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General research interests

1. Network security:

What types of network wide attacks are viable ? /* Recent work on DPI evasion, firewall evasion,
DNS Exfiltration, Mesh vulnerabilities

 How to overcome those attacks ? /* Work on context aware DPI evasion detection, loT safety,
Intrusion detection at scale

* Need to integrate ML

2. ML and Security

What types of vulnerabilities can be exploited in ML models ? How to prevent them?
« How can ML be effectively used for network and systems security ?

Deployment of ML models at scale in networks — how ?

3. Software system security
Working with other researchers on finding vulnerabilities in software, mitigation methods.

Big question: How to develop secure autonomous networked systems ?



In this talk ...

* Primarily focus on the role of ML security and use of ML in security.

» Posters from students on specific projects.



Subversion of ML models

Adversarial ML has recently received a lot of attention.

Small perturbations that an adversary can add to inputs can cause the model to make
wrong inferences.

Primarily related to images/videos.

How to protect inferences made in models deployed in nextG?
Are over the air attacks possible ?

- Key challenge seems to be synchronization

- Still possible to cause wrong conclusions



Can context help ?

» Account for relationships across features.

* For example, in the case of stop signs,
there are likely to be crosswalks, etc. that
CO-OCcCuUr.

« Similar relationships exist between packet
fields, between temporal series of packets
(TCP)
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Model poisoning is a real issue

« Training data likely to come from users
« The model may need to be refined online (dynamics make it hard to deploy pre-trained models that
are static.

» Bots could target misclassifying models -- can be of significant impact

- For example, autonomous cars may depend on inferences from such models (both from
sensors on board and outside)

- Compromise of any model can result in catastrophic effects.

* How to make sure that online data that is received is trustworthy and usable to refine/retrain models?



Using ML to help assess problems

«  Program analysis can provide determinism — but is often either complex (e.g., model checking) or
imprecise (e.g., static analysis has a lot of false positives).

«  When to apply what ? Can ML guide the application of the correct technique (e.g., modularize
interaction related code that requires certain types of safety guarantees) ?

«  ORAN - code can become very complex — different vendors will contribute

-- Understanding and protecting interactions between code is not a trivial exercise.

-- New types of issues beyond what is extensively studied by the security community (e.g.,
deadlocks as opposed to out of bound memory access)

-- Benefits of flexibility should not be undermined by security problems

-- Need for principled ways to incorporate ML into testing (e.g., fuzzing) or to guide program
analysis methods.

-- Prioritize easy to find bugs for fixing (e.g., using automated patches), while deferring more
complex (hard to find) bugs for offline analysis (isolation of components needing such analysis) ?



A glimpse into our network security work : C2Store

https://c2store.github.io/
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® Ground truth: malicious if 5+ AV
engines in VirusTotal

® Precision:

Binaries 238,746 187,578
Feeds 142,669 106,053
Twitter 69,193 57,762
GitHub 62,870 56,708

167,821 148,003
95,238 81,481
56,424 54,731
54,874 51,752

a) Twitter: 97% b) GitHub: 94%

Total 513,478 408,101

374,357 335,967

Our social-media-based sources provide significant & correct information.
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https://c2store.github.io/

ML can help in our future work here

« Training models based on data on C2 store.
« Using those to detect active C2 servers — based on profiles.

 How to use reinforcement learning to probe C2 servers during the active detection phase?
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Thank you



