
About Me

• Chengyu Song, Associate Professor, CSE
• PhD: 2016 from Georgia Tech

• Research Interests
• Software Security: dynamic analysis, static analysis
• System Security: compartmentalization (with new HW)
• Hardware Security: HW-SW co-design
• ML Security: foundation models, robotics

• NSF, DARPA, ONR, ARL, Google

Software Security Research

About Vulnerabilities

❑ Automated vulnerability detection via scalable static analysis
❑ Memory errors, logic bugs

❑ Automated vulnerability detection via efficient dynamic analysis
❑ Fuzzing, concolic execution, directed fuzzing

❑ Automated vulnerability elimination
❑ Patch generation, compiler-based bug removal

❑ Runtime exploit prevention
❑ Control-flow integrity, data-flow integrity, type checks

❑ Automated exploit generation

Scalable Concolic Execution

Finding vulnerabilities with concolic execution

Is the path predicates satisfiable?

Yes! When input == UINT_MAX - 3

Scalable Concolic Execution

SymSan: time and space efficient concolic execution

INTERNALS OF A SYMBOLIC EXECUTION ENGINE

▪ Fetch: get the next instruction (LLVM IR)

▪ Decode: find out how to construct the symbolic formula

– What operation, how many operands, where to find operands

▪ Execute: construct a new symbolic formula (AST)

– Load formulas for symbolic operand(s), allocate a new formula

▪ Store: associate the new formula with the program variable

COMPARISONS

▪ KLEE: interpretation-based, slow runtime

▪ SymSan: compilation-based, more efficient runtime

Scalable Concolic Execution

JIGSAW: efficient and scalable path constraint fuzzing

PATH CONSTRAINTS SOLVING

▪ Symbolic executors use path constraints solvers to check the
feasibility of execution paths and explore different paths.

▪ Commonly used solvers are Satisfiability Modulo Theories (SMT)
solvers like Z3.

▪ Path constraints solving is another major performance bottleneck.

IMPROVING PATH CONSTRAINTS SOLVING

▪ Constraints solving as a local search problem: finding an input
assignment that would evaluate the constraints to true

– Accuracy

– Throughput

Accuracy: how
many inputs
are expected

to try

Throughput:
how many

inputs can be
tried per unit

time

Scalable Concolic Execution

Performance improvements over previous state-of-the-art

https://github.com/R-Fuzz

Scalable Concolic Execution

Reinforcement learning directed concolic execution

Systems Security Research

Compartmentalization and principle of least privilege

❑ Preventing memory-corruption-based privilege
escalation attacks in kernel
❑ Automated identification of critical metadata for

kernel access control subsystems
❑ Efficient integrity protection of access control

metadata with hardware features

❑ Isolating JavaScript JIT engine

❑ Automated isolating vulnerable kernel modules

1 static int acl_permission_check

2 (struct inode *inode, int mask)

3 {

4 unsigned int mode = inode->i_mode;

5

6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))

7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))

9 mode >>= 3;

10

11 if ((mask & ~mode &

12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;

14 return -EACCES;

15 }

Example 1: The decision making function of the Linux

DAC subsystem.

3.2 Proposal

To solve the problem, I plan to leverage the power of

program analysis. Specifically, for each access control

mechanism, I want to

1. Build an abstract model based on data and control

dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program

data structures to the abstractions in the model.

Example 1 shows the decision making process of the

DAC subsystem. In this example, thefsuidandfsgid

are subject IDs; the i_uidand i_gidare object IDs;

and thei_mode is the policy. So one possible abstrac-

tion is: (1) object id has data depend (bind by compare

operation) on subject id; (2) policy has control depend

on subject ID and object ID; and (3) return value has

control depend on mode.

Since the subject ID is relatively easy to annotate, we

can first manually assignfsuidandfsgidassubject IDs.

Then the system to be built will automatically identify

inode->i_uid and inode->i_gid as object IDs; and

inode->i_modeas the policy data.

4 Timeline

1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow

and control flow analysis infrastructure for analyz-

ing the Linux kernel. Mid April.

2. Abstraction design. Design thedataflow and con-

trol flow abstraction for detecting sensitive data.

End of April.

3. Evaluation. Evaluate on the Linux kernel. Early

May.

References

[1] Overview of linux kernel security features. http:

//www.linux.com/learn/docs/727873-overview-

of-linux-kernel-security-features/, 2013.

[2] M. Abadi, M. Budiu, U. Erlingsson, and J. Ligatti. Control-

Flow Integrity. In ACM Conference on Computer and Commu-

nications Security, 2005.

[3] T. Bletsch, X. Jiang, and V. Freeh. Mitigating Code-reuse

Attacks with Control-flow Locking. In Annual Computer

Security Applications Conference (ACSAC), 2011.

[4] S. Chen, J. Xu, E. C. Sezer, P. Gauriar, and R. K. Iyer. Non-

control-data attacks are realistic threats. In Usenix Security

Symposium (Security), 2005.

[5] C. Cowan, C. Pu, D. Maier, J. Walpole, P. Bakke, S. Beattie,

A. Grier, P. Wagle, Q. Zhang, and H. Hinton. Stackguard: Au-

tomatic adaptivedetection and prevention of buffer-overflow

attacks. In Usenix Security Symposium (Security), 1998.

[6] J. Criswell, N. Dautenhahn, and V. Adve. KCoFI: Complete

Control-Flow Integrity for Commodity Operating System Ker-

nels. In IEEE Symposium on Security and Privacy (Oakland),

2014.

[7] M. Kerrisk. Lce: The failure of operating systems and how we

can fix it. http://lwn.net/Articles/524952/, 2012.

[8] M. Kerrisk. Namespaces in operation, part 1: namespaces

overview. http://lwn.net/Articles/531114/, 2013.

[9] V. Kuznetsov, L. Szekeres, M. Payer, G. Candea, R. Sekar, and

D. Song. Code-pointer integrity. In Symposium on Operating

Systems Design and Implementation (OSDI), 2014.

[10] Microsoft Visual Studio 2005. Image has safe exception han-

dlers. http://msdn.microsoft.com/en-us/library/

9a89h429%28v=vs.80%29.aspx.

[11] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

SoftBound: Highly Compatible and CompleteSpatial Memory

Safety for C. In ACM SIGPLAN Conference on Programming

Language Design and Implementation, 2009.

[12] S. Nagarakatte, J. Zhao, M. M. Martin, and S. Zdancewic.

CETS: Compiler Enforced Temporal Safety for C. In Interna-

tional Symposium on Memory Management (ISMM), 2010.

[13] J. Newsome and D. Song. Dynamic Taint Analysis for Auto-

matic Detection, Analysis, and Signature Generation of Ex-

ploits on Commodity Software. In Annual Network and Dis-

tributed System Security Symposium, 2005.

[14] B. Niu and G. Tan. Monitor Integrity Protection with Space

Efficiency and Separate Compilation. In ACM Conference on

Computer and Communications Security, 2013.

[15] B. Niu and G. Tan. Modular Control-flow Integrity. In ACM

SIGPLAN Conference on Programming Language Design and

Implementation, 2014.

[16] P. Philippaerts, Y. Younan, S. Muylle, F. Piessens, S. Lach-

mund, and T. Walter. Code pointer masking: Hardening ap-

plications against code injection attacks. In Conference on

Detection of Intrusions and Malware and Vulnerability Assess-

ment (DIMVA), 2011.

3

Hardware Security Research

Software-Hardware co-design

❑ Preventing speculative execution attacks
❑ Violation of security contracts during speculative execution
❑ Communicate and enforce the contracts: SpecCFI

❖Target class-aware call

call [dest], label

Extending the call instruction to
include CFI labels

❖CFI Integrity Check

cfi_lbl

A new instruction to mark legitimate
targets with corresponding labels

initial

waiting

check
label

insert fences

matching labels

any
instruction

except
indirect

call/jmp

indirect
call/jmp

cfi_lbl

not matching labels

any instruction except
cfi_lbl

Hardware Security Research

Software-Hardware co-design

❑ Enforcing memory safety efficiently and thoroughly
❑ Hardware supported memory safety enforcement
❑ Respect memory safety properties during speculative executions
❑ Performance vs. security?

// Spectre v1
int array[256];
int x, y = 0;
x = get_input(); // assume x = 65535
if (x < 256) { // assume prediction is wrong
 y = array[x]; // array[x] is in cache!
 // cache leaks address
 z = array2[y * 4096];
}

Machine Learning Security Research

Adversarial attacks and defenses

❑ Attacks against computer vision models
❑ Image classification, object detection, video classification
❑ Context-base defenses and transfer attacks

❑ Attacks against foundation models (LLMs, VLMs)
❑ Unlearning-based safety alignment
❑ Structural queries
❑ Robotics

Questions

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

