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e Inclusion of a data point in the training set
“membership inference”

e \What class representatives (in training set) look like
“model inverstion”

e Attributes of training data
“property inference”
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Membership Inference

Adversary wants to test whether data of a target
victim has been used to train a model

- Serious problem if inclusion in training set is privacy-sensitive
- E.g., main task is predict whether a smoker gets cancer
- [Shokri et al., S&P’17] show it for discriminative models

- [Hayes et al. PETS'19] for generative models (in this talk)
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ﬁ IlIIII Shokri et al. Membership inference attacks against
machine learning models [S&P’17]
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What About Generative Models?
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Membership Inference in Generative Models
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Membership Inference in Generative Models

Generative model

Generative API

o
8 Query o o

Jamie Hayes, Luca Melis, George Danezis, Emiliano De Cristofaro. LOGAN: Membership Inference Attacks ,,
Against Generative Models [PETS 2019]

Training API




Inference without predictions?

Use generative models! Train GANs to learn the
distribution and a prediction model at the same time
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Inference without predictions?

Use generative models! Train GANs to learn the
distribution and a prediction model at the same time

N ——| sample
v‘ ’ P Real

Training Set % .
Discriminator
‘%— sample Fake

Generator 1




White-Box Attack

Gtarget

1) Predict  2) Sort scores  3) Take top scores

Dpp(x1) = 0.30 Dpp(xi,) = 0.99 \ 7
Dpp (x2) = 0.02 Dyp(x;,) = 0.98
D =0.79

bb(x3). Dbb(xig) = 095 -

Adversary
steals Dygrget

—

@— (@

D

wb Dy, (x = 0.64 '
bb( m+n) Dbb(xim+n) =0.01
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Black-Box Attack

Dataset
1) Predict 2) Sort scores 3) Take top scores
Dpp(x1) = 0.30 Dpp(xi,) = 0.99 \
Dpp(x;) = 0.02 Dpp(x;,) = 0.98
Dyp(x3) = 0.79 n
bb( 3) Dbb(xl'3) = 0.95 =
. —
sample
Dbb Dpp (x .) = 0.64 ' -
Gpp Dy, pbiTmian s Dpp(x;,,,.) = 0.01
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Differential Privacy
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Differential Privacy
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Differential Privacy

Neighboring Algorithm
Datasets

o D
=B

Output

Outputs O and O’ are roughly
similar (up to privacy parameter ¢),
for any input
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Original / Sensitive Generative
Dataset Model

Fit model
+ add noise

Sample “fresh”
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Synthetic
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Differentially Private Synthetic Data

Original / Sensitive Generative Synthetic
Dataset Model Dataset

Fit model
+ add noise

Sample “fresh”
datasets

*up to privacy parameter ¢
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DP VAE

Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro (Extended Version) Differentially Private Mixture of Generative Neural Networks. ICDM 2018
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Gergely Acs, Luca Melis, Claude Castelluccia, Emiliano De Cristofaro (Extended Version) Differentially Private Mixture of Generative Neural Networks. ICDM 2018



Synthetic Samples (MNIST)
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Counting-Query
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Counting-Query

Task: Given a dataset D, return the
number of users in the dataset which
satisfy a given predicate

Evaluation:
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Counting-Query

Task: Given a dataset D, return the
number of users in the dataset which
satisfy a given predicate

Evaluation:

» Call-Data-Record dataset of tower
cells. Query returns the number of

users in D who visited a subset of cells.
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Counting-Query

Task: Given a dataset D, return the
number of users in the dataset which
satisfy a given predicate

Evaluation:

» Call-Data-Record dataset of tower
cells. Query returns the number of

users in D who visited a subset of cells.

« Dataset: approx. 4 million users, 1303
number of towers
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(DP) Synthetic Tabular Data
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(DP) Synthetic Tabular Data

¢ Return to Blog Heme

Microsoft Research Blog

IOM and Microsoft release first-ever
differentially private synthetic dataset to
counter human trafficking

Published December B, 2022

Share this page ' m ﬁ
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(DP) Synthetic Tabular Data

DATA SCIENCE FOR THE PUBLIC GOQD

¢ Return to Blog Heme

Microsoft Research Blog

Synthesising the linked 2011 Census and deaths dataset while
preserving its confidentiality

IOM aNd MinOSOft release firs . Dara Se ence Campls | hoavemaer 30, 2023
differentia"y private synthetic ﬁ Categories: [ata ard Statistics, Hezlth, Syrthetic datz and PEls
counter human trafficking — — . . A e—

Pubdlished December B, 2022

Share this page ’ m 6
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(DP) Synthetic Tabular Data

DATA SCIENCE FOR THE PUBLIC GOQD

¢ Return to Blog Heme

Microsoft Research Blog

Synthesising the linked 2011 Census and deaths dataset while
preserving its confidentiality

IOM and Microsoft release firs .o .sc
differentially private synthetic ﬁ Categor
counter human trafficking ——

Pubdlished December B, 2022

Differentially Private Release of
Israel’s National Registry of Live Births

sharethispage W [} & Shlomi Hod* Ran Canetti*
May 2, 2024
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(DP) Synthetic Tabular Data

¢ Return to Blog Hem

Microsoft Rese Synthetic Data in Health Overview

Updsted December 2021 s and deaths dataset while

IOM d M. I'he analytics team in NHSX is currently conducting research into best practice and
an € axamples for generating synthetic healtheare data for the purpase of enabling greater
differential |y data sharing across the systam. This work will progress through our PhD internship
cou nter hum schame as well as through callaborating and commissioning small proof of concepts P‘I’i\iafe Release Of
to create shareable tools and guidance. Our aim is to make this work open through our . .
legistry of Live Births

Publiched December B github account and the NHSX website.

This thought stream is focussed on the application of synthetic data in healtheare and
Share this page ' targeted at analysts in the NHS considering if, and how to implement a syntheatic data Ran Canetti”
generation tool.

y 2,2024
There are many articles online introducing synthetic data which should be researched
for wider context first. One really goed generalintroduction to synthatic is the ONS
melhadology working paper series number 18 - Synthelic dala pilol. l'would slse
recommend spending some time looking through the rescurces and examples on the 19
synithelic dala vaull project.



Algorithms & Implementations

Algorithm

PrivBayes

MST

DPWGAN

Implementation
(Library / Company)

DataSynthesizer
Hazy

NIST

Microsoft Smartnoise
NIST

Synthcity

NIST

Communications Technolog) Labontory

2018 Differential
Privacy Synthetic
Data Challenge
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Do DP implementations satisfy DP in practice?
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Reuse random seed

fix prng key reuse in differential privacy example #364¢

¥+ Merged
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Do DP implementations satisfy DP in practice?

Reuse random seed

fix prng key reuse in differential privacy example

¥« Merged

Incorrect privacy analysis
Debugging Differential Privacy: A Case Study for Privacy Auditing

W Conversa

IMorian Tramer]! Andreas Terzs, Thomas Stemke, Shuang Song, Matthew Jagtelski, Nicholas Carfini
Gaagle Research
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Do DP implementations satisfy DP in practice?

Reuse random seed

fix prng key reuse in differential privacy example

¥« Merged

Incorrect privacy analysis

Debugging Differential Privacy: A Case Study for Privacy Auditing
Floating point violation

W Conversa

ITor . . . .
" Group and Attack: Auditing Differential Privacy
Johan Lokna Anouk Paradis
jlokna@student.ethz.ch anouk.paradis@nf.ethz.ch
ETH Zurich ETH Zur.ch
Switzerland Switzerland
Dimitar . Dimitrov Martin Vechev
dimitariliev.dimitrov@inf.ethz.ch martin.vechev@inf.ethz.ch
ETH Zurich ETH Zurich

Switzerland Switzerlanc 21



DP Auditing
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DP Auditing

Verify that the empirical privacy leakage (ggyp)
matches the theoretical upper bounds
guaranteed by DP (g)
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Auditing Procedure

Step 1: Choose
neighboring
datasets

=
=
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Auditing Procedure

Step 1: Choose Step 2: Run
neighboring algorithm
datasets repeatedly
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Auditing Procedure

Step 1: Choose Step 2: Run Step 3: Run
neighboring algorithm Membership Inference
datasets repeatedly Attack (MIA)
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Auditing Procedure

Step 1: Choose Step 2: Run Step 3: Run
neighboring algorithm Membership Inference
datasets repeatedly Attack (MIA)

D
Step 4: Convert
[® ﬂ = FPR and FNR to
| @ | empirical €,
Dl
= N
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DP Auditing

Verify that the empirical privacy leakage &, matches the
theoretical upper bounds guaranteed by DP ¢

o If Eemp > €, then privacy violations
o Ife,,, = ¢, then audit is tight
o Ife,,, « ¢, then auditis loose
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Your audit is loose, so what?

e The auditing procedure can be improved
e MIA instantiation is not particularly effective

e Bounds from theoretical analysis are too conservative
o Etc.

25



Black-Box vs White-Box Auditing

Original / Generative
Sensitive Dataset Model

Fit model
+ add noise>

Sample “fresh”
datasets

Synthetic
Dataset
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Black-Box Attacks

Houssiau, F., Jordon, J., Cohen S., Elliott A., Geddes J., Mole C., Rangel-Smith C., & Szpruch L. (2022). TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data.
In SyntheticData4ML Workshop NeurlPS.
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Black-Box Attacks

e Distance to closest record (DCR)

- Output distance between target record and closest synthetic record
- If target record is memorized, synthetic records will be closer to it

e Querybased

Houssiau, F., Jordon, J., Cohen S., Elliott A., Geddes J., Mole C., Rangel-Smith C., & Szpruch L. (2022). TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data.
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Black-Box Attacks
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- Output distance between target record and closest synthetic record
- If target record is memorized, synthetic records will be closer to it

e Querybased
- Train ML model on output of queries targeted at record as features

Houssiau, F., Jordon, J., Cohen S., Elliott A., Geddes J., Mole C., Rangel-Smith C., & Szpruch L. (2022). TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data.
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Black-Box Attacks

e Distance to closest record (DCR)

- Output distance between target record and closest synthetic record
- If target record is memorized, synthetic records will be closer to it

e Querybased

- Train ML model on output of queries targeted at record as features
- Intuition: Shmodelingadow modelling

Houssiau, F., Jordon, J., Cohen S., Elliott A., Geddes J., Mole C., Rangel-Smith C., & Szpruch L. (2022). TAPAS: a Toolbox for Adversarial Privacy Auditing of Synthetic Data.
In SyntheticData4ML Workshop NeurlPS.
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Prior Work

e Mostly Black-Box attacks
e On Average-Case neighboring datasets

-> Loose empirical privacy leakage estimates (g, « €)
-> Limited effectiveness in finding bugs and privacy violations
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Open Research Questions

1. How tightly can we 2. How do different
empirically estimate threat models/datasets
leakage from (DP) affect tightness?

synthetic data?
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Technical Roadmap

e Large-scale audit of DP-SDG algorithms and implementations
e New white-box attacks against PrivBayes and MST

e Implementation-specific worst-case datasets
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Main Findings
1. Black-box attacks are ineffective in exploiting privacy leakage

2. You need white-box attacks + worst-case neighboring datasets
to achieve tightness

3. DP violations found in 5 out of 6 implementations tested
- Even in implementations successfully submitted to the NIST DP
Synthetic Data Challenge competition
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Beyond Auditing: Utility vs Privacy

Finding the best models for This often entails navigating
specific settings/tasks is often privacy-utility tradeoffs,
(very) challenging which is hard

Can we understand how different models spend
their privacy budget across rows and columns?

(one of the main sources of utility degradation)

32



Do DP generative models distribute their
privacy budget in a similar way?
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Do DP generative models distribute their
privacy budget in a similar way?

No. The graphical models distribute their privacy
budget horizontally and the GANs vertically (i.e.,
they spend their budget per iteration).
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What are the effects of DP/dataset
dimensions on downstream tasks?
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What are the effects of DP/dataset
dimensions on downstream tasks?

The effects are mixed. Overall, more training data helps the
graphical models with some exceptions.

Varying the dataset dimensions is more unpredictable (more
variable and usually not monotonic) for the GAN models.
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Other work in this space
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Robin Hood and Matthew Effects: Differential Privacy Has
Disparate Impact on Synthetic Data

1

Georgi Ganev '? Bristena Oprisanu ' Emiliano De Cristofaro ’
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Robin Hood and Matthew Effects: Differential Privacy Has
Disparate Impact on Synthetic Data

On Utility and Privacy in Synthetic Genomic Data”

Bristena Oprisanu Georgi Ganey Emiliano De Cristofaro

ucCL UCL and Hazy UCL and Alan Turing Institute
bristena.oprisanu. | 0@ ucl.ac.uk geoargl.ganev. 16 @uclac.uk e.decristofaro@ucl.ac.uk
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Robin Hood and Matthew Effects: Differential Privacy Has
Disparate Impact on Synthetic Data

On the Inadequacy of Similarity-based Privacy Metrics:
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