
1

Authentication of LZ’77
compressed data

Stefano Lonardi
University of California, Riverside

joint work with M. J. Atallah (Purdue U.)

Problem
• Alice sends a document T to Bob
• She wants to make sure that what Bob

receive is
– Authentic
– Integral

• Mallory monitors the
communication and he will attempt to
tamper with T and impersonate Alice

Alice

Mallory

Bob

2

Signatures

• Signature requirements
– Authentic/Unforgeable
– Not reusable
– Cannot be repudiated

• The signed document should be
unalterable (integrity)

• Typical solution involves PKC

Fragile watermarks

• An alternative way to authenticate a
document and ensure that it reaches
the destination in a integral state is to
use a fragile watermark

• A fragile watermark is a watermark
designed to break as soon as the
content of the document is changed

3

Rationale

• Textual data is difficult to watermark
• Lossless compression is very common

nowadays (compress, gzip, (win)zip,
(win)rar, lzh, bzip2, etc.)

• Since we are sending the document
over the network and it is likely that we
are going to compress it anyway, why
not watermark the compressed file?

Notations

• T: document
• k: secret key
• W: (fragile) watermark
• T’: watermarked & compressed

document

4

Specs

• T=T’ (or semantically equivalent)
• Unless k is known

– it is very hard to retrieve W from T’
– it is very hard to add W to another text and

pretend to be Alice

• The presence of W in T’ shuld hold up in
court (false positives are extremely rare)

• The security of the process should be based
solely on the secrecy of the key (Kerckhoffs’
principle)

Approach

• We propose a method that hides W (the
digest of T) directly in the compressed
file as a fragile watermark

• Advantages
– transparency (and therefore backward

compatibility)
– does not require to send separately the

signature (authentication is embedded)
• We also satisfy all the previous

requirements

5

Lempel-Ziv 77 (gzip)

a b a a b a b a a b a a b a b a a b a b a

a b a a b a b a a b a a b a b a a b a b a
5 6 7 0 1 2 3 4

0 1 2 3 4 5 6 7

(7,2,a)

a b a a b a b a a b a a b a b a a b a b a
5 6 7 0 1 2 3 4

history lookahead

(1,4,a)

already compressed

T

T

T

The LZ processing induces a parsing of The LZ processing induces a parsing of TT into into phrasesphrases

Watermarking LZ’77

6

history current position

Which of these pointers do we choose?

history current position

By choosing one of these pointers we are “hiding” two extra
redundant bits. Note that we are not changing LZ’77

00
01

10
11

7

“Dear Bob,
How are you

doing today? …”

document T

watermarked
text T’

watermark W

secret key k

T.gz

0110100010010

LZS’77

“Dear Bob,
How are you

doing today? ...”

watermarked T’

T.gz

“Dear Bob,
How are you

doing today? …”
- Authentic
- Integral

T.gz

watermarked T’

text T

text T

secret key k

0110100010010

LZS’77

LZ’77

8

Method

Multiplicity

• Definition: a position i in the text T has
multiplicity q if there exists exactly q
matches of the longest prefix of T[i,n]

• Given a position with multiplicity q, we
denote by p0,p1,…,pq-1 the q choices for
the pointer

• We can embed about bits2log q  

9

history current position

Multiplicity q=4

p0
p1

p2

p3

Encoding

• For each phrase i with multiplicity q>1
– Initialize the seed of a random number

generator with H(k,i,p0,p1,…,pq-1)
– Generate a uniformly distributed random

permutation R of the set {0,1,…,q-1}
– Reorder the pointers based on R, i.e.,

pR[0], pR[1], …, pR[q-1]

– Assign each pointer pR[i] the binary code i
– Choose the pointer which binary code

matches with the next bits of W

10

Security

• Recovering the watermark is at least as
hard as breaking the pseudo-random
generator

• Finding the key requires to be able to
invert a one-way hash function

Security

• Using some crypto-secure RNG, like
BBS [Blum, Blum, Shub 86], the
pseudo-random sequence cannot be
reproduced in a reasonable amount of
computing time without the knowledge
of the seed H(k,i,p0,p1,…,pq-1)

11

Experiments

Prototype

• We implemented a suffix tree-based
LZ’77

• We measured
– the numbers of bits embedded vs. the

length of the text
– the multiplicity of pointers
– the length of the phrases

12

Number of bits embedded

Remark:Remark: more bits can be embedded relaxing the greedinessmore bits can be embedded relaxing the greediness

Number of bits embedded

13

Average multiplicity

TheoremTheorem: : The average multiplicity The average multiplicity ?? O(1),O(1), as as nn? 8? 8 (DCC(DCC’’03)03)

gzip

• Open source implementation of LZ’77
• gzip issues pointers in a sliding window

of 32KB (typically)
• The length of phrases is represented by

8 bits (3-258)
• Phrases smaller than 3 symbols are

encoded as literals

14

gzip

• gzip always chooses the most recent
occurrence of the phrase

• We modified gzip-1.2.4 to evaluate the
potential degradation of compression
performance due to changing the rule of
choosing always the most recent
occurrence

• As a preliminary experiment, we simply
chose one pointer at random

336,256336,256--
333,776=333,776=

2,4802,480

gzip vs. gzipS

15

Conclusions

• Authenticity and integrity for LZ’77 files
can be obtained efficiently and elegantly

• The degradation of the compression
due to the embedding is almost
negligible (about 2% when re-shuffling
randomly all pointers)

Some open problems

• About LZ’77
– Can we design a steganography system

for it?
– Can we design a robust watermarking

method for it?

• What about the other types of lossless
compression?

