
Self intro

• Zhiyun Qian, CSE Professor

• Web: http://www.cs.ucr.edu/~zhiyunq

• Email: zhiyunq@cs.ucr.edu

• Area: System and network security, vulnerability research

• Techniques: program analysis, reverse engineering, fuzzing, model
checking, and AI / machine learning

http://www.cs.ucr.edu/~zhiyunq
mailto:zhiyunq@cs.ucr.edu

Vulnerability Lifecycle and Vulnerability Research

Patch

Monitor

Redesign

Root causes

Assumptions

Abstractions

Automation

Reasoning

Techniques

Exploitability

Security impact

Prioritization

Introduction

Discovery

Triage

Patch

Vulnerability

Research

Vulnerability

remediation

Vulnerability

modeling

Vulnerability

discovery

Vulnerability

assessment

Bridging the Gap (academia vs. industry)

Security properties (e.g., non-interference)

Formal methods (e.g., PL)

…

Broken assumptions

Diverse domains

Messy details

Arbitrary constraints

…

Theory Practice

Abstraction

“In theory there is no difference between theory and practice. In practice there is.”

Vulnerability Research

Academia Hacking community

Internet Research Task Force
Applied Networking Research Prize

Off-path TCP exploit: how wireless routers can jeopardize your secrets,
Weiteng Chen and Zhiyun Qian

Vulnerability

Research

Vulnerability

remediation

Vulnerability

modeling

Vulnerability

discovery

Vulnerability

assessment

Usable automation tools

Modeling Side Channel Vulnerabilities

Vulnerability Modeling → Side Channels

Modeling Side Channel Vulnerabilities

Vulnerability Modeling → Side Channels

Modeling Side Channel Vulnerabilities

Shared resources

AttackerVictim’s secret

Turning on TV

Vulnerability Modeling → Side Channels

Network Protocol Side Channels

• History of off-path network attacks (side channels in TCP and UDP)

2001 2004 2007 20121985 1989 1995

Real exploit
BGP DoS

Our malware-assisted attacks: (secs to
finish). Oakland 2012, CCS 2012

Windows attack
(hours to finish)Still vulnerablePredictable initial seq num

Morris Bellovin

Mitnik

Zalewsky klm

Watson

Pure off-path
attacks: (1 to 2 mins)

(USENIX Security 16)

Puppet-assisted
attack (mins to
finish)

Herzberg

2016

Unfixable side channel:

(USENIX Security 2018)

Model checking

TCP implementations

(CCS 2019)

2018 2019

UDP side channel

(CCS 2020)

2020

Network Protocol Side Channels

Vulnerability Research Cycle

Vulnerability

Research

Vulnerability

remediation

Patch

Monitor

Redesign

Vulnerability

modeling

Assumptions

Abstractions

Rules

Vulnerability

discovery

Automation

Reasoning

Techniques

Vulnerability

assessment

Exploitability

Security impact

Prioritization

Program Reasoning Tools

LLM-Assisted Program Analysis

• Static analysis + LLM > each alone

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach, OOSPLA 2024

Static analysis

Rigid

Imprecise

Slow

LLM

Flexible

Precise*

Fast*

Vulnerability Discovery → LLM-Assisted Program analysis

Example

• Complement a published static analysis tool (UBITect) with LLM:

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach, OOSPLA 2024Vulnerability Discovery → LLM-Assisted Program analysis

UBITect LLM

40% undecided

(potentially bugs)

static int libcfs_ip_str2addr(...){
unsigned int a, b, c, d;
if (sscanf(str, "%u.%u.%u.%u%n",

&a, &b, &c, &d, &n) >= 4 && ...){
// use of a, b, c, d

}
}

Are these variables used without initialization?

Answer: No

Example

• Complement a published static analysis tool (UBITect) with LLM:

• Results

– Filter hundreds of false positives produced by static analysis tools

– Found 12 unknown vulnerabilities

Enhancing Static Analysis for Practical Bug Detection: An LLM-Integrated Approach, OOSPLA 2024Vulnerability Discovery → LLM-Assisted Program analysis

UBITect LLM

40% undecided

(potentially bugs)

Vulnerability Research Cycle

Vulnerability

Research

Vulnerability

remediation

Patch

Monitor

Redesign

Vulnerability

modeling

Assumptions

Abstractions

Rules

Vulnerability

discovery

Automation

Reasoning

Techniques

Vulnerability

assessment

Exploitability

Security impact

Prioritization

Linux Kernel Bug Triage Pipeline

Fuzzer-exposed bugs

in Linux upstream

1

2

4

3 High-risk primitives?

Require privilege to trigger?

Apply to downstream kernels?

Exploitable?

(Multiple top-tier papers and tools published)

Vulnerability Assessment → Automated bug triage

Example Results

• 53 likely exploitable bugs

from 1,000+ public bugs

…

Vulnerability Assessment → Automated bug triage

Vulnerability Research Cycle

Vulnerability

Research

Vulnerability

remediation

Patch

Monitor

Redesign

Vulnerability

modeling

Assumptions

Abstractions

Rules

Vulnerability

discovery

Automation

Reasoning

Techniques

Vulnerability

assessment

Exploitability

Security impact

Prioritization

Software Reuse and Supply Chain Security

New code

Existing

open source

component

Vulnerabilities?

Vulnerability Remediation → Overview

20%

80%

Supply Chain Security: Case of Linux

IoT & CPS

Linux upstream

Ubuntu

Fedora

CentOS

Android AOSP

Qualcomm

Android

Samsung Xiaomi

Routers

Cars

Camera

Linux distros Android

Not always open source!
• Binary only

• Snapshot only

• Significant delays

Vulnerability Remediation → Overview

Patch Presence Test

• Google has no visibility into which OEM kernel images have patched a CVE

Android firmware images

(binary)

CVEs / Patches

-
+
...
-
+
...
+

-
+

Patched or not?

Vulnerability Remediation → Patching Precise and Accurate Patch Presence Test for Binaries, USENIX Security 18

Conclusion

Vulnerability

Research

Vulnerability

remediation
- Supply chain security

- Selective protection

- Hardware-assisted

remediation

Vulnerability

modeling

- Understanding

novel types of

vulnerabilities

Vulnerability

discovery
- Better reasoning tools

- Integration of techniques

Vulnerability

assessment

- Modeling exploit techniques

- Search for impacts

https://github.com/seclab-ucr

End

	Slide 1: Self intro
	Slide 2: Vulnerability Lifecycle and Vulnerability Research
	Slide 3: Bridging the Gap (academia vs. industry)
	Slide 4: Vulnerability Research
	Slide 5: Modeling Side Channel Vulnerabilities
	Slide 6: Modeling Side Channel Vulnerabilities
	Slide 7: Modeling Side Channel Vulnerabilities
	Slide 8: Network Protocol Side Channels
	Slide 9: Network Protocol Side Channels
	Slide 10: Vulnerability Research Cycle
	Slide 11: Program Reasoning Tools
	Slide 12: LLM-Assisted Program Analysis
	Slide 13: Example
	Slide 14: Example
	Slide 15: Vulnerability Research Cycle
	Slide 16: Linux Kernel Bug Triage Pipeline
	Slide 17: Example Results
	Slide 18: Vulnerability Research Cycle
	Slide 19: Software Reuse and Supply Chain Security
	Slide 20: Supply Chain Security: Case of Linux
	Slide 21: Patch Presence Test
	Slide 23: Conclusion
	Slide 24: End

