About Me

* Chengyu Song, Associate Professor, CSE
 PhD: 2016 from Georgia Tech

* Research Interests
» Software Security: dynamic analysis, static analysis
e System Security: compartmentalization (with new HW)
 Hardware Security: HW-SW co-design
ML Security: foundation models, robotics

* NSF, DARPA, ONR, ARL, Google

[T RIVERSIDE

Software Security Research

About Vulnerabilities

o Automated vulnerability detection via scalable static analysis
o Memory errors, logic bugs

o Automated vulnerability detection via efficient dynamic analysis
o Fuzzing, concolic execution, directed fuzzing

o Automated vulnerability elimination
o Patch generation, compiler-based bug removal

o Runtime exploit prevention
o Control-flow integrity, data-flow integrity, type checks

o Automated exploit generation [RIVERSIDE

Scalable Concolic Execution

Finding vulnerabilities with concolic execution

foo(unsigned input)({

if (input < UINT MAX - 2){
unsigned len, s;
char* buf;
len = input + 3;
if (len < 10)
s = len;
else if (len % 2 == 0)
s = len;
else {

if (input < UINT MAX - 2)

assert(len < UINT MAX - 1);

sT=-len ¥ Z;

buf = malloc(s);
read(fd, buf, 1len);

false .+
". . Atrue
R unsigned len, s; |
y char* buf;

len = input + 3;
if (len < 10)

trjﬁ”"

falsé\:;

s = 1et:”l—l;£=(len $ 2 !
alse
yz true \ES

[s = len; ||assert(len < UINT MAX - 1)

true d/'

Is = len + 2;

| \\{alse

|

buf = malloc(s);
read(fd, buf, len),

N|

gz

input < UINT_MAX

-2
&& len == input + 3
&& ! (len < 10)
&& ! (len % 2 == 0)
&5 !_(Ile)n < UINT_MAX

Is the path predicates satisfiable?

Yes! When

[TH RIVERSIDE

Scalable Concolic Execution

SymSan: time and space efficient concolic execution

INTERNALS OF A SYMBOLIC EXECUTION ENGINE
= Fetch: get the next instruction (LLVM IR)
= Decode: find out how to construct the symbolic formula

— What operation, how many operands, where to find operands m zizcbuzlci)‘: m

= Execute: construct a new symbolic formula (AST)
— Load formulas for symbolic operand(s), allocate a new formula

= Store: associate the new formula with the program variable m

COMPARISONS

= KLEE: interpretation-based, slow runtime

= SymSan: compilation-based, more efficient runtime
[T RIVERSIDE

Scalable Concolic Execution

JIGSAW: efficient and scalable path constraint fuzzing

PATH CONSTRAINTS SOLVING

= Symbolic executors use path constraints solvers to check the
feasibility of execution paths and explore different paths.

= Commonly used solvers are Satisfiability Modulo Theories (SMT) constraints X #inputs — constraints

solvers like Z3. #inputs second second

= Path constraints solving is another major performance bottleneck.

Throughput:
Accuracy: how how man
IMPROVING PATH CONSTRAINTS SOLVING many inputs inputs can {,e
= Constraints solving as a local search problem: finding an input SIS tex':eaed tried per unit
assignment that would evaluate the constraints to true oty time
— Accuracy
— Throughput

[T RIVERSIDE

i i https://github.com/R-Fuzz
Scalable Concolic Execution

Performance improvements over previous state-of-the-art

373 hours TABLE IX: Comparison of concolic execution engines on flipping all
T symbolic branches along a single execution trace. The top half shows
228 hours the execution time, the bottom half shows the basic-block coverage
Pl measured by SanitizerCoverage.

Programs JIGSAW Z3-10s Z3-50ms Angora SymCC Fuzzolic

readelf 22h 51.3h 12.6h 89.5h 546.6h 48.2h

objdump 12.3h 227.5h 29.6h 411.5h 373.5h 52.2h

nm 0.3h 18.1h 32h 723h 293h 48.2h

size 0.1h 8.4h 14h 16.8h 12.6h 5.2h

libxml2 0.2h 9.3h 36h 58.0h 523h 20.9h

readelf 7923 7957 7423 8287 6410 5843

objdump 4926 4926 4865 4846 4929 4689

12 hours nm 3347 3347 3329 3339 3122 3123

size 2453 2457 2449 2406 2229 2259

D libxml2 6038 6233 6034 5952 6012 6022

— 4

SymCC+Z3 SymSan+Z3 SymSan+JIGSAW m RIVERSIDE

Scalable Concolic Execution

Reinforcement learning directed concolic execution

244 1ENEN

(a) AFLGo (b) AFL++ (c) DAFL (d) Beacon (e) MazeRunner

[TH RIVERSIDE

Systems Security Research

Compartmentalization and principle of least privilege e oo

Q

(struct inode| *inode, int mask)
{
unsigned int| mode| = incde—>1 mode;

if (likely (uid egfcurrent fsuid()) |incde—>i wid)))
mode >>= 6;

Preventing memory-corruption-based privilege
escalation attacks in kernel i p—

. N o o, ® 9 mode >>= 3;
o Automated identification of critical metadata for

11 if (mask & ~mode &

kernel access control subsystems 1;; [DR FED | M WRITE | 1Y) o)

14 returm -EACCES;

a Efficient integrity protection of access control 55)
metadata with hardware features

0 N o g b~ WD

Isolating JavaScript JIT engine

Automated isolating vulnerable kernel modules
[TH RIVERSIDE

Hardware Security Research

Software-Hardware co-design

o Preventing speculative execution attacks
o Violation of security contracts during speculative execution
o Communicate and enforce the contracts: SpecCFl

s»Target class-aware call
call [dest], label

Extending the call instruction to
include CFl labels

+*CFl Integrity Check
cfi 1bl

A new instruction to mark legitimate
targets with corresponding labels

matching labels

cfi 1bl
|nd|rect check
any instruction except
Cfl lbl

not matchmg labels

any

instruction
except
indirect

call/jmp

[insert fences

[TH RIVERSIDE

Hardware Security Research

Software-Hardware co-design

o Enforcing memory safety efficiently and thoroughly
0 Hardware supported memory safety enforcement
0 Respect memory safety properties during speculative executions
o Performance vs. security?

// Spectre vi
int array[256];

int x, y = 0;
x = get_input(); // assume x = 65535
if (x < 256) { // assume prediction is wrong

y = array[x]; // array[x] is in cache!
// cache leaks address
z = array2ly * 40961];

) [TA RIVERSIDE

Machine Learning Security Research

Adversarial attacks and defenses

o Attacks against computer vision models
o Image classification, object detection, video classification
0 Context-base defenses and transfer attacks

a Attacks against foundation models (LLMs, VLMs)
o Unlearning-based safety alignment
o Structural queries
0 Robotics

[TH RIVERSIDE

2297

[T RIVERSIDE

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

