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    “model inverstion” 

● Attributes of training data 
    “property inference”
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Membership Inference

Adversary wants to test whether data of a target 
victim has been used to train a model
- Serious problem if inclusion in training set is privacy-sensitive

- E.g., main task is predict whether a smoker gets cancer

- [Shokri et al., S&P’17] show it for discriminative models

- [Hayes et al. PETS’19] for generative models (in this talk)
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Machine Learning as a Service

Predictions are leaky! 
Shokri et al. Membership inference attacks against 

machine learning models [S&P’17]

Prediction API Training API

Cloud model
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Membership Inference in Generative Models

Generative API Training API

Generative model

Query

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership Inference Attacks 
Against Generative Models [PETS 2019] 10
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Inference without predictions?

Use generative models! Train GANs to learn the 
distribution and a prediction model at the same time
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Black-Box Attack
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Outputs O and O’ are roughly 
similar (up to privacy parameter ε), 

for any input 
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*up to privacy parameter ε
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Synthetic Samples (MNIST)
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Counting-Query

Task: Given a dataset D, return the 
number of users in the dataset which 
satisfy a given predicate

Evaluation:
• Call-Data-Record dataset of tower 

cells. Query returns the number of 
users in D who visited a subset of cells. 

• Dataset: approx. 4 million users, 1303 
number of towers
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Algorithms & Implementations
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Algorithm Implementation 
(Library / Company)

PrivBayes DataSynthesizer

Hazy

MST NIST

Microsoft Smartnoise

DPWGAN NIST

Synthcity
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Reuse random seed

Incorrect privacy analysis

Floating point violation
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matches the theoretical upper bounds 

guaranteed by DP (ε)
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Step 1: Choose 
neighboring 

datasets

D’

D

Step 3: Run 
Membership Inference 

Attack (MIA)

Step 2: Run 
algorithm 
repeatedly

...

...

Step 4: Convert 
FPR and FNR to 
empirical εemp
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DP Auditing

Verify that the empirical privacy leakage εemp matches the 
theoretical upper bounds guaranteed by DP ε

● If εemp ≫ ε, then privacy violations
● If εemp ≈ ε, then audit is tight
● If εemp ≪ ε, then audit is loose
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Your audit is loose, so what?

● The auditing procedure can be improved
● MIA instantiation is not particularly effective
● Bounds from theoretical analysis are too conservative
● Etc.
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Black-Box Attacks

● Distance to closest record (DCR)
- Output distance between target record and closest synthetic record
- If target record is memorized, synthetic records will be closer to it

● Querybased
- Train ML model on output of queries targeted at record as features
- Intuition: Shmodelingadow modelling

27Houssiau, F., Jordon, J., Cohen S., Elliott A., Geddes J., Mole C., Rangel-Smith C., & Szpruch L. (2022). TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data. 
In SyntheticData4ML Workshop NeurIPS.
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Prior Work

● Mostly Black-Box attacks
● On Average-Case neighboring datasets

➔ Loose empirical privacy leakage estimates (εemp≪ ε)
➔ Limited effectiveness in finding bugs and privacy violations
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2. How do different 
threat models/datasets 

affect tightness?
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Technical Roadmap

● Large-scale audit of DP-SDG algorithms and implementations 

●New white-box attacks against PrivBayes and MST 

● Implementation-specific worst-case datasets
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Main Findings

1. Black-box attacks are ineffective in exploiting privacy leakage 

2. You need white-box attacks + worst-case neighboring datasets 
to achieve tightness 

3. DP violations found in 5 out of 6 implementations tested
- Even in implementations successfully submitted to the NIST DP 

Synthetic Data Challenge competition
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Beyond Auditing: Utility vs Privacy

32

Finding the best models for 
specific settings/tasks is often 

(very) challenging 

This often entails navigating 
privacy-utility tradeoffs, 

which is hard 

Can we understand how different models spend 
their privacy budget across rows and columns? 

(one of the main sources of utility degradation)  
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Do DP generative models distribute their 
privacy budget in a similar way?

No. The graphical models distribute their privacy 
budget horizontally and the GANs vertically (i.e., 

they spend their budget per iteration).
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What are the effects of DP/dataset 
dimensions on downstream tasks?

● The effects are mixed. Overall, more training data helps the 
graphical models with some exceptions. 

● Varying the dataset dimensions is more unpredictable (more 
variable and usually not monotonic) for the GAN models.
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Thank you!
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