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Abstract. Given the plethora of GPS and location-based services, que- ries over
trajectories have recently received much attention. In this paper we examine tra-
jectory joins over streaming spatiotemporal data. Given a stream of spatiotem-
poral trajectories created by monitored moving objects, the outcome of aCon-
tinuous Spatiotemporal Trajectory Join(CSTJ) query is the set of objects in
the stream, which have shown similar behavior over a query-specified time in-
terval, relative to the current timestamp. We propose a novel indexing scheme
for streaming spatiotemporal data and develop algorithms for CSTJ evaluation,
which utilize the proposed indexing scheme and effectively reduce the computa-
tion cost and I/O operations. Finally, we present a thorough experimental evalua-
tion of the proposed indexing structure and algorithms.

1 Introduction

The abundance of position locators and GPS devices enables creation of data manage-
ment systems that monitor streaming spatiotemporal data, providing multiple services
to the end users. The basic architecture of a monitoring system working with spatial
streaming data consists of multiple tracing devices which continuously report their lo-
cation thus forming a spatiotemporal stream. Such streams are collected to the base
station (server) where users submit their queries and continuously receive query results
based on the current state of the data. Unlike traditional snapshot queries that are eval-
uated only once continuous queries require continuous revaluation as the query result
becomes obsolete and invalid with the change of information for the objects.

 
 
 
 

Result 

Query 
Clients 

GPS 
Devices 

Antenna 

Server 

Spatiotemporal 
stream 

Object 
location 

Fig. 1. A streaming spatiotemporal architecture.



Recent research efforts have focused mainly on simple queries (i.e., having just a
single spatial Range [7][23] or Nearest Neighbor queries [33] predicate). However in
many real life monitoring queries there is need for more complex continuous spatial
predicates. For example, users may be interested in discovering pairs of moving objects
which follow similar movement pattern for specified period of time. Consider a security
system inside a building which is tracing person movement. The security officer may
want to continuously check for any security violations or suspicious activities over the
stream of spatiotemporal data coming from the sensors inside the building. One suspi-
cious activity for example can be ”Identify the pairs of (security officers,visitors) that
have followed each other in the last 10 minutes.” since it can be sign for someone trying
to study the security personal.

In this paper we address a novel query for streaming data, called atrajectory join,
i.e., the problem of identifying all pairs of similar trajectories between two datasets.
The trajectory similarity is defined by their spatial closeness (expressed in a condition
by a spatial thresholdε around each trajectory) which should last at least for an interval
with durationδt. So the trajectory join can be expressed as a complex query predicate
involving both the spatial and temporal constraints over the object trajectories. In the
definition of the trajectory join problem for a static data set scenario [2][3] the temporal
constraintδt is an absolute one (For example ”Between 2 a.m and 3 a.m” ). The absolute
temporal constraints however do not make sense in a continuous environment since
the result for them never changes. More useful for continuous queries are the relative
time constraints. A relative time constraint uses the current time instance as a reference
point. (Example: between 2 and 3 hours ago). As the time passes, the value of the
current timestamp changes which makes the relative time constraint slide along the the
temporal axis.

Because of the constant reevaluation of the result and the use of relative time con-
straints instead of absolute ones the extension of the static join solutions in the contin-
uous environment is not efficient. A trivial extension of the existing static algorithms to
continuous version can be repetitive execution of the static algorithm every time when
the result has to be refreshed. However this is very expensive as the query evaluation
starts from the beginning every time when the result has to be refreshed.

The prevailing strategy for efficient continuous query evaluation is the incremental
approach [34, 33]. This approach implies that the query processor reuse as much as
possible the current result and data structures for future iterations of the evaluation
algorithm.

Nevertheless the CSTJ problem differs form all other continuous spatial predicates
in that it also involves historical data from the stream.

In order to adopt efficiently the incremental approach for evaluation of the CSTJ
queries we need an indexing structure for streaming data, which is able to:

– Answer queries about previous states of the spatiotemporal stream.
– Provide approximation for the object trajectory.
– Support the incremental approach for query evaluation.

To the best of our knowledge there is no indexing schema proposed, which has all
these properties. In this paper we propose a novel indexing structure for spatial streams



which is able to store information about previous states of the spatiotemporal stream
and develop algorithms for CSTJ evaluation, which utilize this indexing structure.

2 Related Work

Many join and self-join algorithms have been designed and proposed in the past for
different data types and more specifically for spatial data [5] [19] [21] [27] [13] [31]
[10] [35] [25] [18] [20] [1] [8]. However, these algorithms are not applicable in the case
of spatio-temporal trajectories because they are based on intersections between MBRs
while spatiotemporal trajectory join conditions are much more complex with constraints
in both the spatial and temporal domain.

Recent work in the area of spatiotemporal streams has led to multiple indexing
techniques and processing algorithms. They can be divided generally in three groups.

In [7] [23] [26] [24] the use of a simple grid structure is proposed for indexing
the location of the objects inside the spatiotemporal stream. Every single grid cell is
associated with a list of the objects currently residing inside it. Clearly such approach
is very efficient from a computational point of view since the maintenance of the index
structure is straightforward. It can handle very effectively issues like frequent updates,
high arrival raters, the infinite nature of the data and so on. However it can be used only
for a queries focused on the current state of the stream.

Multiple algorithms have been proposed for answering range predicates with the
grid based indexing solutions. Gedik and Liu [7] propose a distributed system for range
queries called ”mobieyes”, and it is assumed that the moving clients can process and
store information. The client receive information about the moving range query from the
server and notifies the server when it is going to enter or leave this query region. Mok-
bel et al [23] implements SINA, a scalable shared execution and incremental evaluation
system, where the execution of continuous range spatiotemporal queries is abstracted
as a spatial join between the set of objects and the set of queries. Continuous evalua-
tion of nearest neighbor queries have also received a lot of attention lately using grid
structures [12] [34] [33] [24]. Koudas et al [12] propose DISC a technique for answer-
ing ε-approximate k nearest neighbor queries over a stream of multidimensional data.
The returnedkth Nearest neighbor lies at most on distanced + ε from the query point
whered is the distance between the actualkth Nearest neighbor and the query point.
Yu at al.[34] and Xiong at al. [33] propose similar approaches for answering continuous
NN queries using different distances for pruning. Finally Mouratidis et al. [24] intro-
duced conceptual partitioning which archives a better performance than the previous
approaches by handling updates from objects which fall in vicinity of the query.

The second group of indexing methods uses different tree-like structures. There
are structures based on B+-trees [17] [11], R trees [14] [15] and TPR-trees [32] [16]
[29] [30]. The main objective is to improve the update performance of the indexing
structure since it is the most frequent operation in streaming environment. In [14] the
reduction of the update cost is done trough avoiding the updates for objects that do
not move outside of their MBRs. Later in [15] this technique is generalized trough a
bottom - up update strategy which uses different levels of reorganization during the
updates and in this way avoids the expensive top-down updates. The minimization of



the update time in [17] [11] is achieved trough the use of B+ trees, which have better
update characteristics, instead of traditional multidimensional index structures like R-
tree [9] [4]. This is achieved trough linearization of the representation of the moving
objects locations using space filing curves like the Peano [6] or Z curve.

The last group [28, 22] of query evaluation methods for streams tries to avoid the
expensive maintenance of index structures over the data. These methods are based on
the notion of ”safe” regions, created around the data [28] or uncertainty regions around
the query [22]. If the object doesn’t leave its safe region no further processing is re-
quired. And the reverse - in [22] objects are considered only if they fall inside the query
region or its uncertainty regions.

All these indexing structures, discussed so far, try to improve the performance by
minimizing the update rate. To the best of our knowledge there has not been any ap-
proach to improve the index performance from point of view of the query evaluation
strategy. Later in this paper we propose a novel indexing structure which has fast object
update rate and is oriented towards the incremental evaluation (i.e. an approach that
reuses the result from the previous step).

3 Problem Definition

Consider a system that continuously monitors the locations of a set of moving objects.
Location updates arrive as a stream of tuplesS = 〈u1, u2, . . . , ul, . . .〉 whereui =
〈oi, li, ti〉, andoi is the object issuing the update whileli is the new location of the
object on the plane andti is the current time stamp.li ∈ Rd, oi ∈ N (for simplicity we
can assume a two dimensional plane).

Trajectory T (oi) of an objectoi in a streamS is a sequence of pairs{〈l1, t1〉, . . . ,
〈ln, tn〉}, whereli ∈ Rd, ti ∈ N. Let tnow denote the ever increasing current time
instant (tnow ∈ N). The definition of the CSTJ query follows:

Given trajectory setsr ands, the CSTJ query continuously returns all trajectory
pairs 〈T (ori), T (osi)〉 which have been spatially close (within thresholdε) for some
time periodδt ending at the current timestamp (i.e. the temporal constraint uses as a
reference point the current timestamp). An example of such a relative time constraint
is the restriction ”in the last 30 minutes”. In contrast, absolute time constraints (e.g.
”between 2:30pm and 3:40pm” ) produce a query result that is static and does not
change with time. In a continuous query environment, as the current time proceeds
some objects will expire from the observed period while others will be introduced, thus
continuously changing the join result.

Continuous Spatiotemporal Trajectory Join Given two sets of moving objectsor

andos, a spatial thresholdε and a (relative) time periodδt (δt ∈ N), the CSTJ returns
continuously the set of pairs〈ori, osj〉 such that for every time instanceti betweentnow

andtnow−δt the spatial distance between the trajectoriesT (ori) andT (osj) is less than
the thresholdε.



4 Evaluation Framework

The basic idea behind the evaluation algorithms for the static version of the problem
[2][3] is to find a way to prune as many trajectory pair similarity evaluations as possible.
There are two major elements needed for the efficient evaluation of a trajectory join,
namely:

– First we need a compact object trajectory approximation. This requirement is nec-
essary to make the index structure which stores the trajectory approximations small
and thus fit into the main memory for efficient access. It is assumed that the raw
spatiotemporal stream data is too large to be kept in the main memory and has to
be stored on a secondary storage devices. We further assume that the raw trajectory
data is stored in lists of data pages per trajectory where each data page has a pointer
to the next one in the list.

– Second, we require an easy to compute lower bound distance function between the
trajectory approximations.

Using trajectory approximations and lower bound distance functions we can prune a
large number of the pairs from the Cartesian product between the object trajectory sets
T (or) andT (os). Because we work with trajectory approximations instead of the actual
(full) trajectory data a verification step is also needed, where the pairs of trajectories,
not pruned away by the distance function are then verified to satisfy the join criteria
using their actual trajectory data. The lower bound distance function defined in this
paper guarantees that we may have only “false positives” in the verification step (i.e.,
some trajectory pairs not pruned away by the lower bound distance may still not satisfy
the join criteria) but no “false negatives” (i.e., no join result is missed). To remove these
false positives in the final result we need the extra verification step which access the
raw trajectory data on the secondary storage device and verifies for each pair that it
indeed satisfies the join criteria. Hence the total cost of a single evaluation iteration will
comprise of two parts:

– The cost of computing the lower-bounding distances.
– The cost of executing the verification step.

For the continuous version of the problem there are also additional requirements.
The trajectory approximation should be easy to compute and maintain. This require-
ment is needed since the approximation is created on the fly as the streaming data
enters the server. For example the static approximation discussed in [2] [3] does not
satisfy this condition because it makes very expensive aggregations over the raw trajec-
tory data in both the temporal and spatial domains. Moreover the lower bound distance
function should be defined in such way that allows the application of the incremental
approach. This means that it should be possible to reuse the results from one iteration
to another.

4.1 Trajectory Approximation and Indexing

To produce the trajectory approximation with the required properties we decided to
use of a uniform spatial grid to discretize the spatial domain. Each object locationli



in the stream can be approximated with the grid cell in the boundaries of which it is.
Example of a one dimensional trajectory is shown on figure 2. The trajectory shown
can be approximated as a sequence of grid cell numbers 1112222333. We can write this
approximation in more a compact form< 1, 3 >< 2, 7 >< 3, 10 > by compressing the
consecutive object location approximations in the same grid cellx̄i. They are replaced
by record< x̄i, tj > whereti is the last time instant in the list of consecutive object
location approximations for grid cell̄xi. For example the trajectory on figure 2 has three
consecutive location/time instancesui = 〈oi, li, ti〉 all of them in the grid cell 1. These
are time instances 1, 2 ad 3. Instead of having a sequence 111 in the approximation
we put a record with the grid cell number and the last time instance in the sequence
< 1, 3 >. More formally a trajectory approximation can be defined as:

Trajectory approximation Given trajectoryT (oi) = {< l1, t1 >, . . . < ln, tn >}
of lengthn, a trajectory approximation is a sequenceT̄ (oi) = {< x̄1, t̄1 >, . . . , <
x̄m, t̄m >} where the spatial values contained inside each time frame(ti−1; ti) are
approximated with the grid cell numberx̄i and1 ≤ m ≤ n

Note that this approximation scheme is different from the scheme proposed for the
static version of the join problem [2][3], since it approximates the trajectory data only
in the spatial domain. We thus avoid the costly approximation along the temporal axis
which can be too expensive for the continuous environment.

We proceed with the description of the indexing structure. We propose the creation
of a 2-dimensional index space where both dimensions are temporal (”from” and ”to”
axes) On the “from” temporal axis we plot the time when the object enters a given
cell while the “to” temporal axis depicts the time when the object leaves the grid cell.
Between these two timestamps the object does not move outside the boundaries of the
grid cell. For every record< x̄i, t̄i > in the trajectory approximation we place a two
dimensional pointIi in the indexing space. We refer to these points as indexing points.
A more formal definition of an index point is:

Index point is a tupleIi = 〈oi, ḡ, tf , tt, p〉, whereoi is the moving object,̄g is a
grid cell number such that∩(ḡ, Toi) = true for ∀t ∈ (tf , . . . tt) andp is a pointer to
pages on the disk containing the raw trajectory data for time period(tf ; tt).
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For illustration consider the trajectory shown in figure 2. The object stays inside grid
cell 1 between time instances0 andt1 and has 3 location/time instancesui = 〈oi, li, ti〉
inside this grid cell then it moves to grid cell 2 and stays there between time instancest1
andt2. Finally it moves inside grid cell 3. Figure 3 depicts the corresponding indexing
space for this example. The object movement is approximated with twoindexpoints in
the indexing space. Both of them show the time period for which the object was inside
a given grid cell. For example index point 1 in this 2-dimensional space shows that the
moving object was in grid cell 1 in the time interval(0; t1). Respectively object point
2 shows that moving object was in grid cell 2 in the time interval(t1; t2) and so on. A
trivial observation is the fact that all index pointsIi will be placed above the dashed
line on figure 3 which bisects the angle between the two temporal axes (that is because
the timestamp when an object leaves an grid cell is bigger than the timestamp when the
object enters a grid cell e.g.∀Ii; Ii.tf < Ii.tt).

With the above approximation, an object trajectory is transformed to a set of index
points in the 2 dimensional indexing space. Inside each index point we keep a pointer
to the data page on the secondary level storage which stores the raw trajectory data
approximated with this indexing pointIi. For example for index point 1 we keep a
pointer to the data page on the disk which has the raw data for time instances 1, 2 and
3. These pointers are used in the verification step when we have to check if the objects
indeed satisfy the join criteria using the raw data. Instead of accessing all records for
the given trajectory we access only those data pages which have the data for the period
of interest. To make the access to the indexing space more efficient we can now use
variety of tree-like spatial indexes (R tree or kdb tree) build over all index points in the
indexing space.

There are two major advantages of the proposed indexing structure over simple
solutions like keeping a trajectory tail for the lastδt time instances. First the size of
this index is expected to be smaller than the size of an in memory data structure, which
holds the fresh trajectory tail. This is because in the proposed index we keep information
only for the moments when an object changes its location grid cell instead of keeping all
location/timestamp pairs for a periodδt. The second advantage is that by issuing a range
query inside the index space we can efficiently locate all moving objects which change
their location grid cell for the specified time period without accessing all trajectory tails
(This will be discussed in detail in section 5).

As time passes, more and more index points will be added to the indexing space.
The tree structure built over this space will grow and it performance will eventually
deteriorate. Moreover we would like to keep the indexing space and the tree structure
over it small enough to fit in main memory for fast access. Possible solution to this
problem is to delete all index pointsIi from the index space which are too ”old”. A
data older than the time periodδt cannot participate as a result so we can safely prune
these regions of the indexing space. For example if the time period isδt = 2 hours then
there is no need to keep data older than 2 hours in the structure. The index points, which
we can safely remove from the index structure, will be in the shaded region, shown on
figure 4.



 

From 

To 

tnow  - 
δ
t 

tnow 

tnow  - 
δ
t 

δ
t 

Area to  
delete 

Fig. 4. Indexing space to remove.  

X 

Y 

11 12 13 14 

21 22 23 24 

31 32 33 34 

41 42 43 44 

Min dist 

Actual Distance 

Fig. 5. Min. distance between two grid cells.

4.2 Lower bound distance function

Having defined the trajectory approximation we need an appropriate lower bound dis-
tance function between the approximated trajectories. Given that the minimal distance
between two grid cells is a lower bound of the actual distance between the object loca-
tions (d(x̄i, x̄j) ≤ d(li, lj) ), as it is shown on figure 5, we can define a lower bound
function between the trajectory approximations using the minimal Euclidean distance
between the grid cells, i.e.:

D̄δt,ti(T̄ (ori), T̄ (osi)) =
√ ∑

i∈(ti;ti−δt)

d(r̄i, s̄i)2

5 Query evaluation

We now proceed with the CSTJ evaluation algorithm which assumes a spatiotemporal
stream of moving objects approximated in an index structure built as described in sec-
tion 4.1. There are two major processes in a continuous query evaluation framework
that are working in parallel. The first process is keeping the indexed space consistent
with the spatiotemporal stream. The second process is responsible for the continuous
reevaluation of the CSTJ queries in the system. During its lifetime, a CSTJ query goes
through two phases, namely:

– Phase 1. Initial formation of the query result.
– Phase 2. Continuous query reevaluation.

During the first phase the CSTJ query is introduced into the system and the initial result
is computed from scratch. Once the initial result of the query is formed, the evaluation
of the continuous query moves to the second phase where the query stays in till it is
taken out of the system. In this phase the query is reevaluated regularly and the results
from the reevaluations are constantly send to the end users. In the remaining of this
section we look at each phase in detail.



5.1 Initial formation of the query result

When the query is first introduced into the system, the result has to be computed from
scratch. For this phase we modify the “multiple-origin” static join algorithm discussed
in [3] to be used with the described indexing scheme. In particular we need to find all
pairs of trajectories in the time period(tn − δt; tn) where the corresponding grid cells
for every time instance are not further apart than the thresholdε, i.e.d(r̄i, s̄i) ≤ ε, for
i ∈ (tn − δt; tn).

Each trajectory approximation of lengthδt can be viewed as aδt-dimensional point
in a transformedδt-dimensional space. Using distance functionD̄δt defined over the
trajectory approximations we can define an ordering of the points inδt-dimensional
space by sorting them according to their distances from some set of originsŌi.

An origin Ōi is an approximated trajectory with lengthδt and can be selected ar-
bitrarily. We assign to every trajectory approximationT̄ (oi) a set ofq scores (w1, . . .,
wj , . . . wq), where each scorewj is simply the distancēDδt(Ōj , T̄ (oi)), between the
trajectory approximation̄T (oi) and originŌj . Approximations with different distances
from a given single originŌj are considered to be dissimilar. The reverse however is
not true: we can have approximations with the same distance from originŌj which are
still not spatially close. To reduce the probability of this happening we thus use multiple
origins. The verification step however is still needed.

To compute the object scores (w1, . . . , wj , . . . wq) we use the index space main-
tained over the spatiotemporal stream. We locate the portions of the trajectory approxi-
mations which belong to the time interval(tn− δt; tn) by issuing spatial queries in this
index space. Given a grid cell and a time interval(tf ; tt) we can partition the space in
four regions, as shown in figure 6.
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Fig. 6. Index space partitioning.

Region 2 contains index points for all these objects which were inside the given
grid cell before the beginning of the intervaltf and which moved to another grid cell
at some point during the interval(tf ; tt). Region 1 contains the objects which moved
inside the given grid cell at some point during the interval(tf ; tt) and stayed there until
the end of the time interval. Region 3 contains objects which were inside the given grid



cell all the time during the interval(tf ; tt) and region 4 contains objects which moved
in and then moved out of the grid cell during the time interval. In regions 1, 2 and 3 for
any time period we can have at most one index pointIi per object (for example, having
two indexing points in region 3 would mean that the object was at the same time in two
different grid cells during the specified period which is a contradiction).

Using spatial queries to locate the index points in these partitions of the index space
for time interval(tn − δt, tn) we can compute the trajectory scores by first computing
the squared sum of distances between trajectory approximations and originŌj : Let I1

be the set of indexing points for objectoi in region 1,I2 the set of indexing points in
region 2 and so on. The squared sum of distances between trajectory approximation
T̄ (oi) and originŌj will be:

σti,Ōj
(oi) =

∑




(I.tt − (ti − δt))d(I.ḡ, Ōj)2 for I ∈ I1;
(ti − I.tf )d(I.ḡ, Ōj)2 for I ∈ I2;
(δt)d(I.ḡ, Ōj)2 for I ∈ I3;
(I.tt − I.tf )d(I.ḡ, Ōj)2 for I ∈ I4.

wj(oi) = D̄δt,tn(T̄ (oi), Ōj) =
√

σtn,Ōj
(oi)

Since the lower bound distancēD is a metric, if two trajectory approximations have
at least onewj score larger than

√
ε2δt, then there exists at least one time instanceti in

which the corresponding grid cells from the approximations are farther apart than the
thresholdε. The distance between the grid cells is a lower bound between the actual
position of the objects so the corresponding objects do not satisfy the join criteria.

To locate candidate join pairs we sort the trajectory approximationsT̄ (oi) using the
q scores, in order ofw1, w2, ..., etc. That is, if there is a group of trajectory subsequences
having the same value ofw1, they are further sorted on theirw2 score and so on.

Having the trajectory approximation scoresw1, w2, ..., computed and the approx-
imations sorted, we can locate the pairs for which could possibly join. This is done
performed by a sliding window algorithm which passes over the sorted list of approx-
imations. We set the size of the window to2

√
ε2δt and place the midpoint of the win-

dow on the first approximation from datasets, say T̄ (osj), in the sorted list. For all
approximations̄T (ori) of datasetr falling inside the window, we compare their scores
w1, ..., wq with the corresponding scores ofT̄ (osj). If all of them are within the thresh-
old

√
ε2δt we save the pair〈osj , ori〉 as possible join candidate. Then, we slide the

window and place its midpoint on the next element in datasets and and so on. At the
end we verify the generated candidate pairs loading the raw data from the secondary
storage. To reduce the number of I/O we follow the pointers inside the index points to
locate the data pages storing information for this time period instead of having a full
scan over the the pages storing raw trajectory data.

We illustrate the initial formation of the result with an example. Assume that we
have 3 moving objects between time instances 1 and 11. Each object report its location
every time instance (see figure 7 - the locations where an object reports its position are
marked with a dot). We discretize the space with a grid 3x3 where each grid cell is a
square with side 10. The minimal distance between the grid cells is given in table 6.1.



Algorithm 1 CSTJ - Initialization phase
Input: QueryQ = {or, os, δt, ε} current time instanceti

Output: Set of pairs (ori, osj) whereT (ori) andT (osj) are joined for the lastδt time instances
1: Setσ ← ∅, W ← ∅, V ← ∅, Res← ∅
2: Find Origins(O1 .. Om);
3: ComputeApproximations(̃O1...Õm);
4: CreatePartitions(ti − δt,ti);
5: GetIntexPoints(I1, I2, I3, I4);
6: for each originOj in O1 .. Om do
7: for each moving objector in or ∪ os do
8: Computeσti,Ōj

(Ii.o)
9: σ.push(σti,Ōj

(Ii.o) );
10: for all σti,Ōj

(oi) in σ do

11: Wi,j =
q

σti,Ōj
(oi)

12: W .sort()
13: for (i = 1; i¡= W .size; i++)do
14: Entryox = W [i].objectID
15: if x ∈ or then, FindPairsInWindow(ox,i,W ,V ,ε)
16: while V not emptydo
17: Entry< ori, osj >= V .top
18: if ori ∈ or andosj ∈ os satisfy the criteriathen
19: R.push(ori, osj)
20: Return R

Grid No 11 12 13 21 22 23 31 32 33
11 0 0 10 0 0 10 10 10 14
12 0 0 0 0 0 0 10 10 10
13 10 0 0 10 0 0 14 10 10
21 0 0 10 0 0 10 0 0 10
22 0 0 0 0 0 0 0 0 0
23 10 0 0 10 0 0 10 0 0
31 10 10 14 0 0 10 0 0 10
32 10 10 10 0 0 0 0 0 0
33 14 10 10 10 0 0 10 0 0

The indexing space for this example is shown in figure 8. Next to each index point
we have the moving object numberoi to which it belongs and the grid cell numberx̄j

in format〈oi, x̄j〉. Consider a CSTJ query with spatial thresholdε = 3 and time period
δt = 3, that is introduced in the system on time instance 6. Objecto1 and objecto3

belong to the first sets and objecto2 belongs to the second setr. The partitioning for
time interval(3; 6) is shown in figure 8.

We have three indexing points in region 1 (one for each moving object) and three
indexing points in region 2. This means that during this time period each object left
the grid cell where it was in the beginning of the period and moved into another grid
cell. For simplicity we choose a scenario with two origins. Both of them are trajectory
approximations with lengthδt = 3. Again for simplicity we choose the first one to be



Algorithm 2 FindPairsInWindow
Input: ox,i,W ,V ,ε
1: j ← i
2: while W [j].scores -ox.scores<

√
ε2δt do

3: Entryoy = W [j]
4: if oy ∈ os then, V .push(ox, oy)
5: j −−
6: j ← i
7: while W [j].score -ox.score<

√
ε2δt do

8: Entryoy = W [j]
9: if oy ∈ os then, V .push(ox, oy)

10: j + +
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Fig. 7. Moving objects example.

Ō1 = 33, 33, 33 and the second onēO2 = 31, 31, 31. We can then compute the scores
for the first trajectoryw1(o1) =

√
(4− (6− 3))(14)2 + (6− 4) ∗ (10)2 = 19, 89

andw2(o1) =
√

(4− (6− 3))(10)2 + (6− 4) ∗ (10)2 = 17, 32. In the same way we
compute the scores for the other moving objectsw1(o2) = 19, 89, w2(o2) = 17, 32,
w1(o3) = 14, 14 andw2(o3) = 0.

Objects are sorted and placed on a line and then we use the sliding window algo-
rithm where the size of the window is2

√
ε2δt = 2

√
323 = 5, 19 (figure 10). We place

the midpoint of the window on the firsts element in the sorted listo3 we check if there
are elements from the second set inside the window. Since there are none we place the
window over the nexts elemento1. This time there is an element from the setr inside
the window -o2. Thus we report the pair〈o1, o2〉 as a candidate pair. There are no more
elements in the sorted list so we exit the sliding window algorithm. At the end of the
initial evaluation phase we check every candidate pair (〈o1, o2〉 in our example) if it
indeed satisfies the query criteria.

5.2 Continuous Query Reevaluation

Once the initial result is formed the evaluation of the query moves to its second phase
where the query stays active until it is removed from the monitoring system. In this
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Fig. 10.Sliding window algorithm.

phase we constantly reevaluate the query result and modify it according to the current
state of the streamS. To minimize the reevaluation cost we keep the intermediate re-
sults produced in every iteration and apply to them the changes which have occurred
in the stream. We keep the firstT (oi).f̄ and the last grid cellT (oi).l̄ from the trajec-
tory approximations computed in the previous step along with the sum of the squared
distances to the originsσti,Ōj

(oi).
Assume that the last query reevaluation was at time instancetp and the current

timestamp istn. Using the partitioning in the index space shown on figure 3 we can
compute the grid cells which form the trajectory approximation for the time period
(tp − δt; tn − δt) and those who form the approximation for(tp; tn). These portions in
the trajectory approximation sustain the difference between the approximations at time
instancestp andtn. To do so we issue two spatial queries for regions 1, 2 and 4, using
time interval(tp−δt; tn−δt) and also time interval(tp; tn) to create the partitioning in
the index space as it is shown on figure 6. We are focused on these 3 partitions because
they contain information about changes in object location during these periods. If there
is no change in a location for the period(tp − δt; tn − δt) (e.g there are no indexing
points for this object in regions 1,2 and 4 in the partitioning for this time interval) then
the object is inside the first grid cellT (oi).f̄ for the whole time interval(tp−δt; tn−δt).
The same for time interval(tp; tn). If there is no index point in regions 1,2 and 4 for
this time period for some object, then the object is still inside grid cellT (oi).l̄. This
way keeping the first and the last grid from the grid approximation from the previous
time period we avoid the costly spatial query inside region 3 which has the biggest size
of all regions.

Using indexing pointsIn from the first spatial query along with the last grid cell
T (oi).l̄ we compute the sum of squared distances for the interval(tp − δt; tn − δt)



∆neg =
∑





(tn − tp)d(T (oi).l̄, Ōj)2 if In1 ∪ In2 ∪ In3 ∈ ∅;
(I1.tt − (tp − δt))d(T (oi).l̄, Ōj)2 for I ∈ In1;
(tp − I1.tf )d(I1.ḡ, Ōj)2 for I ∈ In2;
(I1.tt − I1.tf )d(I1.ḡ, Ōj)2 for I ∈ In4.

This sum of squared distances for(tp−δt; tn−δt) has to be removed fromσtn,Ōj
(oi)

from the previous iteration.
In analogy we compute the sum of squared distances for the period(tp; tn) using

the indexing pointsIp from the second query and the first grid cellT (oi).f̄ .

∆pos =
∑





(tn − tp)d(T (oi).f̄ , Ōj)2 if Ip1 ∪ Ip2 ∪ Ip3 ∈ ∅;
(I2.tt − (tn − δt))d(T (oi).f̄ , Ōj)2 for I ∈ Ip1;
(tn − I2.tf )d(I2.ḡ, Ōj)2 for I ∈ Ip2;
(I2.tt − I2.tf )d(I2.ḡ, Ōj)2 for I ∈ Ip4.

Havingσtp,Ōj
(oi) from the previous iteration, we can compute the scores for the

current time instance

σtn,Ōj
(oi) = σtp,Ōj

(oi) + ∆pos −∆neg

wj(oi) = D̄δt,tn(T̄ (oi), Ōj) =
√

σtn,Ōj
(oi)

The trajectory scoresw1, w2, ..., are resorted and processed with the multiple ori-
gins sliding window evaluation algorithm to produce the result for time instancetn. An
advantage of this reevaluation schema is that by having a short reevaluation period, the
size of regions 1, 2 and 4 in the index partitioning schema will be comparatively small
resulting in a limited number of index points accessed during the reevaluation steps.

We will illustrate the reevaluation phase using the same example shown in figure 7.
Assume that the query reevaluation is done every time instance and that the current time
instance is 7 (e.g one time instance after the initial evaluation). We create the partition-
ing for time intervals(3; 4) and(6; 7) according to the algorithm. The result is shown
on figure 9. There are two indexing points in both regions 2 and 3 (they belong to ob-
jectso1 ando2) for time interval(3; 4) and one indexing point in the same regions for
time interval(6; 7) (generated from objecto2). There are no indexing points for object
3 which means that this object did not change its grid cell during the interval(3; 4) and
for this period it was inside grid cell 31 (this is the first grid cellT (o3).f̄ = 31 in the
trajectory approximation in the previous evaluation step done for time period(3; 6)). In
analogy object 3 was inside grid cell 22 ( which isT (o3).l̄ ) during the interval(6; 7).
We compute∆neg(o3, Ō1) = (4 − 3)102 = 100, ∆neg(o3, Ō2) = (4 − 3)02 = 0,
∆pos(o3, Ō1) = (7 − 6)02 = 0 and∆pos(o3, Ō2) = (7 − 6)02 = 0. So the updated

scores for object 3 arew1(o3) =
√

σt6,Ō1
(o3) + ∆pos(o3, Ō1)−∆neg(o3, Ō1) =

√
200− 100 = 10 and w2(o3) =

√
σt6,Ō2

(o3) + ∆pos(o3, Ō2)−∆neg(o3, Ō2) =√
0 = 0. Similarly, ∆neg(o1, Ō1) = 196, ∆neg(o1, Ō2) = 100, ∆pos(o1, Ō2) = 100,

∆pos(o1, Ō2) = 100, ∆neg(o2, Ō1) = 196, ∆neg(o2, Ō2) = 100, ∆pos(o2, Ō2) =
100, ∆pos(o2, Ō2) = 100 and the new scores for objectso1 ando2 w1(o1) = 17.32,



Algorithm 3 CSTJ - Continuous phase

Input: QueryQ = {or, os, δt, ε},σ,Õ1...Õm,tp,tn

Output: Set of pairs (ori, osj) whereT (ori) andT (osj) are joined for the lastδt time instances
1: SetW ← ∅, V ← ∅, Res← ∅
2: CreatePartitions(tp; tn);
3: GetIntexPoints(Ip1, Ip2, Ip4);
4: CreatePartitions(tp − δt; tn − δt);
5: GetIntexPoints(In1, In2, In4);
6: for each originOj in O1 .. Om do
7: for each moving objector in or ∪ os do
8: Compute∆pos,i,j

9: Compute∆neg,i,j

10: σ.pop(σtp,Ōj
(Ii.o) );

11: σtn,Ōj
(Ii.o) = σtp,Ōj

(Ii.o) + ∆pos,i,j −∆neg,i,j

12: σ.push(σtn,Ōj
(Ii.o) );

13: for all σtn,Ōj
(oi) in σ do

14: Wi,j =
q

σtn,Ōj
(oi)

15: W .sort()
16: for (i = 1; i¡= W .size; i++)do
17: Entryox = W [i].objectID
18: if x ∈ or then, FindPairsInWindow(ox,i,W ,V ,ε)
19: while V not emptydo
20: Entry< ori, osj >= V .top
21: if ori ∈ or andosj ∈ os satisfy the criteriathen
22: R.push(ori, osj)
23: Return R

w2(o1) = 17.32, w1(o2) = 17.32 andw2(o2) = 17.32. Then the objects are resorted
using the new scores and the sliding window algorithm is re-run.

6 Experimental Evaluation

We proceed with the experimental evaluation of the proposed indexing structure and
algorithms for continuous evaluation of CSTJ queries.

6.1 Experimental Environment

In our experiments we use synthetic data to test the behavior of the proposed technique
and indexing structure under different settings. We generated synthetic datasets of mov-
ing object trajectories. The datasets are generated by simulation using the the freeway
network of Indiana and Illinois (see figure 11). We use up to 150,000 objects moving in
a 2-dimensional spatial universe which is 1,000 miles long in each direction. The ob-
ject velocities follow a Gaussian distribution with mean 60 mph, and standard deviation
15 mph. We run simulations for 1000 minutes (time-instants). Objects follow random
routes on the network traveling through a number of consecutive intersections and re-
port their position every time-instant. In addition, at least 10% of the objects issue a



modification of their movement parameters per time-instant. We choose an R tree with
utilization factor 64% as an indexing structure build on the top of the indexing space.
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Fig. 11.The map used in the simulations.

The average number of time/location tuples〈ti, li〉 per index pointI is 11 (it is
for the selected speed of 60 mph - later in this section we will present experimental
results for objects with average speed less than 60 mph). The maximal relative temporal
constraint in the queries is set toδt = 40 minutes. For the maximal time periodδt =
40 minutes, the R tree build over the indexing space has the properties described in the
table below.

Property Value

Tree height 5
Number of nodes39900
Leaf capacity 20
Index capacity 20

To test the proposed techniques we use two measures: The average number of index
node accesses and the average number of data pages per query that need to be retrieved
from storage for verification of the result, assuming that one random access is needed
for this operation. We also measure the number of trajectory pairs which satisfy the
query (e.g the size of the result). We evaluate the query performance in both the ini-
tialization and continuous reevaluation phases. Query reevaluation is performed every
2 minutes.

6.2 Experimental Results

Varying the Dataset Size In the first group of experiments we measure the perfor-
mance against different data set sizes. We use 4 different datasets with sizes varying
from 25,000 up to 150,000 moving objects. The spatial threshold is set toε = 30 miles
and the time periodδt is set to 20 minutes. The results for the index nodes access, data
page access and the number of pairs are shown in figures 12, 13 and 14. As the dataset
size increases, the numbers of data pages and index nodes accessed are also growing.
As depicted in figure 12, the number of data pages accessed in the initialization and the
continuous phases are similar due to the similar number of candidate pairs generated
in both phases. The index node access however (figure 13) differs substantially in the
two phases. In the continuous phase due to the incremental approach the number of
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Fig. 12.Size: Data pages.
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Fig. 13.Size: Index nodes.
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Fig. 14.Size: Result set size.
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Fig. 15.Time: Data pages.
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Fig. 16.Time: Index nodes.
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Fig. 17.Time: Result set size.

the accessed index nodes is much smaller than in the initial phase. In the continuous
phase we do not access the indexing points in region 3 which has the largest size of all
4 regions. Though the distribution of the points in the indexing space is not uniform
this region has the biggest number of index points from all four regions in the index
space partitioning. As expected, the number of trajectory pairs which satisfy the query
is growing with the increase of the dataset size (figure 14).

Varying the Spatial threshold ε In the next set of experiments we test the behavior of
the algorithm for increasing query thresholdε (while using a fixed time-intervalδt = 20
minutes). The intuition behind this set of experiments is that by increasing the spatial
thresholdε the query becomes more relaxed and thus more expensive for evaluation.
We use four different values forε varying from 10 to 40 miles. The results are shown in
figures 15 16 and 17. As expected with the increase of the threshold we have moderate
increase in the number of candidate pairs and the number of result pairs (figure 17). Due
to the increased number of reported candidate pairs the data pages accessed (figure 15)
also increase since each candidate pair has to be tested using the raw trajectory data.
The number of index node accessed however remains constant since the trajectory score
computation does not depend on the thresholdε (figure 16).

Varying the Time period δt In the next group of experiments we tested the behavior
of the proposed algorithm for different values of the time periodδt varying from 20 up
to 50 minutes. We use dataset containing 50,000 moving objects. The spatial threshold
is set toε = 20 miles. As it can be depicted from the plots, the number of index nodes
accessed during the initialization phase (figure 19) is increasing proportionally to the
increase of the time periodδt. This proportional increase is due to the fact that larger
time periodsδt create larger regions 1 and 2 in the space indexing partitioning resulting
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Fig. 18.ε: Data pages.
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Fig. 19.ε: Index nodes.
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Fig. 20.ε: Result set size.

195000

200000

205000

210000

215000

220000

225000

30 40 50 60

Speed

D
at

a 
pa

ge
s

Initial phase Continuous phase

 

Fig. 21.Speed: Data pages.
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Fig. 22.Speed: Index nodes.
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Fig. 23.Speed: Result set size.

in larger number of indexing nodes accessed for these two regions. From the plot in
figure 18 it can be seen that after time periodδt = 30 minutes the number of raw
data I/Os decrease. This is due to the fact that by increasing the length of the query it
becomes more restrictive. We have fewer candidates generated and therefore fewer raw
data accesses.

The decreased number of candidate pairs results also in a smaller number of pairs
in the result set as it can be seen on figure 20.

Varying the average speed of the moving objectsAll previous experiments were per-
formed using datasets where the average speed is set to 60 mph which is reasonable for
a highway traffic. In the last set of experiments we study how the speed of the moving
objects affects our algorithm. The intuition here is that by having a slowly moving ob-
jects in the system, it will take more time for the object to reach the boundaries of a cell
and move to another one. The number of time/location tuples〈ti, li〉 per index pointIi

is increased and the total number of index points in the indexing space is decreased.
We run this set of experiments with four datasets of 100,000 moving objects, where the
average speed varies from 30mph to 60mph. The spatial threshold in the query is set to
ε = 30 miles and the time intervalδt is 20 time instances. As expected, the decrease of
the average speed in the dataset results in a decrease of the number of indexing nodes
accessed (figure 22). The indexing space becomes less dense with the decrease of the
average speed. For the same time interval and the same number of moving objects the
number of time/location tuples per index point in the 30 mph dataset is 70% from the
one in the 60 mph dataset. The number of the trajectory pairs in the result set (figure
23) and the number of data pages I/Os (figure 21) however increase with the decrease
of the average speed. This is because in a pair of slow objects, it takes more time for
one of them to move on distanceε from the second one. So if a pair of slowly moving
objects, satisfies the join criteria at one time instance it is more likely to satisfy it in



the next time instance. This results in a bigger number of candidate pairs and therefore
increased number of raw data I/Os as it can be depicted in figures 21 and 23.

7 Conclusions

We presented an algorithm and an index structure for efficiently evaluating continuous
trajectory join queries. Our technique uses compact trajectory representations to build a
very small index structure which evaluates approximate answers utilizing a specialized
lower bounding distance function. Then, a post filtering step uses only a small fraction
of the actual trajectory data before the correct query results can be produced. As fu-
ture work we plan to extend our techniques for more complex streaming queries with
temporal constraints.
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