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ABSTRACT
With the recent advancements and wide usage of location de-
tection devices, large quantities of data are collected by GPS
and cellular technologies in the form of trajectories. While
most previous work on trajectory-based queries has concen-
trated on traditional range, nearest-neighbor and similarity
queries, there is a increasing interest in queries that capture
the “aggregate” behavior of trajectories as groups. Consider
for example, finding groups of moving objects that move
“together”, i.e. within a predefined distance to each other,
for a certain continuous period of time. Such queries typi-
cally arise in surveillance applications, e.g. identify groups
of suspicious people, convoys of vehicles, flocks of animals,
etc. In this paper we first show that the on-line flock dis-
covery problem is polynomial and then propose a framework
and several strategies to discover such patterns in streaming
spatio-temporal data. Experiments with real and synthetic
trajectorial datasets show that the proposed algorithms are
efficient and scalable.

1. INTRODUCTION
Recent advances in the area of location detection devices
(RFID, GPS, etc.) and their widespread use have enabled
the creation of complex tracking and situational awareness
systems which continuously monitor the position of moving
objects of interest. Examples include AccuTracking, trac-
NET24, Path Intelligence’s FootPath, InSTEDD’s GeoChat
and many others. This abundance of information, generated
by those systems, motivates the need to develop efficient
techniques for answering interesting queries about the past
behavior of the moving objects like discovering similarity
patterns among the object trajectories.

The existing methods on querying trajectories are mainly
focused on answering simple single predicate range or near-
est neighbor queries. Examples include queries like “find
all moving objects that were in area A at 10 a.m. (in the
past)” or “find the car which drove as close as possible to
the location B during the time interval (10am:1pm)”. Re-

cently a new group of similarity search querying methods
have emerged. The result of a similarity search query is a
trajectory closest to the query trajectory according to some
metric distance (e.g. Euclidean, Dynamic Time Warping,
etc.). Common to all the above methods is that the query
answer is validated per trajectory. That is, a trajectory is
reported to the user if its individual behavior satisfies the
query predicate(s). In other words, all the above queries
focus on the behavior of a trajectory as a single object and
thus cannot be used to discover group patterns between the
trajectories.

Figure 1: A flock pattern example: {T1, T2, T3}

Recently there has been increased interest in querying pat-
terns capturing “collaborative” or “group” behavior between
moving objects. This includes queries like moving clus-
ters [13, 10], convoy queries [12] and flocks patterns [5, 8].
Such queries discover groups of moving objects that have a
“strong” relationship in the space for a given time duration.
The difference between all those patterns is the way they
define the relationship between the moving objects. In this
paper we consider the discovery of flock patterns among the
moving objects, i.e., the problem of identifying all groups of
trajectories that stay “together” for the duration of a given
time interval. We consider moving objects to be “close” to-
gether if there exists a disk with given radius that covers all
moving objects in the pattern (see Figure 1). A trajectory
satisfies the above pattern as long as “enough” other tra-
jectories are contained inside the disk for the specified time
interval; that is, the answer is based not only on a given
trajectory’s behavior but also on the ones near it. Such pat-
terns are useful in security and monitoring applications, for
example to potentially identify suspicious behavior within



large number of people (“Identify all groups of five or more
people that were always within a disk of 100 feet in the last
30 minutes”) or to study patterns of animal behavior [1, 2]
(e.g. migration of sharks, whales, birds, etc.).

The example in Figure 1 shows a flock pattern containing 3
trajectories {T1, T2, T3} that are within a query defined disk
for 3 consecutive time instances. Note that the location of
the disk can freely “move” in the 2-dimensional space in or-
der to accommodate all three moving objects and its center
does not need to coincide with any moving object location
for a given time instance. This makes the discovery of flock
patterns difficult because there is an infinite number of pos-
sible placements of the disk at any time instance. It is that
difficulty that makes the existing methods for flock pattern
discovery [5, 8] suffer from severe limitations. Such meth-
ods either find approximate solutions, or can be applied only
for a single time instance of the problem (i.e. the solution
does not support the minimum time duration in the query).
To the best of our knowledge, our work is the first one to
present exact solutions for reporting flock patterns in poly-
nomial time. It is also the first one that does so for online
environments. Our work is also different than clustering-
based approaches (since clusters are not restricted to a spe-
cific shape); flocks are also different than convoy discovery
[12]. More details of the previous methods are discussed in
Section 2.

We start by providing a complexity analysis for the on-line
flock problem. Our analysis reveals that polynomial time
solution can be found through identifying a discrete number
of locations to place the center of the flock disk inside the
spatial universe. The number of such possible locations is
polynomial on the total number of moving objects. Based
on this analysis we propose several evaluation algorithms
which can be used to find flock patterns in polynomial time.
The first algorithm is based on time-joins, i.e., merging the
results from one time instance to another. The other four
algorithms use the filter-and-refinement paradigm with the
purpose of reducing the total number of candidates and thus
the overall computation cost of the algorithm. We evaluate
our solutions using several real and synthetic moving object
datasets.

The rest of the paper is organized as follows: Section 2 high-
lights related work while Section 3 formally defines the on-
line flock pattern and provides a complexity analysis on the
problem. Section 4 describes the proposed algorithms for
flock pattern Discovery. Section 5 presents the performance
evaluation of our proposed algorithms and Section 6 con-
cludes the paper.

2. RELATED WORK
Related work can be classified to (i) research on clustering
moving objects, (ii) work on discovering convoys between
trajectories and (iii) previous work on flock discovery. Vari-
ous clustering algorithms have been proposed for static spa-
tial datasets, with different strategies ranging from parti-
tioning (e.g. k-medoids [18]), to hierarchical (e.g. BIRCH
[19] and CURE [9]) and density-based (e.g. DBSCAN [6]).
The DBSCAN algorithm is a representative in its category
where it works for arbitrary-shaped clusters based on their
“density”. This method utilizes a distance eps and mini-

mum number of points minPts parameters to identify dense
areas. Points that have more than minPts within eps radius
are considered as a dense area, and then each of these points
are processed recursively. Points that do not have at least
minPts points in their neighborhood and are not “reachable”
from a dense area are labeled as noisy points. This process
of expanding clusters by analyzing each point in the dataset
stops when all the objects are analyzed (i.e. all objects as-
signed to a cluster).

Clustering for moving objects was examined in [13], where
the DBSCAN algorithm is performed for every time instance
of the dataset. Then clusters that have been found for two
consecutive time instances t−1 and t are joined. The clusters
can be joined only if the number of common objects among
them are above the predefined parameter θ. This process is
applied each time for all time instances in the dataset. Other
works on clustering moving objects also include [10, 7, 17,
16, 15]. In [10] techniques were proposed to incrementally
update clusters of moving objects based on the cluster cen-
ters. The object movements were used to predict the cluster
evolution over time. The MONIC framework described in [7]
deals with transitions in moving clusters, e.g. disappearance
and splitting. [17] presented the microclustering technique
that groups moving objects that are not only close to each
other at a specific time instance, but are also expected to
move together in the “near” future. Recently, [15, 16] pro-
posed to segment trajectories into line segments. Then line
segments are grouped together to build the clusters. Time
is not consider in [16], which makes some line segments to
be clustered together even though they are not “close” when
time is considered. Nevertheless, approaches for clustering
moving objects cannot solve the flock pattern query since
clusters do not assume any shape restriction.

Figure 2: Clustering vs. flock patterns

Related to discovering collaborative behavior between tra-
jectories is the work of finding convoy patterns in trajectory
archives [12]. A convoy query is defined as a “dense” clus-
ter of trajectories that stay “together” at least for a prede-
fined continuous time. This type of query has four parame-
ters: eps and minPts (used by the DBSCAN algorithm), θ′

(threshold used to join clusters), and δ′ (minimum duration
time). There are however three major differences between
flock and convoy queries: (1) they use different criteria when
joining the moving object clusters for time instances t and
t− 1; (2) convoy queries employ clustering algorithms, and
therefore no strong relationship among all elements are in-
forced; (3) convoy queries does not require the same set of
moving objects to stay in a cluster all the time for the spec-
ified minimum duration. Flocks instead require that objects
cannot join or leave the cluster in order to be considered



part of the same flock.

For example, in Figure 2(a) convoy query returns trajecto-
ries {T1, T2, T3} for θ = 3 and for 3 time instances, while
in Figure 2(b) it does not return nothing. For the moving
cluster, if θ = 1 then moving clusters return nothing in both
Figure 2(a) and (b). On the other hand, if θ = 1/2 then it
returns {T1, T2, T3} in Figure 2(a) and {T1, T3, T4} in Figure
2(b), but the last one is not a convoy query. Both examples
return results based on the density of the objects, but for
the flock pattern it would return nothing in either examples.
The reason is that in both examples the objects belong to
dense areas but they do not have“strong” interaction among
them.

Flock pattern query was first introduced in [5, 14], without
the notion of minimum lasting time. Later [8] introduced the
minimum duration as a parameter of the pattern. Unlike the
convoy patterns in a flock the cluster has a predefined shape
– a disk with radius r. A set of moving objects is considered
a flock if there is a disk with radius r which covers all of them
and there are at least some predefined number of objects
in the cluster. It is shown in [8] that the discovery of the
“longest” duration flock pattern is an NP-hard problem. As
a result, [8] presents only approximation algorithms.

To the best of our knowledge our paper is the first which pro-
poses a polynomial time solution to the flock problem with
a predefined time duration. Moreover our algorithms can be
applied in a streaming environment for online discovery of
the flock patterns.

3. PRELIMINARIES
We assume that object Oid is uniquely identified by identifier
id. Its movement is represented by a trajectory Tid which is
defined as an ordered sequence of n multidimensional points
Tid = {p(t1),p(t2), . . ., p(tn)}. Here ti is a timestamp and
p(ti) is the location of object Oid in the two dimensional
space R

2 as recorded at timestamp ti (ti ∈ N, ti−1 < ti, and
0 < i ≤ n). For simplicity when we discuss the current time
instance, ti is omitted, and we just use pid to denote the
object location.

Given two object locations pti
a and pti

b in a specific time in-

stance ti from trajectories Ta and Tb respectively, d(pti
a , pti

b )
denotes the Lp distance between pa and pb. Even though
our methods apply to any family of Lp metric distances, for
ease of illustration in the rest of the paper we assume the
Euclidean distance. A flock pattern query F lock(µ, ǫ, δ) is
defined as follows:

Definition 1. Given are a set of trajectories T , a min-
imum number of trajectories µ > 1 (µ ∈ N), a maximum
distance ǫ > 0 defined over the distance function d, and a
minimum time duration δ > 1 (δ ∈ N). A flock pattern
F lock(µ, ǫ, δ) reports all sets F of trajectories where: for
each set fk in F, the number of trajectories in fk is greater
than µ (|fk| ≥ µ) and there exist δ consecutive time in-
stances such that for every ti ∈ δ, there is a disk with center
cti

k covering all f ti

k points. That is: ∀Tj ∈ fk,∀ti ∈ fk,∀f ∈

F : d(pti

j , cti

k ) ≤ ǫ/2

The cti

k is called the center of the flock fk at time ti. In the
above definition, a flock pattern can be viewed as a “tube”
shape formed by the centers c and expanded with diameter
ǫ, and having length δ (consecutive time instants) such that
there are least µ trajectories which stay inside the tube all
the time, as shown in Figure 3.

Figure 3: Flock pattern example

Having this formal definition we proceed with the complex-
ity analysis of the flock pattern. The major challenge in this
type of queries is the fact that the center of the flock pat-
tern cti

k may not belong to any of the trajectories. Hence we
cannot iterate over the discrete number of trajectory loca-
tions stored in the database and check if each one of them
is a center of a flock or not. Since any point in the spatial
domain can be a center of a flock there is an infinite number
of possible locations to test.

Nevertheless, we show using the following Theorem that
there is a limited and discrete number of locations where
we can look for flocks among the infinite number of options.

Figure 4: Finding disks to cover set of points

Theorem 1. If for a given time instance ti there exist a
point in the space cti

k such that:

∀Tj ∈ f, d(pti

j , cti

k ) ≤ ǫ/2

then there exists another point in the space c′ti

k such that

∀Tj ∈ f, d(pti

j , c′ti

k ) ≤ ǫ/2

and there are at least trajectories Ta ∈ f and Tb ∈ f such
that

∀Tj ∈ {Ta, Tb}, d(pti

j , c′ti

k ) = ǫ/2

Theorem 1 states that if there is a disk cti

k with diameter
ǫ that covers all trajectories in the flock f at time instance



ti then there exists another disk with the same diameter
but with different center c′ti

k that also covers all trajectories
covered by the first one and has at least two common points
on its circumference. Theorem 1 can be easily proved by
construction.

Proof Sketch. Assume that we have a disk with diameter ǫ
and center ck that covers all trajectories in the flock at given
time instance ti as shown in Figure 4(a). Assume for sim-
plicity that there is no trajectory point on the circumference
of the disk defined by ck and ǫ, i.e. ∀Tj ∈ f, d(Tj , ck) < ǫ/2.
We can find another disk with the same properties but with
different center by using a combination of translation and
rotation of the disk with center ck. As a first step of the
construction the center of the disk ck is moved along the x
axis until the first of the trajectory points inside lies on the
circumference of the disk. For example in in Figure 4(b) the
first point which falls on the circumference after the hori-
zontal move of the disk center is p1. The new center of the
disk is point c′k. All points in the flock are covered by the
new disk with center c′k and diameter ǫ. Otherwise, there
would be a contradiction to the assumption that p1 is the
first point on the circumference. The next step of the con-
struction rotates the new disk using as pivot the first point
on the circumference (p1). The disk is rotated until another
point falls on its circumference. In the example of Figure
4(c) the disk is rotated until point p2 is on the circumfer-
ence of disk c′′k . All points in the flock are still covered by
the new disk with center c′′k and diameter ǫ (otherwise there
will be a contradiction to the assumption that p2 is the first
one to be on the circumference of the disk during the rota-
tion process). The new disk has at least two points on its
circumference (points p1 and p2) 2

Figure 5: Disks for {p1, p2}, d(p1, p2) ≤ ǫ

Theorem 1 has great impact on the search for flock patterns
because it limits the number of locations inside the spatial
domain where to look for flocks. For a database of |T | tra-
jectories there are |T |2 possible pairs of point combinations
at any given time instance). For each such pair there are
exactly two disks with radius ǫ/2 that have those points on
their circumference (Figure 5). We test those disks to find
if they have the required minimum number of µ trajectories
inside. For each time instance of the time-interval δ we have
to perform 2|T |2 tests for flock pattern. The total number
of possible flock patterns that need to be tested is 2|T |2δ .
As a result, the flock problem with fixed time duration has
polynomial time complexity O(|T ||δ|).

4. REPORTING FLOCK PATTERNS
In this section we describe a grid-based structure and some
optimizations in order to efficiently compute the flock disk
and report flocks. We also describe five on-line algorithms
to process spatio-temporal data in an incremental fashion.

The grid-based structure employed for all proposed algo-
rithms is based on grid cells with edges of ǫ distance. Each
trajectory location pti

id reported for a specific time instance
ti is inserted in a specific grid cell. The cell is determined by
its components’ location latitude and longitude. Thus, each
location is inserted in only one cell. The total number of cells
in the index is thus affected by the trajectory distribution
in the each specific time instance ti and the ǫ. The smaller
the value of ǫ, the larger number of grid cells are needed.
In our implementation, grid cells that are empty, i.e. there
is no trajectory location in them, are not allocated. Other
structures (e.g. k-d-trees) could be employed for organizing
all trajectory locations in each cell grid. However, since for
small ǫ the number of locations within each cell is relatively
small, and given its access simplicity we used a list for each
cell. The organization of this index is shown in Figure 6.

Figure 6: A grid-based index example.

Once the grid structure is built for ti, disks can be pro-
cessed using the Algorithm 1. For each grid cell gx,y, only
the 9 adjacents grid cells, including itself, are analyzed. Al-
gorithm 1 first process every point in gx,y and every point
in [gx−1,y−1...gx+1,y+1] in order to find pair of points pr, ps

whose distances satisfy: d(pr, ps) ≤ ǫ. Because all cells in
the grid index have ǫ distance, there is no need to analyze
points further away of the range [gx−1,y−1...gx+1,y+1] cells
for points in a particular cell gx,y. Pairs that have not been
processed yet and are within ǫ to each other are further used
to compute the two disks c1 and c2. In case that the pairs
are exactly at distance d(pr, ps) = ǫ, c1 and c2 have the same
center and only one has to be further processed.

It should be noted that not all points in [gx−1,y−1...gx+1,y+1]
have to be “paired” with each point in gx,y: only those that
have distance d(pr, ps) ≤ ǫ. Another optimization involves
the points that have to be checked whether they are inside
each disk computed in the previous step. Figure 7 illustrates
these situations. For each point pr ∈ gx,y (point p1 in Figure
7(a)), a range query with radius ǫ is performed over all 9
grids [gx−1,y−1...gx+1,y+1] to find points that can be“paired”
with pr, that is d(pr, ps) ≤ ǫ holds. The result of such range
search is stored in the list H that is used to check for each
disk computed. For those valid pairs, at most 2 disks are
generated. For each of them, points in the list H are checked
if they are inside the disk (Figure 7(b)). Disks that have less
than µ points are further discarded and only the ones that
|ck| ≥ µ holds are kept. In Figure 7(c) disk c1 is discarded
and c2 is considered a valid disk. Because we are interested



Algorithm 1 Computing disks in grid-based index

91: C ← ∅
92: Index.Build(T [ti], ǫ) ⊲ build index for T [ti]
93: for each non-empty cell gx,y ∈ Index do
94: Pr ← gx,y ⊲ points in central grid
95: Ps ← [gx−1,y−1 ... gx+1,y+1] ⊲ points in 9 grids

centered in gx,y

96: if |Ps| ≥ µ then ⊲ cells have enough trajectories
97: for each pr ∈ Pr do
98: H ← Range(pr, ǫ) ⊲ d(pr, ps) ≤ ǫ, ps ∈ Ps

99: for each pj ∈ H do ⊲ compute disks in H
910: if not computed {pr, pj} yet then
911: compute disks {c1, c2} defined by

{pr, pj} and diameter ǫ
912: for each disk ck ∈ {c1, c2} do
913: c← ck ∩ H ⊲ points inside disk
914: if |c| ≥ µ then ⊲ disk qualifies
915: C.Add(c) ⊲ keep maximal sets

only
916: return C ⊲ sets of maximal disks

only in maximal instances of flock patterns, a valid disk
is further checked whether another disk has a superset of
instances that the current disk has just computed (line 15 of
Algorithm 1). In this particular case, disks that have subset
of instances are discarded and only those ones stored in C
that have the maximal instances are returned by Algorithm
1.

Figure 7: Steps on finding flocks for time t

The process that Algorithm 1 employs to keep only the max-
imal disks is based on the center of the disk and the total
number of common elements that each disk has. Disks are
checked only with the ones that are “close” to each other,
that is, disk c1 is checked with c2 only if d(c1, c2) ≤ ǫ. If
d(c1, c2) > ǫ, we can safely state that they do not have any
elements in common. To efficient process the operations de-
scribed above, we store disks in C using a k-d-tree where
the center of each disk along with its radius ǫ/2 are stored.
When checking for a particular entry c1, we only need to
check entries in the k-d-tree that “intersect” with the new
one. Only those disks that cannot be pruned are further ver-
ified to check their contents. Because we store entries that
belong to each disk in a binary tree, we can efficiently check
if one disk has supersets/subsets elements than the other
disk. Therefore, we only need to count common elements
in both disks by scanning each entry in each disk once. If
the cardinality of common elements are |c1 ∩ c2| = |c1| then
c1 is subset of c2 disk, or they have all common elements
when |c1| = |c2|. Therefore, c1 can be discarded and only
c2 is kept in C. When |c1 ∩ c2| = |c2|, c2 can be discarded.
Otherwise we can safely say that one is not maximal than
the other disk and we have to keep both c1 and c2 in C.

In the following subsection we describe the basic flock pat-

tern evaluation algorithm which combines the candidate disks
generated for each time instance into flock patterns. Later
in this section we describe four variations of the basic al-
gorithm which use different filtering heuristics in order to
reduce the number of candidate disks which have to be an-
alyzed.

4.1 The Basic Flock Evaluation Algorithm
In the basic flock pattern evaluation algorithm BFE, we gen-
erate the candidate disks for every time instance ti, starting
with the first one t1 and moving one time instance at a time.
Every candidate disk generated in given time instance ti is
analyzed and joined with potential flocks generated in the
previous time instance ti−1. Only those potential flocks that
are successfully augmented with disk in the current time in-
stance are kept for further processing in the next time in-
stance. This method reports flock patterns as soon as they
satisfy the temporal constraint δ (e.g. we have at least δ
candidate disks successfully joined in a flock).

As it was mentioned in previous section, we use a grid-based
index to find disks for the current time instance ti. For
the first time instance t1, all disks returned by the grid-
based index are stored as potential flocks (we can view a
candidate disk as a partial flock with length 1) in the list of
candidate flocks for this time instance Fti . In the following
time instances all disks returned by the grid-based index are
stored in their candidate flock lists Fti and then “joined”
with the candidate flocks from the previous time instance
Fti−1 . The “join” condition used for this operation is |c ∩
f | ≥ µ, i.e. the total number of common elements between
the candidate flock and the disk has to be greater or equal
to µ in order to be joined. If the condition is satisfied then
we move the join result into the list of candidate flocks for
the current time instance ti. A flock is found if there are at
least δ join operations applied over the candidate flock (line
12), i.e. u.tend − u.tstart = δ. In this case, the flock pattern
is immediately reported to the user and its u.tstart attribute
is updated and reinserted in Fti to be further joined with
other disks in the following time instance.

It should be noted that Fti only maintains potential flocks
starting at some previous time instance tstart > ti − δ and
ending in the current time instance tend = ti. Entries that
cannot be joined in the next time instance are discarded and
not transferred into the list of candidate flocks for the next
time instance.

One advantage of the BFE Algorithm is that for each time
instance being processed, the algorithm store only the tra-
jectory IDs in Fti . There is no need to keep the actual loca-
tions of moving objects in Fti since they do not participate
in the join condition. Another advantage is that trajectory
locations for each time instance are processed only once,
that is, there is no need to buffer trajectory data for a time
window with lenght δ like our other algorithms explained
later in this section.

4.2 Filtering Heuristics
The number of candidate disks in a given time instance can
be quite large and the cost to join those candidate disks in
a flock pattern can be quite expensive. In order to improve
the performance of the basic join algorithm we propose a



Algorithm 2 BFE : Basic Flock Evaluation Algorithm

91: Ft0 ← ∅ ⊲ initialize partial result set
92: for each new time instance ti do
93: L ← T [ti] ⊲ reported location for trajectories in

time ti

94: C ← Index.Disks() ⊲ set of disks for ti

95: Fti ← ∅ ⊲ holds potential flocks up to t
96: for each c ∈ C do ⊲ join phase
97: for each f ∈ Fti−1 do ⊲ previous potential

flocks
98: if |c ∩ f | ≥ µ then ⊲ at least µ
99: u← c ∩ f
910: u.tstart ← f.tstart ⊲ set the initial time
911: u.tend ← t ⊲ set the final time
912: if (u.tend − u.tstart) = δ then ⊲ found a

flock
913: report flock pattern u from u.tstart to

u.tend

914: update u.tstart ⊲ shift the time
915: Fti ← Fti ∪ u ⊲ add potential flock u
916: Fti ← Fti ∪ c ⊲ add disk c to Fti

set of four different heuristics used to limit the number of
generated candidate disks. These heuristics are described
next.

4.2.1 Top Down Evaluation
The first heuristic is a “Top Down Evaluation” (TDE). It
differs from the basic algorithm in the fact that the con-
struction of the flocks is not done in a bottom-up approach
(by extending flock patterns one candidate disk at a time un-
til they become at least δ time instances long) but in a top
down fashion. Here we compare the candidate disks for time
instances which are δ time instances apart. This is based on
the assumption that the difference between the candidate
disks in two consecutive time instances will be small (thus
resulting in a large number of short flocks which still have
to be kept as candidates until it becomes clear that they
do not have the required length), while the differences be-
tween candidate disks from time instances which are δ time
instances apart will be significant (and will result in smaller
set of candidate flocks).

This heuristic buffers trajectory locations for time window w
which has length δ time instances. It also performs a differ-
ent strategy on joining the candidate disks in this time win-
dow w. First the algorithm calculates the candidate disks
C1 for the first time instance ti−δ+1 in the window w. Then,
disks for the last time instance ti in w are calculated and
joined with the ones in C1. The candidate flocks for time
window w generated as a result of this step are then verified
using the the basic flock pattern evaluation algorithm.

4.2.2 The Pipe Filter Evaluation
Our second heuristic, the Pipe Filtering Evaluation (PFE ),
also employs the filter and refine paradigm. It first filters
all trajectories that have at least µ objects within distance ǫ
of them for a duration of at least δ time instances. Then in
a refinement step performed over the trajectories returned
by the filtering step we search for flock patterns using the
basic flock pattern evaluation algorithm. Figure 8 illustrates
a pipe for trajectory T2 with radius ǫ.

Algorithm 3 TDE : Top Down Evaluation Algorithm

91: for each new time instance ti do
92: let L be trajectories in windows size |w| = δ, from

ti−δ to ti

93: C1 ← Index.Disks(L[1]) ⊲ set of disks for ti−δ

94: Cw ← Index.Disks(L[w]) ⊲ set of disks for ti

95: F ← ∅
96: U ← ∅
97: for each c1 ∈ C1 do ⊲ join phase
98: for each cw ∈ Cw do ⊲ join with flocks in ti−1

99: if |c1 ∩ cw| ≥ µ then ⊲ there are at least µ
locations

910: U ← U ∪ {c1 ∩ cw} ⊲ add it
911: for each u ∈ U do ⊲ refinement phase
912: L′ ← u ⊲ trajectories in u from ti−δ to ti

913: F1 ← u1 ⊲ results for w = 1
914: for t← 2 to |w| − 1 do ⊲ forward-join phase
915: Ct ← Index.Disks(L′[t]) ⊲ disks for L′[t]
916: Ft ← ∅
917: for each c ∈ Ct do
918: for each f ∈ Ft−1 do ⊲ join phase
919: if |c ∩ f | ≥ µ then
920: Ft ← Ft ∪ {c ∩ f} ⊲ add it for

the next step
921: if |Ft| = 0 then break ⊲ there is a gap
922: for each f ∈ Fw−1 do
923: for each cw ∈ Cw do ⊲ join with flocks in w
924: if |f ∩ cw | ≥ µ then ⊲ there are at least

µ locations
925: F ← F ∪ {f ∩ cw} ⊲ add it
926: report flocks F ⊲ report flocks from ti−δ to ti

The Pipe Filtering algorithm, first builds a grid-based index
for the first time instance ti−δ in the w window. Then, for
each trajectory location Tj in ti−δ a range search is issued
(line 5). The purpose of this query is to examine how many
other object locations are within distance ǫ from the tra-
jectory being processed If the cardinality of the result set is
greater or equal than the threshold µ, then we continue with
the same check for time instances ti−δ+1 to ti (lines 8-10).
If the total number of trajectories inside the “pipe” for given
trajectory Tj is |U| ≥ µ, then the trajectory qualifies and
it is stored in the list of candidates M (lines 11-12), to be
further processed in the refinement step (lines 13-23) of the
algorithm.

The refinement step employs the basic flock pattern eval-
uation algorithm. The difference however is that now it
process only the trajectory locations returned as a result of
the filtering step M instead of using the whole trajectory
database.

This approach is beneficial in cases where a large number of
trajectories will be pruned by the pipe filtering step and the
computationally expensive candidate disk generation and
flock construction will be performed over a limited subset
of trajectories.

4.2.3 The Continuous Refinement Evaluation
As the name implies, the Continuous Refinement heuristic
continuously refines the set of trajectories which can partic-
ipate in a flock pattern. This approach uses the candidate



Figure 8: Pipe filtering for T2, δ and radius ǫ.

Algorithm 4 PFE : Pipe Filter Evaluation Algorithm

91: for each new time instance ti do
92: F ← ∅
93: let L be trajectories in windows size |w| = δ, from

T [ti−δ ] to T [ti]
94: for each Tj ∈ L do ⊲ filter phase
95: L′ ← Index.Range(Tj, ǫ) ⊲ range in L[1] for Tj

and radius ǫ
96: if |L′| ≥ µ then ⊲ L′ has enough entries for ti−δ

97: U ← ∅
98: for each Tk ∈ L

′ do ⊲ pipe query
99: if ∀ti ∈ w, pti

k ∈ Tk, pti

j ∈ Tj , d(pti

k , pti

j ) ≤
ǫ then

910: U ← U ∪ Tk ⊲ Tk is in the pipe Tj

and ǫ
911: if |U| ≥ µ then
912: M←M∪U ⊲ add pipe U toM
913: for each m ∈ M do ⊲ refinement phase
914: F1 ← Index.Disks(m1) ⊲ disks for w = 1
915: for t← 2 to |w| do ⊲ refinement phase
916: C ← Index.Disks(mt) ⊲ disks for t and m
917: Ft ← ∅
918: for each c ∈ C do
919: for each f ∈ Ft−1 do ⊲ join phase
920: if |c ∩ f | ≥ µ then
921: Ft ← Ft ∪ {c ∩ f} ⊲ add it for

the next step
922: if |Ft| = 0 then break
923: F ← F ∪ Ft ⊲ store the flocks
924: report flocks F ⊲ report flocks from ti−δ to ti

disk generation step for time instance ti as a filtering step
for time instance ti+1. Only trajectories that are associated
with the candidate disk in time ti are analyzed in ti+1. This
approach can be used in cases where the selectivity of the
candidate disks is high, e.g. there exists a relatively small
number of candidate disks and the number of trajectories in
them is low.

In its first step, the continuous refinement evaluation finds
disks C1 using locations L[1] for time instance ti−δ. Then,
for each disk c1 ∈ C1, all trajectories associated with it are
further processed from time instance ti−δ+1 to ti (lines 8-16).

At the first time instance, disks C1 for time instance ti−δ

are stored in F1 (potential flocks of length 1 - line 7). Then,
each instance of c1 is further processed to compute disks and
is “merge-joined” with the previous ones stored in Ft. If Ft

has no potential flock at time t, then the processing of c1

Figure 9: CFE steps to find flock patterns

can be discarded. After this second step, flock patterns are
reported from time ti−δ to ti.

Algorithm 5 CRE : Continuous Refinement Evaluation Al-
gorithm

91: for each new time instance ti do
92: let L be trajectories in windows size |w| = δ, from

ti−δ to ti

93: C1 ← Index.Disks(L[1]) ⊲ set of disks for w = 1
94: F ← ∅
95: for each c1 ∈ C1 do ⊲ join phase
96: let L′ be the trajectories in c1 with length w
97: F1 ← c1 ⊲ results for w = 1
98: for t← 2 to |w| do ⊲ forward-join phase
99: Ct ← Index.Disks(L′[t]) ⊲ disks for L′[t]
910: Ft ← ∅
911: for each c ∈ Ct do
912: for each f ∈ Ft−1 do ⊲ join phase
913: if |c ∩ f | ≥ µ then
914: Ft ← Ft ∪ {c ∩ f} ⊲ add it for

the next step
915: if |Ft| = 0 then break ⊲ there is a gap
916: F ← F ∪ Ft ⊲ store the flocks
917: report flocks F ⊲ report flocks from ti−δ to ti

4.2.4 The Cluster Filtering Evaluation
The last proposed heuristic, Cluster Filtering Evaluation
(CFE ), has two phases. The first phase applies the DB-
SCAN clustering algorithm with parameters eps=ǫ and minPts=µ
for for each time instance ti. Clusters reported for a given
time instance ti by the DBSCAN algorithm are further joined
with clusters found in the previous time instance ti−1. The
join criteria is that the clusters should have at least µ tra-
jectories in common. If a cluster u can be augmented in this
way for δ consecutive time instances (u.tend − u.tstart = δ),
then it is saved as a candidate which has to be verified in
the second phase, using the basic flock pattern evaluation
algorithm (lines 13-23 of Algorithm 6).

Figure 9 illustrates the steps performed by the 6 algorithm.
In Figure 9(a), the DBSCAN is applied to a specific object
location p1 with parameters eps=ǫ and minPts=µ. Then,
in Figure 9(b), shows the propagation of the DBSCAN al-
gorithm over p1’s neighbors. Object locations that do not
belong to any cluster are discarded. The final two clusters
reported by the DBSCAN algorithm in Figure 9(c) are then
further processed in the refinement step of the 6 Algorithm.

5. EXPERIMENTAL EVALUATION
In order to evaluate the proposed algorithms, we run sev-
eral experiments with various real and synthetic trajecto-
rial datasets under different parameters. In particular we
show the results for three real – Trucks, Buses, Cars and



Algorithm 6 CFE : Clustering Filtering Evaluation Algo-
rithm

91: Iti ← ∅ ⊲ density-clusters up to ti

92: for each new time instance ti do
93: L ← T [ti] ⊲ trajectory locations in time ti

94: Q ← DBSCAN(L, µ, ǫ) ⊲ cluster L using
DBSCAN

95: U ← ∅ ⊲ results for ti

96: for each q ∈ Q do ⊲ join phase
97: for each f ∈ Iti−1 do ⊲ join with clusters in ti−1

98: if |q ∩ f | ≥ µ then ⊲ there are at least µ
locations

99: u← {q ∩ f}
910: u.tstart ← f.tstart ⊲ set the initial time
911: u.tend ← t ⊲ set the final time
912: if (u.tend − u.tstart) = δ then ⊲

potential flock
913: F1 ← Index.Disks(u1) ⊲ disks for

w = 1
914: for t← 1 to |w| do ⊲ refinement

phase
915: C ← Index.Disks(mt) ⊲ disks for

t and m
916: Ft ← ∅
917: for each c ∈ C do
918: for each f ∈ Ft−1 do ⊲ join

phase
919: if |c ∩ f | ≥ µ then
920: Ft ← Ft ∪ {c ∩ f}
921: if |Ft| = 0 then break ⊲ gap in

time
922: F ← F ∪ Ft ⊲ store the flocks
923: update u.tstart ⊲ shift the time
924: U ← U ∪ u
925: U ← U ∪ q ⊲ add set q to U
926: Iti ← U ⊲ U holds clusters up to ti

Caribous – and one synthetic – SG – dataset. The Trucks
and Buses [3] datasets represents 112,203 and 66,096 lo-
cations for 276 and 145 moving trucks and buses, respec-
tively, in the metropolitan area of Athens, Greece. The Cars
[11] represents 134,263 locations for 183 private cars mov-
ing in Copenhagen, Denmark. The Caribous [4] trajectorial
dataset represents migration movements of 43 caribous, con-
taining 15,796 locations, in Canada. We also used the SG
dataset which was synthetic generated using the road net-
work of Singapore. For this synthetic dataset, 50,000 moving
objects with different velocities were randomly placed in the
road network generating 2,548,084 locations.

Table 1: Parameters values for each dataset
µ [default] ǫ [default] δ [default]

Trucks 4, 6,...,20 [5] 0.8, 0.9,...,1.5 [1.2] 4, 6,...,20 [10]
Buses 4, 6,...,20 [5] 0.4, 0.5,...,1.1 [1.2] 4, 6,...,20 [10]
Cars 4, 6,...,20 [5] 0.8, 0.9,...,1.5 [1.2] 4, 6,...,20 [10]

Caribous 2, 3,...,10 [5] 0.1, 0.2,...,0.8 [1.6] 4, 6,...,20 [10]
SG 4, 6,...,20 [5] 2.2, 2.6,...,5.0 [3.4] 4, 6,...,20 [10]

In our experiments we tested several values for the µ, ǫ and δ
parameters. The ranges of values for each dataset are shown
in Table 1, where bold values represent default values. For

Table 2: Number of flock patterns discovered
Varying µ ǫ δ

min max min max min max

Trucks 309 14,935 3,741 15,608 2,045 23,222
Buses 0 2,988 16 1,021 55 1,730
Cars 62 18,451 3,218 23,440 3,149 24,211

Caribous 124 9,480 5,292 6,915 3,364 4,598
SG 0 1,304 53 741 112 385

instance, for the Trucks when the µ varies from 4 to 20, with
increments of 2, the default values for ǫ and δ are 1.2 and
10, respectively. The total number of patterns discovered are
shown in Table 2 (we only show the minimum and maximum
values). For instance, for the Trucks dataset the minimum
value of patterns discovered for µ=4 is 309, ǫ=0.8 is 3,741,
and δ=20 is 2,045 (when the parameters are very selective
in the query).

Figures 10-14 show the results when varying µ (first col-
umn), ǫ (second column) and δ (third column). All plots
represent the total time in seconds to process the whole
dataset, including building the indexes. As it can be seen,
when increasing µ, decreasing ǫ, or decreasing δ, the total
time to discover patterns for each algorithm also decreases.
This is explained by the pruning behavior of the algorithms
in their early stages (grid-based index) and thus less flock
candidates have to be maintained.

For the Trucks and Cars datasets, the CRE and PFE al-
gorithms have the best performance among all other algo-
rithms. The large difference in performance appears when
the total number of patterns reported increases (for small
µ and big ǫ). This is because more intermediate results
are maintained by the other three methods (BFE, PFF and
CRF ) and thus more time is needed in order to manipu-
late them. The same behavior occurs for big values of δ,
but only for the PFF and CRF algorithms. This is due to
the fact that these two algorithms aggregate trajectories in
windows w before computing the disks for each timestamp,
different from the other methods. For the Buses dataset, the
BFE, PFE and CRE algorithms have the same performance
behaviour.

For the Caribous dataset the BFE algorithm has the best
performance, closely followed by the PFE and CRE. The
BFE algorithm performed well in this dataset because the
other algorithms do not prune almost any trajectories in
their filtering phases. This can be corroborated by the total
number of flocks discovered in Table 2 (the values are quite
large for this dataset with 15,796 locations).

The SG dataset derived a very interesting observation. The
BFE algorithm is by far the best algorithm for this dataset.
The main reason for this behavior is that even for each times-
tamp the total number of potential flocks is big (see Table
3), the other four algorithms try to join flocks for two con-
secutive timestamps, while most of them are not possible
(see the number of flocks reported in Table 2). Therefore,
the first filter phase of the BFE has a high pruning capabil-
ity than the other algorithms for the SG dataset. We should
remark that in the real datasets, trajectories follow similar
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Figure 10: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Trucks dataset
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Figure 11: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Buses dataset

Table 3: Number of disks per time
Varying µ ǫ δ

min max min max min max

Trucks 505 1,257 812 1,547 1,237 1,237
Buses 7 236 27 183 105 105
Cars 72 294 142 387 279 279

Caribous 393 235 587 342 309 309
SG 1,343 12,894 1,232 2,916 10,934 10,934

patterns, while for the SG dataset, objects are close to each
other but they do not tend to follow similar patterns for
consecutive timestamps.

For most of the datasets, the CRF algorithm had the worst
performance among all algorithms. This is due to the fact
that the filtering (clustering) step employed by it does not
prune many trajectories as expected. In fact, because not
so many trajectories are pruned to the second phase, the
difference among its performance and the others are related
to running its filter step.

In the next set of experiments, Table 3 shows minimum/maximum
number of disks computed for the BFE algorithm. Similar
results were obtained for the other four algorithms. The re-
sults show that even for big values of µ, ǫ and δ, the range
number of disks computer per timestamp are small com-
pared with the number of trajectories.

The last set of experiments examine the performance of the
grid-based index with the brute force (processing the dataset
with no use of indexes) and R-tree approaches. Figure 15

shows the total time required to build the grid-based and R-
tree indexes and the total time used to process the Trucks
dataset with those two indexes and with no index. The time
to build the grid-based index is half the time for the R-tree,
but with similar times to process the dataset. On the other
hand, the combined time to build the index and to process
the dataset is always smaller than the brute-force approach.
This means that the time of building the grid-based index
pays off when using it in the next phases.

6. CONCLUSIONS
Recently there has been increased interest in queries that
capture the collaborative behavior of spatio-temporal data
(e.g. convoys, flocks, etc.) In particular, a flock contains
a group of at least µ moving objects all of them “enclosed”
by a disk of diameter ǫ for at least δ consecutive time peri-
ods. Discovering flock patterns on line is useful for several
applications ranging from tracking suspicious activities to
migrations of animals. Previous related works either can-
not apply on finding flock patterns, work only for archived
datasets and/or find approximate results. We first show that
flock discovery under a fixed time duration can be solved
in polynomial time. We then present a framework that
uses a lightweight grid-based structure in order to efficiently
and incrementally process the trajectory locations. Using
this framework we provide various on-line flock discovery
algorithms. Experiments on real and synthetic trajectorial
datasets show that our methods can efficiently report flock
patterns even for large datasets and for different variations
of the flock parameters (µ, ǫ and δ). As future work we
will examine cost models to enable the user pick the most
efficient algorithm based on the data distribution.
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Figure 12: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Cars dataset
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Figure 13: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the Caribous dataset

7. REFERENCES
[1] www.environmental-studies.de.

[2] whale.wheelock.edu.

[3] www.rtreeportal.org.

[4] www.taiga.net/satellite.

[5] M. Benkert, J. Gudmundsson, F. Hübner, and
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Figure 14: Total time (s) when varying (a) µ, (b) δ and (c) ǫ for the SG dataset
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