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Software Security Research 

About Vulnerabilities
 

❑ Automated vulnerability detection via scalable static analysis
❑ Memory errors, logic bugs

❑ Automated vulnerability detection via efficient dynamic analysis
❑ Fuzzing, concolic execution, directed fuzzing

❑ Automated vulnerability elimination
❑ Patch generation, compiler-based bug removal 

❑ Runtime exploit prevention
❑ Control-flow integrity, data-flow integrity, type checks

❑ Automated exploit generation



Scalable Concolic Execution 

Finding vulnerabilities with concolic execution

Is the path predicates satisfiable?

Yes! When input == UINT_MAX - 3



Scalable Concolic Execution 

SymSan: time and space efficient concolic execution

INTERNALS OF A SYMBOLIC EXECUTION ENGINE

▪ Fetch: get the next instruction (LLVM IR)

▪ Decode: find out how to construct the symbolic formula

– What operation, how many operands, where to find operands

▪ Execute: construct a new symbolic formula (AST)

– Load formulas for symbolic operand(s), allocate a new formula

▪ Store: associate the new formula with the program variable

COMPARISONS

▪ KLEE: interpretation-based, slow runtime

▪ SymSan: compilation-based, more efficient runtime



Scalable Concolic Execution 

JIGSAW: efficient and scalable path constraint fuzzing

PATH CONSTRAINTS SOLVING

▪ Symbolic executors use path constraints solvers to check the 
feasibility of execution paths and explore different paths.

▪ Commonly used solvers are Satisfiability Modulo Theories (SMT) 
solvers like Z3.

▪ Path constraints solving is another major performance bottleneck.

IMPROVING PATH CONSTRAINTS SOLVING

▪ Constraints solving as a local search problem: finding an input 
assignment that would evaluate the constraints to true

– Accuracy

– Throughput

Accuracy: how 
many inputs 
are expected 

to try

Throughput: 
how many 

inputs can be 
tried per unit 

time



Scalable Concolic Execution 

Performance improvements over previous state-of-the-art

https://github.com/R-Fuzz



Scalable Concolic Execution 

Reinforcement learning directed concolic execution



Systems Security Research

Compartmentalization and principle of least privilege
 

❑ Preventing memory-corruption-based privilege 
escalation attacks in kernel
❑ Automated identification of critical metadata for 

kernel access control subsystems
❑ Efficient integrity protection of access control 

metadata with hardware features

❑ Isolating JavaScript JIT engine

❑ Automated isolating vulnerable kernel modules

1 static int acl_permission_check

2 (struct inode *inode, int mask)

3 {

4 unsigned int mode = inode->i_mode;

5

6 if (likely(uid_eq(current_fsuid(), inode->i_uid)))

7 mode >>= 6;

8 else if (in_group_p(inode->i_gid))

9 mode >>= 3;

10

11 if ((mask & ~mode &

12 (MAY_READ | MAY_WRITE | MAY_EXEC)) == 0)

13 return 0;

14 return -EACCES;

15 }

Example 1: The decision making function of the Linux

DAC subsystem.

3.2 Proposal

To solve the problem, I plan to leverage the power of

program analysis. Specifically, for each access control

mechanism, I want to

1. Build an abstract model based on data and control

dependencies;

2. Manually annotate some seed data;

3. Use program analysis to map concrete program

data structures to the abstractions in the model.

Example 1 shows the decision making process of the

DAC subsystem. In this example, thefsuidandfsgid

are subject IDs; the i_uidand i_gidare object IDs;

and thei_mode is the policy. So one possible abstrac-

tion is: (1) object id has data depend (bind by compare

operation) on subject id; (2) policy has control depend

on subject ID and object ID; and (3) return value has

control depend on mode.

Since the subject ID is relatively easy to annotate, we

can first manually assignfsuidandfsgidassubject IDs.

Then the system to be built will automatically identify

inode->i_uid and inode->i_gid as object IDs; and

inode->i_modeas the policy data.

4 Timeline

1. Infrastructure build. Implement a context-

sensitive field-sensitive inter-procedure data flow

and control flow analysis infrastructure for analyz-

ing the Linux kernel. Mid April.

2. Abstraction design. Design thedataflow and con-

trol flow abstraction for detecting sensitive data.

End of April.

3. Evaluation. Evaluate on the Linux kernel. Early

May.
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Hardware Security Research

Software-Hardware co-design
 

❑ Preventing speculative execution attacks 
❑ Violation of security contracts during speculative execution
❑ Communicate and enforce the contracts: SpecCFI

❖Target class-aware call

call [dest], label  

Extending the  call  instruction to 
include CFI labels 

 

❖CFI Integrity Check

cfi_lbl

A new instruction to mark legitimate 
targets with corresponding labels

initial

waiting

check 
label

insert fences

matching labels

any 
instruction 

except 
indirect 

call/jmp

indirect
call/jmp

cfi_lbl

not matching labels

any instruction except 
cfi_lbl



Hardware Security Research

Software-Hardware co-design
 

❑ Enforcing memory safety efficiently and thoroughly 
❑ Hardware supported memory safety enforcement
❑ Respect memory safety properties during speculative executions
❑ Performance vs. security?

// Spectre v1
int array[256];
int x, y = 0;
x = get_input();  // assume x = 65535
if (x < 256) {    // assume prediction is wrong
    y = array[x]; // array[x] is in cache!
    // cache leaks address
    z = array2[y * 4096];
}



Machine Learning Security Research

Adversarial attacks and defenses
 

❑ Attacks against computer vision models
❑ Image classification, object detection, video classification
❑ Context-base defenses and transfer attacks

❑ Attacks against foundation models (LLMs, VLMs)
❑ Unlearning-based safety alignment
❑ Structural queries
❑ Robotics



Questions
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