
Towards 5G Security

Zhaowei Tan November 14, 2024

CRESP Industry Day

5G: Anytime, Anywhere Networks

1. https://www.5gamericas.org/global-5g-connections-surge-to-1-76-billion-66-percent-growth-year-over-year-as-north-america-leads-charge/ 2. https://www.grandviewresearch.com/industry-analysis/5g-services-market

A Spectrum of Usage Scenarios

Smart City

Healthcare

My Research: Resilient 5G against Attacks

National Telecommunications and

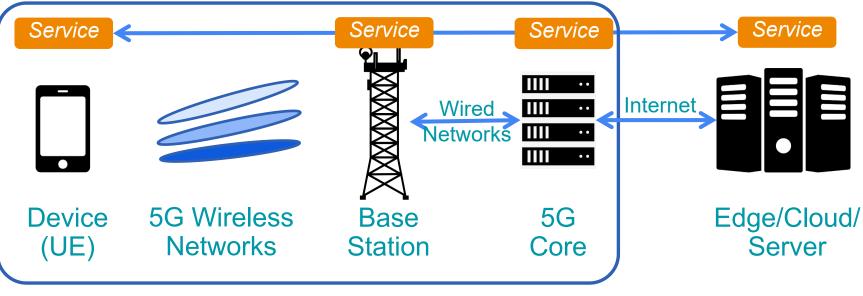
AT&T Launches 5G Managed Advanced Security Capabilities to Further

Protect Enterprise Infrastructu

AT&T's security-first approach to 5G pr and competitive edge for b Tuesday 3 October, 2023

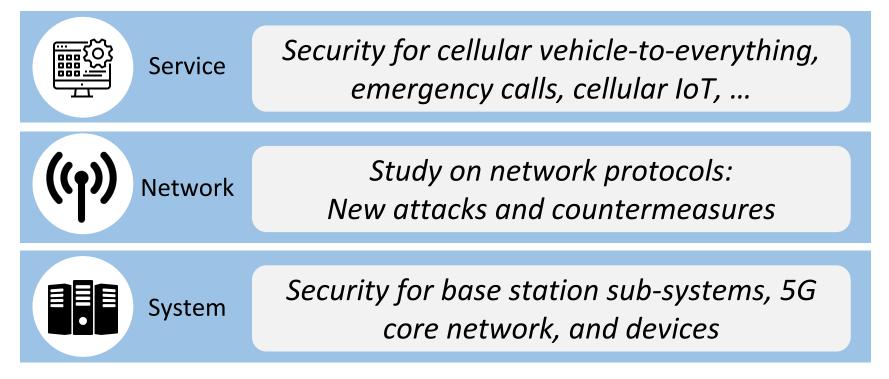
Safeguarding the future: Managing 5G security risks

Agency

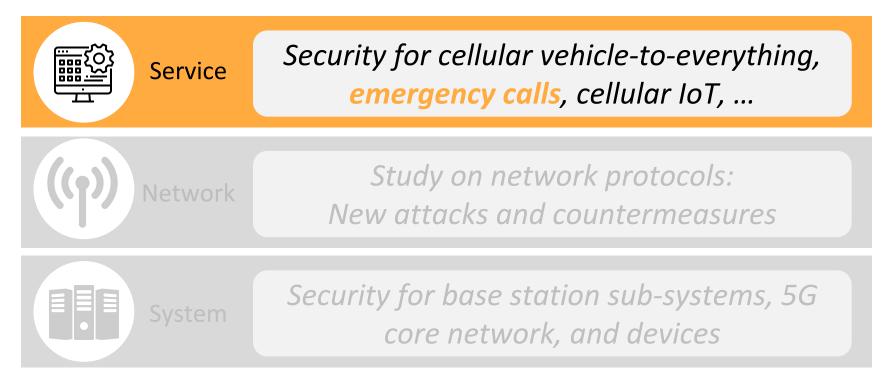

Y AND RESILIENCE

n f X O 🔊 🖻 🌯 🖬 🗆

Important Objective for Government & Industry

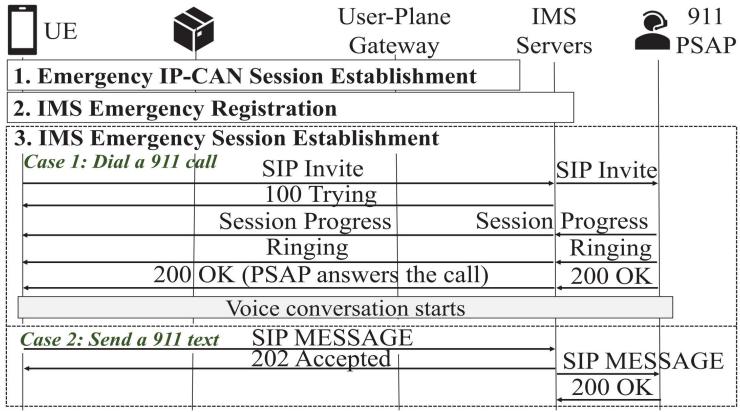

5G's Simplified Architecture

5G System



My research for 5G (and beyond) security

Security about 5G Services


Practice of Cellular Emergency Service

To ensure the availability of cellular emergency services,

- In the U.S., Federal Communications Commission (FCC) stipulates that cellular carriers must transmit all wireless 911 calls without respect to their call validation process to a Public Safety Answering Point (PSAP).
- The GSM Association (GSMA) standard requires emergency services must be supported by all mobile phones even without SIM cards and be free of charge for mobile users.
- The 3GPP standard requires emergency services to be provided with higher priority than other cellular services.

How Emergency Service Works

Our Findings

- Test three US major carriers using device and SDR
 - ... In a responsible way! (No actual emergency calls/text messages are sent to IMS servers or PSAPs)
- We found that cellular emergency services (in US) are deniable and abusable
 - Four insecure designs from 3GPP cellular emergency service standards
- Enabling attacks such as Denial of Emergency Service and Session Hijacking

V1: Unverifiable emergency IP-CAN requests

- Per FCC Title 47, U.S. carriers need to support non-service-initialized devices (denoted anonymous UE) to access emergency services
 - Only one emergency IP-CAN session can be established per UE

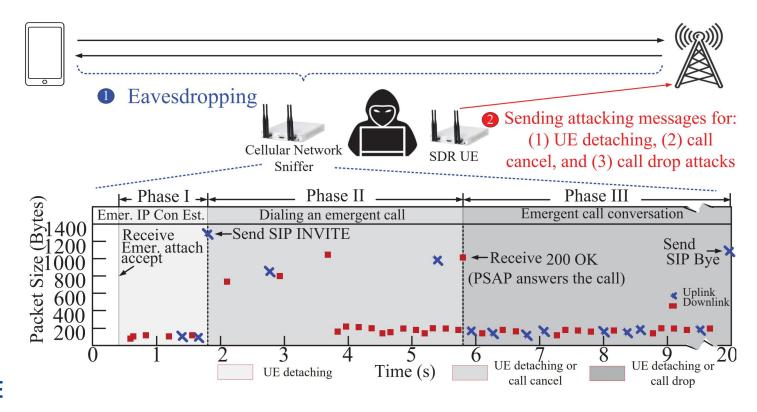
Reality: The network cannot differentiate whether the second IP-CAN session establishment request is sent by a benign user or an attacker.

		UE1 IP	IMS Server	IP			
	Time	Source	Destination	Protocol	Leng	Info	
4	2.0	2600:1009:11f	2001:4888:5:	f TCP	80	38698 -> 5060	[SYN]
5	2.1	2001:4888:5:f	2600:1009:11	f тср	72	5060 -> 38698	[SYN,
6	2.1	2600:1009:11f	2001:4888:5:	f TCP	60	38698-> 5060	[ACK]
	• • •						
72	18	2001:4888:5:f	2600:1009:11	f TCP	60	5060 -> 38708	[FIN,
73	18	2600:1009:11f	2001:4888:5:	f тср	60	38708 -> 5060	[ACK]
74	20	2600:1009:11f	2001:4888:5:	f тср	80	38710 -> 5060	[SYN]
75	21	2600:1009:11f	2001:4888:5:	f тср	80	[TCP Retransmi	ssion]
76	24	2600:1009:11f	2001:4888:5:	f тср	80	38712 -> 5060	[SYN]
77	25	2600:1009:11f	2001:4888:5:	f тср	80	[TCP Retransmi	ission]
	The UE1 was implicitly detached.						

		UE2 IP	IMS Server	IP			
No.	Time	Source	Destination	Protocol	Leng	Info	
						Router Advertisement	
2	7.0	2600:1009:10f	2001:4888:5:1	E TCP	80	41212 -> 5060 [SYN]	
3	7.1	2001:4888:5:f	2600:1009:10	f TCP	72	5060 -> 41212 [SYN,	
4	7.1	2600:1009:10f	2001:4888:5:	f тср	60	41212 -> 5060 [ACK]	
5	7.1	2600:1009:10f	2001:4888:5:1	f тср	60	41212 -> 5060 [FIN,	
	The UE2 began to communicate with the IMS server.						

V2: Improper cross-layer security binding

• Normal IMS session set up is bound to IPSec


Reality: No key exchange during emergency services IMS

No SIP registration procedure

		No. NO.		0	, .			
No.	Time	Source	Destination	Protocol Leng	Info /			
		2607:fc20:7						
20	1.29	fd00:976a:c	2607:fc20:7	тср 84	5060 -> 39	791 [SYN,		
21	1.29	2607:fc20:7	fd00:976a:c	тср 76	39791 -> 5	060 [ACK]		
23	1.29	2607:fc20:7	fd00:976a:c	TCP 1296	9 9791 -> 5	060 [ACK]		
25	1.29	2607:fc20:7	fd00:976a:c	SIP 940	Request: I	NVITE urn		
<								
-								
		sion Control Pr						
	> [2 Reassembled TCP Segments (2084 bytes): #23(1220), #25(864)]							
~ Se	<pre> Session Initiation Protocol (INVITE) Request-Line: INVITE urn:service:sos SIP/2.0 No encryption !! </pre>							
>	Request-Line: INVITE urn:service:sos SIP/2.0 TO Cheryphon							
~	 Message Header 							
	> Via	: SIP/2.0/TCP	[2607:fc20:7	: 506	60;branch=z9	hG4b		
	Мах	-Forwards: 70						
	> Rou	te: <sip:[fd00:< td=""><td>:976a:c</td><td>: 5060;</td><td>lr></td><td></td></sip:[fd00:<>	:976a:c	: 5060;	lr>			

Attack: Denial of Cellular Emergency Service

V3: Non-atomic service initialization

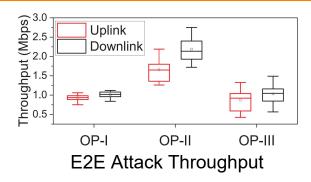
Three emergency service initialization actions should be performed without any interruption - Atomicity

Reality: Adversaries can send data in the middle of session setup

The destination is not necessarily to be the IMS server.

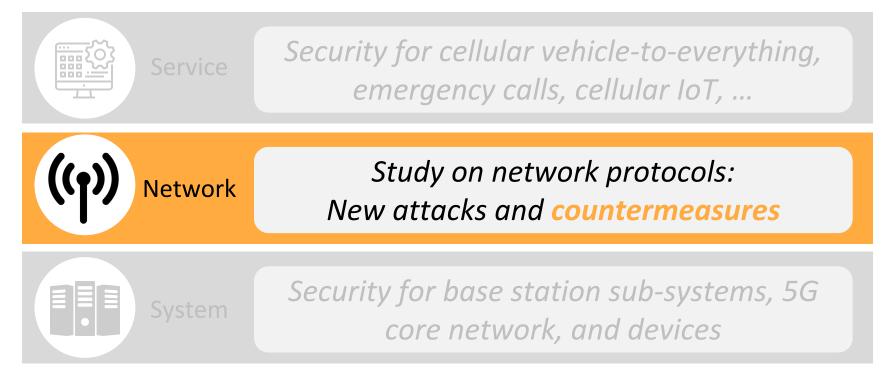
UE IP (emergency) Google DNS Server IP

		Source						
1	0.0	2600:1009:110	2001:4860:486	ICMPv6	104	Echo	(ping)	request
		2600:1009:110						
3	2.0	2600:1009:110	2001:4860:486	ICMPv6	104	Echo	(ping)	request
21	19	2600:1009:110	2001:4860:486	ICMPv6	104	Echo	(ping)	request
22	20	2600:1009:110	2001:4860:486	ICMPv6	104	Echo	(ping)	request
23	21	2600:1009:110	2001:4860:486	ICMPv6	104	Echo	(ping)	request
24	24	2600:1009:110	2001:4888:2:f	ТСР	80	50730) -> 506	50 [SYN]
25	24	2001:4888:2:f	2600:1009:110	ТСР	72	5060	-> 5073	30 [syn,
26	24	2600:1009:110	2001:4888:2:f	ТСР	60	50730	-> 506	50 [ACK]


The emergency IP connectivity still exists.

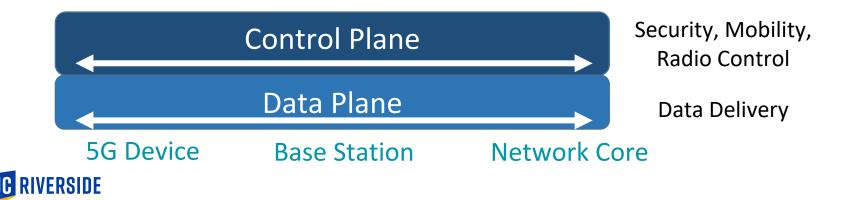
V4: Improper Access Control on Sessions

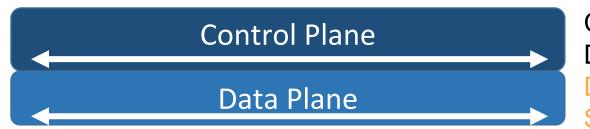
- The access of emergency IP-CAN session should be restricted to IMS servers
 - Done by PCF (Policy Control Function)


Reality: All carriers allow various mobile-to-mobile communications when bypassing internal firewall protection

Carriers	Mobile-to-Internet	Mobile-to-Mobile			
Carriers		E2E	E2IMS	E2D	
OP-I	Х	0	Х	Х	
OP-II	Х	0	Х	0	
OP-III	Х	0	0	0	

5G Networking Security Research




5G Control vs. Data Plane

Control plane: Session and state control -> Well-studied Data plane: Per-packet data delivery

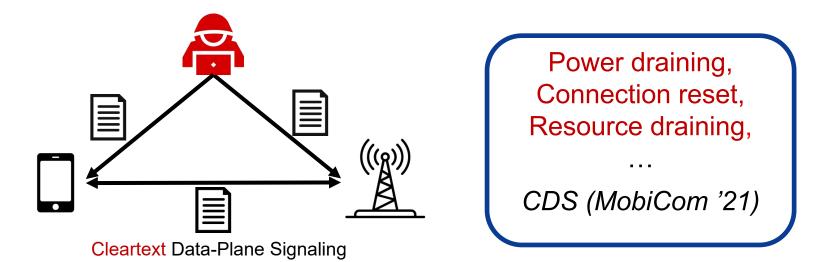
- Largely unexplored research: Challenging with per-packet overhead
- Both application packets and data-plane signaling

Data-Plane: Overlooked but Problematic

Control Packets Data Packets Data-Plane Signaling Messages

Commands

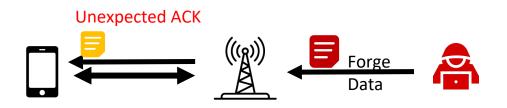
- DRX Command
- Time Advance


Status Sync-Up

- Power Headroom
- Buffer Status Report

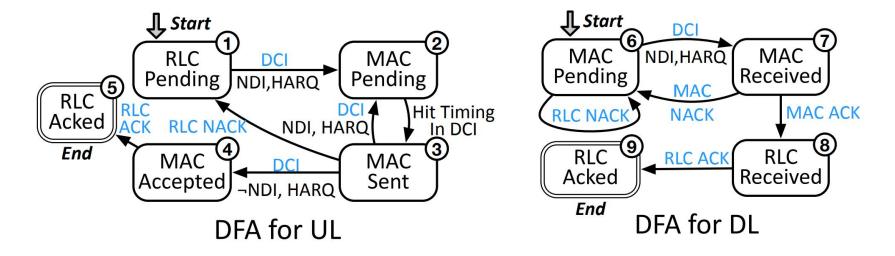
• • •

Data-Plane Signaling Attacks


Proactive protection is impractical with high overhead -> Can we design reactive solutions to detect such attacks?

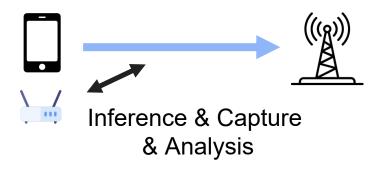
Signaling Verification for Attack Detection

Design guideline 1: Verify what's right instead of targeting certain threats


Design guideline 2: Verify data-plane signaling message instead of per packet monitoring

Cross-Layer, State-Dependent Detection

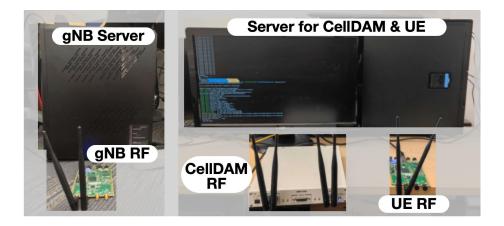
CellDAM: State-dependent checks on 9 states

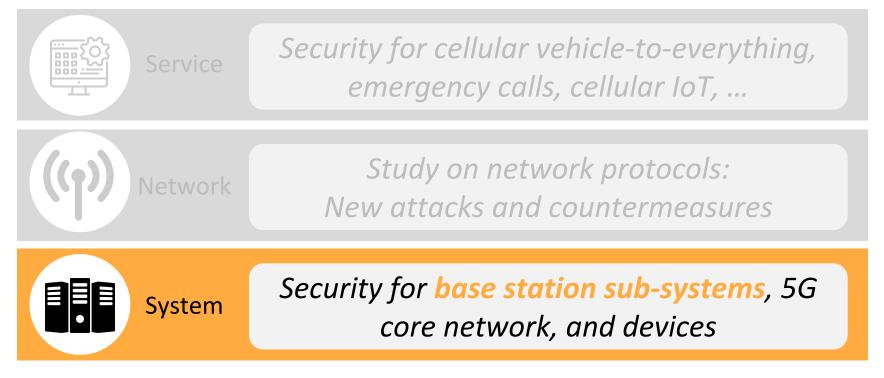

Enable CellDAM without Firmware Access

With firmware access

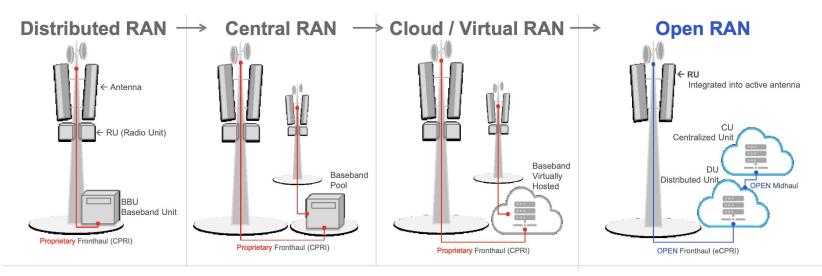
Directly inspect the signaling messages

No firmware access


Use a companion node to capture signals for detection


Evaluation Results on CellDAM

- Can detect 5 known classes of attacks (incl. all data-attacks and common signaling attacks) and find 3 new attacks
- Incur 0.9% overhead compared to per-packet processing


5G System Security Research

Trend: Softwarization of base stations

Open Radio Access Networks (O-RAN): <u>Nonproprietary, intelligent</u> upgrade for 5G base station

O-RAN Components

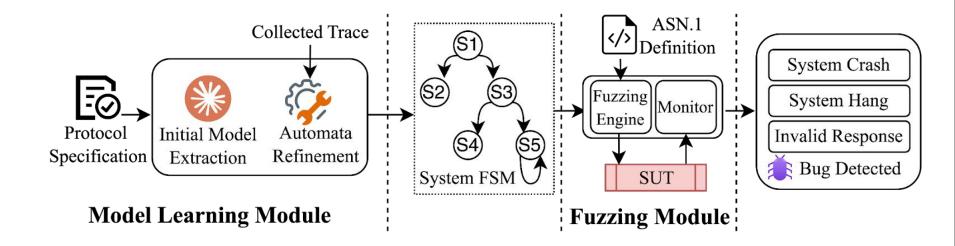
RAN Intelligent Controller (RIC):

Monitors other components, runs multiple AI models for intelligent network management

O-CU: Data security with encryption/decryption/integrityy, QoS

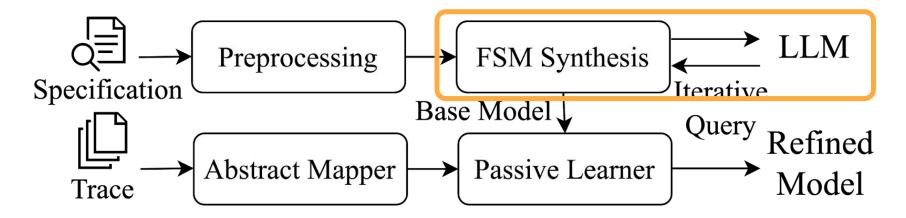
O-DU: High-PHY (e.g., scrambling), MAC layer, Reliable data transfer

O-RU: Low-layer PHY procedures such as digital-to-analog converter



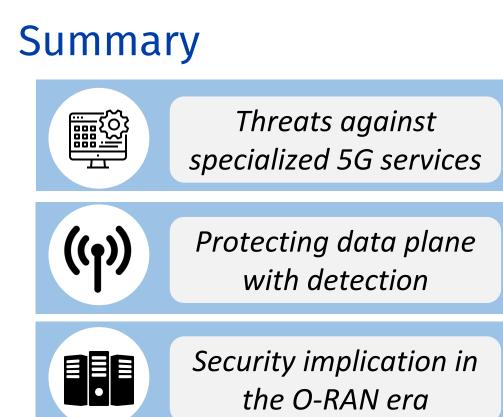
O-RAN Security: A sample of questions

- Conformance: Does each component work correctly?
 - Black-box component with room for customizable implementation
- Interoperability: Would O-RAN components interaction expose additional vulnerabilities?
 - Different components are from different vendors
- Security, privacy, and safety for AI models?
 - Al models can make incorrect or conflicting decisions


Our First Attempt: ARCANE: Model-Based O-RAN Fuzzing

LLM-Assisted Modeling Learning

- Apply LLM and design prompts for
- Refine the model by incorporating traces



Main Findings

- Tested on open-source SDR implementation of 5G O-RAN
- 149 bugs with 9 root causes
- Can be leveraged to launch three categories of attacks
 O Authentication bypass, DoS, and network failures

Thank you! Questions?

Zhaowei Tan (<u>ztan@ucr.edu</u>) <u>https://cs.ucr.edu/~ztan</u>

