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SYNONYMS 
Valid-Time Access Methods 
 
DEFINITION 
A valid-time index is a temporal index that enables fast access to valid-time datasets. In a traditional 
database, an index is used for selection queries. When accessing valid-time databases such selections 
also involve the valid-time dimension (the time when a fact becomes valid in reality). The characteristics 
of the valid-time dimension imply various properties that the temporal index should have in order to be 
efficient. As traditional indices, the performance of a temporal index is described by three costs: (i) 
storage cost (i.e., the number of pages the index occupies on the disk), (ii) update cost (the number of 
pages accessed to perform an update on the index; for example when adding, deleting or updating a 
record), and (iii) query cost (the number of pages accessed for the index to answer a query). 
 
HISTORICAL BACKGROUND 
A valid-time database maintains the entire temporal behavior of an enterprise as best known now [12]. It 
stores the current knowledge about the enterprise's past, current or even future behavior. If errors are 
discovered about this temporal behavior, they are corrected by modifying the database. If the knowledge 
about the enterprise is updated, the new knowledge modifies the existing one. When a correction or an 
update is applied, previous values are not retained. It is thus not possible to view the database as it was 
before the correction/update. This is in contrast to a transaction-time database, which maintains the 
database activity (rather than the real world history) and can thus rollback to a past state. Hence in a 
valid-time database the past can change, while in a transaction-time database it cannot. 
 
The problem of indexing valid-time databases can be reduced to indexing dynamic collections of 
intervals, where an interval represents the temporal validity of a record. Note that the term “interval” is 
used here to mean a “convex subset of the time domain" (and not a "directed duration"). This concept has 
also been named a “period”; in this discussion however, only the term “interval” is used.  
 
To index a dynamic collection of intervals, one could use R-trees or related dynamic access methods. 
Relatively fewer approaches have been proposed for indexing valid-time databases. There have been 
various approaches proposed for the related problem of managing intervals in secondary storage. Given 
the problem difficulty, the majority of these approaches have focused on achieving good worst case 
behavior; as a result, they are mainly of theoretical importance. For a more complete discussion the 
reader is referred to a comprehensive survey [11].  
 
SCIENTIFIC FUNDAMENTALS 
The following scenario exemplifies the distinct properties of the valid time dimension. Consider a dynamic 
collection of “interval-objects”. The term interval-object is used to emphasize that the object carries a 
valid-time interval to represent the temporal validity of some object property. (In contrast, and to 
emphasize that transaction-time represents the database activity rather than reality, note that intervals 
stored in a transaction time database correspond to when a record was inserted/updated in the 
database.) 
 
The allowable changes in this environment are the addition/deletion/modification of an interval-object. A 
difference with the transaction-time abstraction (the reader is referred to the Transaction-Time Indexing 
entry for more details) is that the collection's evolution (past states) is not kept. An example of a dynamic 
collection of interval-objects appears in Figure 1. Assume that collection Ca has been recorded in some 
erasable medium and a change happens, namely object Iz is deleted. This change is applied on the 
recorded data and physically deletes object Iz. The medium now stores collection Cb, i.e., collection Ca is 



not retained. Note that when considering the valid time dimension, changes do not necessarily come in 
increasing time order (as is the case in transaction-time databases); rather they can affect any object in 
the collection. This implies that a valid-time database can correct errors in previously recorded data. 
However, only a single data state is kept, the one resulting after the correction is applied. 
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Figure 1. Two valid-time databases. 

As a real-life example, consider the collection of contracts in a company. Each contract has an identity 
(contract_no) and an interval representing the contract's duration or validity. In collection Ca, there were 
four contracts in the company. But assume an error was discovered: contract Iz was never a company 
contract (maybe it was mistakenly entered). Then, this information is permanently deleted from the 
collection, which now is collection Cb.  
 
The notion of time is now related to the valid-time axis. Given a valid-time instant, interval-objects can be 
classified as past, future or current as related to this instant, if their valid-time interval is before, after or 
contains the given instant. Valid-time databases can be used to correct errors anywhere in the valid-time 
domain (past, current or future) because the record of any interval-object in the collection can be 
changed, independently of its position on the valid-time axis. Note that a valid-time database may store 
records with the same surrogate but with non-intersecting valid-time intervals. For example, another 
object with identity Ix could be added in the collection at Cb as long as its valid-time interval does not 
intersect with the valid-time interval of the existing Ix object; the new collection will contain both Ix objects, 
each representing object Ix at different times in the valid-time dimension. 
 
From the above discussion, an index used for a valid-time database should: (a) store the latest collection 
of interval-objects, (b) support addition/deletion/modification changes to this collection, and (c) efficiently 
query the interval-objects contained in the collection when the query is asked. Hence, a valid-time index 
should manage a dynamic collection of intervals. 
 
Related is thus research on the interval management problem. Early work in main memory data-
structures has proposed three separate approaches into managing intervals, namely, the Interval Tree, 
the Segment Tree and the Priority Search Tree [8]. Such approaches are focused on the “stabbing query” 
[6], i.e., given a collection of intervals, find all intervals that contain a given query point q. The stabbing 
query is one of the simpler queries for a valid-time database environment, since it does not involve any 
object key attribute (rather, only the object intervals). 
 
Various methods have been proposed for making these main-memory structures disk-resident. Among 
them are: the External Memory Interval Tree [1], the Binary-Blocked Interval Tree [4], the External 
Segment Tree [2], the Segment Tree with Path Caching [10] and the External Memory Segment Tree [1], 
the Metablock Tree [6], the External Priority Search Tree [5], and the Priority Search Tree with Path 
Caching [10]. Many of these approaches are mainly of theoretical interest as they concentrate on 
achieving a worst-case optimal external solution to the 1-dimensional stabbing query. For good average 
behavior, methods based on multi-dimensional, indices should be preferred. 
 



Since intervals are 2-dimensional objects, a dynamic multi-dimensional index like an R-tree may be used. 
Moreover, the R-tree can also index other attributes of the valid-time objects, thus enabling queries 
involving non-temporal attributes as well. For example, “find contracts that were active on time t and had 
contract-id in the range (r1,r2)”. While simple, the traditional R-tree approach may not always be very 
efficient. The R-tree will attempt to cluster intervals according to their length, thus creating pages with 
possibly large overlapping. It was observed in [7] that for data with non-uniform interval lengths (i.e., a 
large proportion of “short” intervals and a small proportion of “long” intervals), this overlapping is clearly 
increased, affecting the query and update performance of the index. This in turn decreases query and 
update efficiency.  
 
Another straightforward approach is to transform intervals into 2-dimensional points and then use a Point 
Access Method (quad-tree, grid file, hB-tree, etc.). In Figure 2, interval I = (x1,y1) corresponds to a single 
point in the 2-dimensional space. Since an interval’s end-time is always greater or equal than its start-
time, all intervals are represented by points above the diagonal x = y. Note that an interval (x,y) contains a 
query time v if and only if its start-time x is less than or equal to v and its end-time y is greater than or 
equal to v. Then an interval contains query v if and only if its corresponding 2-dimensional point lies inside 
the box generated by lines x = 0, x = v, y = v, and y = ∞ (the shaded area in Figure 2). This approach 
avoids the overlapping mentioned above. Long intervals will tend to be stored together in pages with 
other long intervals (similarly, for the short intervals). However, no worst case guarantees for good 
clustering are possible.  
 

 
Figure 2. An interval I = (x1,y1) corresponds to a point in a 2-dimensional space. 
 
A related approach (MAP21) is proposed in [9]. An interval (l, r) is mapped to a point z = (lx10s) + r, where 
s is the maximum number of digits needed to represent any point in the interval range. This is enough to 
map each interval to a separate point. A regular B+-tree is then used to index these points. An advantage 
of this approach is that interval insertions/deletions are easy using the B+-tree. To answer a stabbing 
query about q, the point closer but less than q is found among the points indexed in the B+-tree, and then 
a sequential search for all intervals before q is performed. At worse, many intervals that do not intersect q 
can be found (this approach assumes that in practice the maximal interval length is known, which limits 
how far back the sequential search continues from q).  
 
Another approach is to use a combination of an R-tree with Segment Tree properties. The Segment R-
tree (SR-tree) was proposed in [7]. The SR-tree is an R-tree where intervals can be stored in both leaf 
and non-leaf nodes. An interval I is placed to the highest level node X of the tree such that I spans at 
least one of the intervals represented by X’s child nodes. If I does not span X, it spans at least one of its 
children but is not fully contained in X, then I is fragmented. Figure 3 shows an example of the SR-tree 
approach. The top rectangle depicts the R-tree nodes (root, A, B, C, D and E) as well as the stored 
intervals. Interval L spans the rectangle of node C, but is not contained in node A. It is thus fragmented 
between nodes A and E. 
 
Using this idea, long intervals will be placed in higher levels of the R-tree. Hence, the SR-tree tends to 
decrease the overlapping in leaf nodes (in the regular R-tree, a long interval stored in a leaf node will 



“elongate” the area of this node thus exacerbating the overlap problem). However, having large numbers 
of spanning records or fragments of spanning records stored high up in the tree decreases the fan-out of 
the index as there is less room for pointers to children. It is suggested to vary the size of the nodes in the 
tree, making higher-up nodes larger. “Varying the size” of a node means that several pages are used for 
one node. This adds some page accesses to the search cost. 
 

 
Figure 3. An example of the SR-tree approach. 
 
As with the R-tree, if the interval is inserted at a leaf (because it did not span anything) the boundaries of 
the space covered by the leaf node in which it is placed may be expanded. Expansions may be needed 
on all nodes on the path to the leaf, which contains the new record. This may change the spanning 
relationships since existing intervals may no longer span children, which have been expanded. In this 
case, such intervals are reinserted in the tree, possibly being demoted to occupants of nodes they 
previously spanned. Splitting nodes may also cause changes in spanning relationships as they make 
children smaller - former occupants of a node may be promoted to spanning records in the parent. 
 
In contrast to the traditional R-tree, the space used by the SR-tree is no longer linear. An interval may be 
stored in more than one non-leaf nodes (in the spanning and remnant portions of this interval). Due to the 
use of the segment-tree property, the space can be as much as O(n logBn). Inserting an interval still takes 
logarithmic time. However, due to possible promotions, demotions and fragmentation, insertion is slower 
than in the R-tree. Even though the segment property tends to reduce the overlapping problem, the 
(pathological) worst case performance for the deletion and query time remains the same as for the R-tree 
organization (that is, at worst, the whole R-tree may have to searched for an interval). The average case 
behavior is however logarithmic. Deletion is a bit more complex, as all the remnants of the deleted 
interval have to be deleted too. The original SR-tree proposal thus assumed that deletions of intervals are 
not that frequent. 

B

 
The SR-tree search algorithm is similar to that of the original R-tree. It descends the index depth-first, 
descending only those branches that contain the given query point q. In addition, at each node 
encountered during the search, all spanning intervals stored at the node are added to the answer. To 
improve the performance of the structure, the Skeleton SR-tree has also been proposed [7], which is an 
SR-tree that pre-partitions the entire domain into some number of regions. This pre-partition is based on 



some initial assumption on the distribution of data and the number of intervals to be inserted. Then the 
Skeleton SR-tree is populated with data; if the data distribution is changed, the structure of the Skeleton 
SR-tree can be changed too. 
 
When indexing valid-time intervals, overlapping may also incur if the valid-time intervals extend to the 
ever-increasing now. One approach could be to use the largest possible valid-time to represent the 
variable now. In [3] the problem of addressing both the now and transaction-time Until-Changed (UC) 
variables is addressed by using bounding rectangles/regions that increase as the time proceeds. A 
variation of the R-tree, the GR-tree is presented. More details appear in [3]. 
 
 
KEY APPLICATIONS  
The importance of temporal indexing emanates from the many applications that maintain temporal data. 
The ever increasing nature of time imposes the need for many applications to store large amounts of 
temporal data. Specialized indexing techniques are needed to access such data. Temporal indexing has 
offered many such solutions that enable fast access. 
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