L × K|.
The vector Vn is called the profile of n. The profile of
n has an entry for each pair (l, k) ∈ L × K. We use
Vn[l, k] to denote the entry of Vn corresponding to the
pair (l, k). Let Nleaf be the set of leaf descendents of
n. The values in the profile of n, (i.e., Vn) are defined
as follows:

Vn[l, k] =

{ ∑

n′∈Nleaf
w(k, n′) if label(n) = l

0 otherwise

Consider a search term t. (It is irrelevant for our
purposes here whether t is an optional or a required
term.) The search term t is associated with a vector
of size |L × K|, denoted Vt. The entries in the vector
Vt are defined as follows. If t is of the form : k, then
Vt has the value 1 in all dimensions that correspond
to the keyword k, and 0 in all other dimensions. If t is
of the form l : , then Vt has w(l) in all dimensions that
correspond to the label l, and 0 in all other dimensions.
If t has the form l : k, then Vt has the value w(l) in
exactly the dimension corresponding to (l, k), and 0 in
all other dimensions.

The measure of similarity between a query Q and
an answer N , denoted sim(Q, N), is the sum of the
cosine distances between the vectors associated with
the nodes in N and the vectors associated with the
terms that they match in Q.

Relationships between Nodes

Let N be a query answer. The nodes in N may ap-
pear in the document tree in many different places.
Some configurations of the nodes in N seem to be more
meaningful. We use tsize(N) to denote the number of
nodes in the relationship tree of N . If this value is
small, then the nodes in N are close together. Hence,
they are more likely to be meaningfully related.

User
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XML Files

1      
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Figure 3: XSEarch system architecture.

We say that nodes n and n′ participate in an
ancestor-descendent relationship if n is the ancestor of
n′ or n′ is the ancestor of n. In many XML documents,
this type of configuration tends to indicate a strong re-
lationship between n and n′. We define anc-des(N) as
the number of unordered pairs from N that participate
in an ancestor-descendent relationship.

Combining the Factors

Given a query Q and an answer N , we use the measures
sim(Q, N), tsize(N) and anc-des(N) to determine the
ranking of the answer. We experimented with the fol-
lowing combination of factors by varying the values of
α, β and γ

sim(Q, N)α

tsize(N)β
×

(

1 + γ × anc-des(N)
)

. (1)

Section 6 contains additional details on our experimen-
tation in ranking.

5 System Implementation

Our first attempt at implementing our language was
to try to translate our queries to XQuery and use an
XQuery processor to create the query results. This ap-
proach was found inappropriate for several reasons. It
was possible to translate our queries to XQuery, since
the full XQuery language has Turing machine expres-
sive power. However, the translation was extremely
complicated. We tried running queries generated by
our translation on several different XQuery processors.
Even for very small queries and extremely small docu-
ments (of size < 20KB), query execution took several
hours. In addition, XQuery does not yet have any
built-in ranking mechanism, which is sorely needed in
the context of searching large document sets. Actually,
it is not surprising that this implementation proved in-
feasible since XQuery systems are generally not opti-
mized for queries of the type that we produced. Hence,
we created our own working system, from scratch.



ComputeInterconnectionIndex(T )

1. for i:=|T |-1 down to 0 do
2. for j:=i+1 to |T | do
3. if i is an ancestor of j then
4. let ic be the child of i that is on the path to j
5. let jp be the parent of j
6. intercon[i,j] := intercon[ic,j] and label(ic) 6=label(j) and
7. intercon[i,jp] and label(i) 6=label(jp)
8. for i:=1 to |T | − 1 do
9. for j:=i+1 to |T | do
10. if i is not an ancestor of j then
11. let ip be the parent of i
12. let jp be the parent of j
13. intercon[i,j] := intercon[ip,j] and label(ip) 6=label(j) and
14. intercon[i,jp] and label(i) 6=label(jp)

Figure 4: Computing the interconnection index using dynamic programming.

The architecture of the XSEarch system is depicted
in Figure 3. The basic flow of information is as follows.
The user enters a query using a browser. The Search-
Query Processor parses the query into a list of search
terms. The Index Repository is used to find nodes
that satisfy the search terms and to find out whether
pairs of nodes are interconnected. The Index Reposi-
tory responds by checking the stored indices. If these
indices do not contain sufficient information, as may
be the case when dynamic online indexing is employed
(see Section 5.2), the Indexer is used to augment the
current indices. Once the relevant information is re-
turned to the Search-Query Processor, it creates the
answers, which are ranked, sorted and then returned.

We discuss the implementation of the index reposi-
tory. Implementing this component efficiently was one
of the main challenges for our system. The Ranker,
another important component, was discussed in Sec-
tion 4. The query processor is based on the algorithms
presented in [9], uses the index structures presented
here, and is not discussed due to lack of space.

The Indexer creates several different indices in the
Index Repository based on a set of XML documents.
We do not discuss in detail all of the index structures
used (e.g., inverted keyword index, inverted label in-
dex, etc.) because of space limitations. Instead, we
focus our discussion on the two most important and
novel index structures—the interconnection index and
path index. The interconnection index allows for rapid
checking of the interconnection relationship. Our path
index, allows us to create first answers with higher es-
timated ranking. It is important to note that for each
node we store an encoding that allows us to easily find
the lowest common ancestor of any given pair of nodes.
Basically, the encoding of a node n, is the encoding of
the parent of n, augmented by the index of n among
its siblings. This encoding allows the index structures

to perform efficiently.

5.1 Dynamic Offline Interconnection Indexing

Checking for interconnection of nodes online is expen-
sive. Hence, we decided at first to create a node-inter-
connection index that would store information about
the interconnection relationship between each pair of
nodes. This requires solving the following problem.
Given a document T , for all pairs of nodes n and n′ in
T , determine whether n and n′ are interconnected.

It is easy to see that given a document T and nodes
n, n′, it is possible to check whether n and n′ are in-
terconnected in time O(|T |), where |T | is the number
of nodes in T . It follows that we can check for inter-
connection of all pairs of nodes in T in time O(|T |3).
However, we improved upon this result in our XSEarch
implementation by using dynamic programming. We
say that nodes n and n′ are strongly-interconnected
if they are interconnected and are also labeled differ-
ently. Essentially, this corresponds to Condition 1 of
interconnection from Section 3. Our algorithm is based
on the following Lemma.

Lemma 5.1 (Interconnection Characterization)
Let T be a document and let n and n′ be nodes in
T . If n is an ancestor of n′, then n and n′ are
interconnected if and only if the following hold:

• the parent of n′ is strongly-interconnected with n;

• the child of n on the path to n′ is strongly-
interconnected with n′.

If n is not an ancestor of n′ and n′ is not an ances-
tor of n, then n and n′ are interconnected if and only
if the following hold:

• the parent of n′ is strongly-interconnected with n;



• the parent of n is strongly-interconnected with n′.

Theorem 5.2 (All Pairs Interconnection) Let T
be a document. Then it is possible to determine inter-
connection of all pairs of nodes in T in time O(|T |2).

Proof (Sketch). Our procedure that solves this
problem is presented in Figure 4. For simplicity of
exposition, we assume that the nodes in T are num-
bered 1 through |T |. In addition, we assume that this
numbering was derived by a depth-first traversal of T .

We use intercon[i,j] to denote the boolean value
of whether i and j are interconnected. The index struc-
tures that are used to efficiently execute this procedure
are not specified. Note that the order that our for
loops are evaluated (in Lines 1, 2 and in Lines 8, 9)
ensures that the right hand of the assignments in Lines
6 and 13 have already been evaluated.

We used the algorithm from Figure 4 in order to
compute the interconnection values for all pairs of
nodes. In the XSEarch system, we have explored the
possibilities of storing the node-interconnection index
in either a hashtable or a symmetric matrix. When
implemented as a hashtable, the node-interconnection
index contains pairs of ids of interconnected nodes.
When implemented as a symmetric matrix, the node-
interconnection index contains a boolean value for each
pair of nodes, indicating whether they are intercon-
nected or not. A comparison of time and space effi-
ciency of these structures can be found in Section 6.

5.2 Dynamic Online Interconnection Indexing

Offline computation of the node-interconnection index
may be expensive (see Section 6.3). In order to amor-
tize the cost of computing this index over the queries
received, we have also considered an online indexing
method. When indexing online, for each pair of nodes
n and n′ whose interconnection must be checked (and
is not yet known), we compute the section of the node
interconnection index corresponding to T|n,n′ . This
can be done in a fashion similar to the procedure pre-
sented in Figure 4. We use a hashtable to store the
part of the index that has already been computed at
any given moment. The hash table contains a boolean
value for each pair of nodes whose interconnection has
already been checked. The boolean value indicates
whether the nodes are interconnected or not.

During query processing, usually only a small part
of the node-interconnection index will be created, thus
the slowdown in response time is not large. In ad-
dition, we note that queries tend to have a locality
property. Intuitively, queries tend to be similar in the
parts of the document that they must access. There-
fore, even after many queries have been evaluated, it
is likely for the node-interconnection index to be only
partially computed. This speeds up execution time
when loading the index into main memory.

5.3 Path Index

Our ranker (see Equation 1) combines three factors.
One, sim(Q, N)α, ranks according to content and the
other two rank according to structure. In cases where
choosing α = 0 yields a good ranker, the answers can
be generated in the order of their ranking. When
α 6= 0, a good strategy is to generate the top answers,
assuming that α = 0, and while the user is looking
at those answers, the system can generate and sort all
answers for the actual value of α. In the remainder of
this section, we show how to generate answers in the
order of their ranking when α = 0.

Given a document, we first find all the different
paths of labels from the root to the leaves. Even
very large documents tend to have a relatively small
number of such paths [7]. Given two paths of labels,
we can determine if they can lead to two intercon-
nected nodes n1 and n2, and if so, we can deter-
mine the set of labels in the interconnection tree of
n1 and n2. For example, consider the paths of la-
bels p1 = dblp.inproceedings.author and p2 =
dblp.inproceedings.title. These can lead to in-
terconnected nodes n1 and n2 only if n1 and n2 share
a lowest common ancestor at the second level of the
tree (i.e., the inproceedings node). Thus, if these
paths of labels lead to interconnected nodes, the rela-
tionship tree of those nodes would contain the labels
inproceedings, author and title. As another exam-
ple, consider the path p3 = dblp.phdthesis.title.
The paths p1 and p3 can lead to interconnected nodes
only if their lowest common ancestor is the root. Note
that the relationship tree in this case would contain
5 nodes, instead of 3. Thus, a pair of interconnected
nodes reachable by p1 and p2 would have a relation-
ship tree of a smaller size (and hence, a higher ranking)
than a pair of nodes reachable by p1 and p3. Our path
index stores at Path[p1,p2] the labels of the nodes in
the interconnection tree defined by the paths p1 and
p2, if p1 and p2 can lead to interconnected nodes.

In the inverted keyword index, we store for each
keyword, the paths in the documents that lead to that
keyword. For each of these paths, we store the set
of nodes reachable by that path. Similarly, we store
for each label, the paths in the document that lead
to that label and the nodes reachable by those paths.
For efficiency, we actually store a path id instead of
the entire path.

Now, before creating the answers for a query, we can
determine all possible paths that may lead to keywords
or labels in the query. In order to check whether a
series of paths p1, . . . , pk can lead to k interconnected
nodes, it is sufficient to verify that each pair of paths
can lead to interconnected nodes [9]. This information
appears in the path index. In order to compute the size
of the interconnection tree determined by p1, . . . , pk, it
is sufficient to check how many distinct labels appear



XML Document Size in KB Number of Nodes NII Time (ms) IIH Time (ms) IIM Time (ms)

Dream 146 3,360 0.625 36 29
Hamlet 281 6,635 1.11 185 114
Sigmod Record 704 21,246 2.234 1,729 1,552
Mondial 1,198 49,422 10.059 7,837 6,231

Table 1: Test documents for index generation: size in kilobytes, number of nodes and time to create indices.

among Path[pi,pj] for all 1 ≤ i, j ≤ k.2 We create the
query answers for the configurations with the highest
ranking first.

6 Experimental Results

We performed extensive experimentation with the
XSEarch system, which was implemented in Java. The
experiments were carried out on a Pentium 4, with a
CPU of 1.6GHZ and 2GB of RAM, running the Win-
dows XP operating system. Note that Java can only
take advantage of up to 1.46GB of RAM.

6.1 Scalability

In order to determine the scalability of XSEarch, we
checked how long it takes to create an index for a doc-
ument D, as a factor of the size of D and the size of the
resulting index. Three different types of indices were
created for a variety of XML documents: (1) NII:
No Interconnection Index was created. We created all
the other indices. This corresponds to what is created
when using the dynamic online strategy for the inter-
connection index; (2) IIH: The Interconnection Index
was created as a Hashtable; (3) IIM: The Intercon-
nection Index was created as a symmetric Matrix.

For each of the three options, we calculated the time
required in order to create the indices and the resulting
size of the indices. The documents tested, along with
their physical size, their number of nodes and the time
it took to compute each of the three types of index
generation are detailed in Table 1.

In Figure 5 we summarize the resulting index size.
We consider both the size of the index on disk (i.e.,
zipped) and in memory (i.e., unzipped). The un-
zipped version of IIM is always of size proportional
to the square of the number of nodes, while the zipped
version of IIM, and both versions of IIH, are of size
proportional to the number of pairs of interconnected
nodes. Hence, in the unzipped version, it is always
more space efficient to store the interconnection index
as a hashtable. In the zipped version, the preferable
data structure is dependent on the percentage of inter-
connected nodes in the document. For example, this
percentage is high for the Mondial, and thus, zipped
IIH turns out to be smaller than zipped IIM in this

2Actually, Condition 2 of interconnection requires us to
slightly modify this calculation.
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Figure 5: Size of index, zipped and unzipped.

case. Observe that the time needed and the index size
grow polynomially as functions of the document size.

6.2 Query Execution Time

In order to check how query execution time is affected
by the semantics of the query (i.e., all-pairs or star)
and the type of interconnection index used, we gener-
ated 1000 random queries for the Sigmod Record doc-
ument. These queries had at most 3 required search
terms and at most 3 optional search terms. The key-
words and labels in the queries were drawn randomly
from the set of keywords and labels in the Sigmod
Record. We executed the queries to determine execu-
tion time using either a hashtable or a matrix as the
interconnection index. We ran the queries under both
all-pairs and star semantics.

In Figure 6, a histogram of the number of millisec-
onds needed to process a query is presented. Note that
the number of queries is on logarithmic scale. Observe
that querying using a hashtable or a matrix yields sim-
ilar results. Processing queries under star semantics
tends to be slower than processing under all-pairs se-
mantics, since the query result is often larger. How-
ever, in all cases, over 80% of the queries ran in under
10 milliseconds and over 97% of queries ran in un-
der 100 milliseconds. The average run time for queries
with all-pairs semantics was about 35 milliseconds and
with star semantics was about 634 milliseconds.
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Figure 6: Histogram of processing time for random
queries using various semantics and index structures.

6.3 Indexing Strategy

We considered creating the interconnection index of-
fline in its entirety, or online incrementally. The af-
fect of the indexing technique chosen on the size of
the index and the query execution time was studied.
Offline computation tends to be expensive. For some
huge documents, such as the full version of the DBLP
(121MB), Java’s memory constraints did not allow us
to create the index offline in its entirety. In addition,
the index is usually large. Hence, loading the index
during query processing is costly. When the intercon-
nection index is created incrementally online, we com-
pute those parts of the index that are (1) necessary
for a given query and (2) have not yet been computed.
Obviously, this increases query computation time.

We ran the random queries from Section 6.2 under
all-pairs semantics, while dynamically creating the in-
dex during the query processing. More than 50% of
the queries were processed in under 10 milliseconds
and over 85% of the queries were processed in under 1
second. There were less than 50 queries that took over
10 seconds. After processing all 1000 random queries,
0.75% of all pairs of nodes were checked for intercon-
nection. We postulate that for “real” queries (as op-
posed to randomly generated queries) even less of the
interconnection index would have been created.

6.4 Example Scenario

Performing extensive user studies to determine the the
precision and recall of XSEarch was beyond the scope
of this paper. However, the following example can shed
some light on these questions.

Suppose that we wish to find papers written by
Buneman that contain the keyword database in the ti-
tle. We present the XQuery query that expresses these
requirements. Note that this query is complicated for
a naive user and would have to be slightly changed for
it to be applied to the Sigmod Record document.

<answers> {
for $r in

document("dblp.xml")//article |
document("dblp.xml")//inproceedings

for $a in $r//author
for $t in $r//title
where contains(string($a), "Buneman") and
contains(lower-case(string($t)),

"database")
return {$r}

} </answers>

A naive user could attempt to retrieve the data re-
quired from both the Sigmod Record and the DBLP
using XSEarch. However, the user may not be familiar
with the exact ontology of the document, or might not
be sure exactly which keywords to look for. Hence, we
considered three variations of this query:

Qkw(+: Buneman, +:database)

Qtag(+author : , +title : )

Qkw+tag(+author : Buneman, +title : database)

We ran each of the three queries on both the Sigmod
Record and on a large representative sample of DBLP.
Both all-pairs semantics and star semantics yield the
same results. We compared the XSEarch results to:

• Correct Results: This is the set of actual re-
sults that the user wished to find. They were
calculated using the Galax3 XQuery engine and
a query similar to the one above.

• Naive Results: This is the set of results that
would have been retrieved if we only required that
the nodes in each result satisfy the query, but did
not require that the nodes in a result be intercon-
nected. This corresponds to using the relationship
R that contains every pair of nodes in the tree.

Both XSEarch and the naive approach yielded per-
fect recall. However, the precision, i.e., the num-
ber of correct answers that were returned relative to
the number of answers that were returned, differed in
each case. The precision of XSEarch and of the naive
method is presented in Figure 7. Note that XSEarch
always outperforms the naive approach.

Note that for DBLP, the precision of XSEarch was
actually quite low, and only slightly outperformed
the naive approach. For example, the precision of
XSEarch for Qkw+tag over DBLP was approximately
0.02, versus approximately 0.01 for the naive approach.
This is because title and author nodes that belong to
publications of different types (e.g., title of journal and
author of book) are interconnected. For cases such
as this, in which interconnection does not sufficiently
capture actual node relationships, proper ranking of
results is of utmost importance.

3http://db.bell-labs.com/galax
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Figure 7: Precision of Qkw, Qtag and Qkw+tag for Sig-
mod Record and DBLP.

In order to test our ranker, for each of n = 5, 10, 20
we checked the ratio of correct answers in the first n
answers returned to the number n. This is called pre-
cision at 5, precision at 10 and precision at 20, also
written as P@5, P@10 and P@20. For the query Qtag

the precision in all these cases was always 0 since the
keywords were not supplied, and thus, were not taken
into consideration for the ranking. For the Sigmod
Record, the overall precision of Qkw and Qkw+tag was
perfect, and hence it was perfect at 5, 10 and 20. For
the remaining cases, i.e., Qkw and Qkw+tag on DBLP,
the precision at 5, 10 and 20 for a constant β and dif-
ferent values of α are depicted in Figure 8. The value
for γ was irrelevant since no results contained nodes in
an ancestor-descendent relationship. Interestingly, for
these cases it turns out that if tags are not supplied
in the query, it is better to give a larger weight to the
size of the relationship tree, i.e., to β, in comparison
with α. In any case, since the corpus contained mostly
labels and not keywords, giving a large weight to α de-
graded the results. In documents that contain a larger
ratio of keywords to labels, a larger value for α could
improve the ranking of results. Further experimenta-
tion is needed to find optimal values for α, β and γ.

7 Related Work and Conclusion

Numerous query languages for XML have been devel-
oped. Recently, interest has arisen in techniques for
“flexible querying” of XML. For example, the XQuery
working group is considering how to add full-text
search features and ranking to XQuery [5]. Such capa-
bilities have already been added to various XML query
languages. [10] extends XML-QL with keyword search
and presents performance experiments. XIRQL [11] is
an extension of XQL that supports vague predicates,
weighting of terms and minimal structural abstract-
ing (e.g., abstraction of differences between attributes
and elements). The XXL search engine [15] has an
SQL-like syntax, extended with ranking and ontolog-

5 67 8 9: 9; < = > ? @ A B = < C D B
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Figure 8: P@5, P@10 and P@20 of Qkw and Qkw+tag

for DBLP.

ical knowledge for similarity metrics. On the whole,
these languages are not suitable for naive user, since
the query syntax is always complex.

The EquiX [8] language is a simple extension of a
search engine for XML documents. However, EquiX
can only deal with documents that have a DTD. In [4],
another search language for XML was proposed. Their
language consists of fragments of XML documents,
and they only require approximate matching of the
queries to the documents. However, their query an-
swers consist of entire documents, instead of document
fragments. In addition, they do not require any seman-
tic relationship between the parts of the document that
match a given query. In [2, 13], it is suggested to rank
query answers according to the distance in the doc-
ument between the different document elements that
satisfy a query. Closer elements would receive a higher
ranking. We also use this measure for our ranking, but
it is only one of several measures. In [13], efficient al-
gorithms to compute the top k answers are presented.
However, these algorithms are based on the assump-
tion that each document has a schema, which may not
necessarily hold. A theoretical treatment of the prob-
lem of flexibly matching a query to a document was
presented in [14]. However, their approach did not
include keyword searching.

A recent related work is the XRANK system [12] for
keyword searching in XML documents. XRANK has
a ranking mechanism and it returns document frag-
ments as answers. In XRANK, there is no distinction
between keywords and labels, and each keyword of an
XRANK query is matched against every word of the
document (even if that word is a label). An answer to
an XSEarch query is also an answer or some part of
an answer to the XRANK query that consists of the
same keywords and labels, but the converse is not nec-
essarily true. Actually, XRANK may return answers
with parts that are semantically unrelated, as in Ex-
ample 1.1. XRANK ranks the elements of an XML
document by generalizing the Page-Rank algorithm of
Google [3]. It ranks the answers to a query by combin-



ing the ranking of elements with keyword proximity.
The notion of proximity in XRANK means that the
children of an element must be in the “right order” if
that element should be ranked highly as an answer.
For example, if a paper element has title as its first
child and author as its last child, with all the section
elements in between, then that paper element will get
a low rank, even if the query has a keyword from the
title and a keyword from author’s name. In XSEarch,
proximity is included in the ranking formula in terms
of the size of the relationship tree and thus, it is not
affected by the order of children. XSEarch employs
more information-retrieval techniques than XRANK,
namely, tfidf and similarity between the query and the
document. The element ranking used in XRANK can
also be incorporated in XSEarch, but its utility is not
clear. It seems to be useful in DBLP, where references
between elements indicate importance. However, what
is the significance of a large number of references in
a document about geographical data (e.g., Mondial),
where references are between neighboring countries?

The main contribution of this paper is in laying
the foundations for a semantic search engine over
XML documents. XSEarch returns semantically re-
lated fragments, ranked by estimated relevance. Our
system is extensible, and can easily accommodate dif-
ferent types of relationships between nodes. We have
shown that it is possible to combine these qualities
with an efficient, scalable and modular system. Thus,
XSEarch can be seen as a general framework for se-
mantic searching in XML documents.
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