
1

Pattern Discovery in BiosequencesPattern Discovery in Biosequences
ISMB 2002 tutorialISMB 2002 tutorial

University of California, RiversideUniversity of California, Riverside

StefanoStefano LonardiLonardi

Latest version of the slides atLatest version of the slides at http://www.cs.ucr.edu/~stelo/ismb02/http://www.cs.ucr.edu/~stelo/ismb02/

Roadmap

• Why “pattern discovery”
• Basic concepts
• Problem definition
• Classification of patterns
• Complexity results
• Efficient algorithms for pattern discovery

– Deterministic patterns: Verbumculus
– Rigid patterns: Teiresias, Winnower, Projection, Weeder
– Profiles: Gibbs sampling, Meme

• Appendix

2

Why “pattern discovery”?

Discovery of regulatory elements

• Promoter: a region of DNA involved in
binding of RNA polymerase to initiate
transcription

• Enhancer: a region of DNA that increases the
utilization of (some) promoters (it can function
in either orientation and any location relative
to the promoter)

• Repressor: a region of DNA that decreases the
utilization of (some) promoters

3

Source: Lewin, genes VII

Transcription

• Different factors are involved in the
transcription machinery
– presence of transcription factors and their binding

sites
– ability of DNA to bend
– relative location of the binding sites
– presence of CpG islands (“p” is for phosphate)
– …

4

5

Transcription factors binding sites

…

CoCo--regulated genesregulated genes

Pattern discoveryPattern discovery

…

Putative binding sites

Basic concepts

6

Some notations

{ }1 2 1

 times

sequence/string

multi-sequence

: alphabet
, , ,... : symbols from

: over ,

, , , : ,

 (or substring) : of ,

: the substring (0)

k

k ii

i

i

a b c

x x n

x x x x n

y w x y m

y yy y i

=

Σ
∑

∑ =

=

=

≥

∑…

L123

Some notations

[]

[,] [] [1] []

[1,]

[,]

: the -th symbol of (1)

: the string (1)

: are the of (1)

: are the of

prefixes

suffixe (1)s

i

i j i i j

j

j m

y i y i m

y y y y i j m

y y j m

y y j m

+

≤ ≤

≤ ≤ ≤

≤ ≤

≤ ≤

L

7

CACTCATCTCATAAGCTTAGCTGAATGGATAGGCTTGCTTTCTGATGGAAATTTGCCTTG
CTTTTCCAACTATTCCATTACTCAGGTTTTATTTTTTTATTTTGTAATATGGGGAGAAGG
CCGGCAGAATATTTACGGACAAATGAATAAATTGGATTGGATTGACTAGTGGAACGTGTA
AAGATCGCGATACTCCGTACCAATCACCGAAAGATTGCCCGTAACCGAAATGACTCCATT
CTCTGAATTTTTTGTGAAACCAATATCTGAGACTCTTCCTTCATCTTATCAACGTATTGT
TCAGTCAATTAAGTAAGAAGTATATTTGAGCGCAGCCTTAATCATATATAGCACCAGTTA
TATGTTTGCCCCTCTCTTGAGTTGAAAAACACATAATACATAGTACTGTACTTTTCTCTT
TTTCATCGTTGGCGAAAATATAATCTTTCTCAAAAATATATATATATGTATATATATCCT
TAGATTTGCCGTTGACAATAAGGTGGGCGGCAAATCTACGAAATGCGAGGCGGTTAAAAG
AGAGTGACAACATTTTCATAAAAATATTCTGATCTCAAACTGAAGACATAAAATAAGGAT

CAAATATCTACAATGCCGTCTGCTTTATGTCTTTTTCTAAAGGCATCGATTTTATGTGTG
GATAATTGCATCGCAGTAATATGTAGAGCACAATTTGTAGAAATCGGAATTGGAGGTATC
GGATCTTGTTGAATATCCACCAATGTCTTACCCCTGTATTTTAACAAGAGTTTACGCTGT
TATATGGTTAAAGGTGTGGACGCCTTGAAGGTTTACCTTACCGAATGACACCTTTACAAT
AGTCAGATCACGTTCTGTGGCGTTATCCAAAGTTAGCGCAGTTTTCCGATGGTCCAATGT
AATCATTAGAAATAGTAAAAACTGTGTAATGGTAAAGATTGTGTCACTGGAAAAAAACTG
CTACAAATAATAAATAAATAAAAAAATACGAAAGCACAGTACTACGGGTGCCTCCACAAA
TAGATAAGAAACCAAGCGGAGACATGCGTTTAGATGAGGATATAAATTATTTATACAACC
AGACTATATAAAAGAGCATCTAGTTTACCTGTTATGATGAATGGACATTCGCTACATATC
TTACTCTCTATTTGTTAAAAAAAATTACAAAGAGAACTACTGCATATATAAATAACATAC

ATAAGCGTCCTTCTGTGGTTTAGATATGCTATACCGGCGGAACTTTGTTACACACGGCTC
GCGCGAATCCTTAGGGGAAAACATTGCGCTGACTTTCCCCAGAGTTGTTGCCACAACATA
AGCCGCTTTGGAGTGTTGAACAAATCCGTCCTTGGGTCATTCAATCAATGGCTTGGCGGT
ATCTCAAAAGAGCGCAAACTAATAGCGCGCACATTCGACGCATTTATCCGGTGGTCATCG
ACTAGGGGCGAAGAGGTCACGACCTATTTTTTCTTGCAGAAAAAAAGTGTGACCTTTTCC
GTAGCTAGACGTCTATCAGGGCGTCAGCAATGGGAGGCACAGCGGAAAAACAATAACAAT
GGTAAGCGCAATTACCTTTTGAGCGTTACATTCGTATGAAATTGGTGACGTTAATCTAAA
GATAGTCATGCTCTCAAAAGGGCCCATTATTCTCGACGTTGAGCGTATATAAGACTATTA
AAACTTGGTTCTTTAGATATGGTGTTCGTTCCTCATTATTAAGTTTCAGGGAACAATATC
AACACATATCATAACAGGTTCTCAAAACTTTTTGTTTTAATAATACTAGTAACAAGAAAA

CCACCCTTTTGTGGGGCTTCTATTTCAAGGACCTTCATTATGGAAACAGGGCGAGGTTGT
TTGTTCTTCCTGCATGTTGCGCGCAGTGCGTAAGAAAGCGGGACGTAAGCAGTTTAGCCA
TTCTAAAAGGGGCATTATCAGAATAAGAAGGCCCTATGAGGTATGATTGTAAAGCAAGTG
GTGTAAAATTGTGTGCTACCTACCGTATTAGTAGGAACAATTATGCAAGAGGGGTCCTGT
GCAAATAAAAAATATATATCTAGAAAAAGAGTAGGTAGGTCCTTCACAATATTGACTGAT
AGCGATCTCCTCACTATTTTTCACTTATATGCAGTATATTTGTCTGCTTATCTTTCATTA
AGTGGAATCATTTGTAGTTTATTCCTACTTTATGGGTATTTTCCAATCATAAAGCATACC
GTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTAAATTTCGGCGGCTATTTCAT
TCATTCAAGTATAAAAGGGAGAGGTTTGACTAATTTTTTACTTGAGCTCCTTCTGGAGTG
CTCTTGTACGTTTCAAATTTTATTAAGGACCAAATATACAACAGAAAGAAGAAGAGCGGA

CACAGGCGCTACCATGAGAAATTTGTGGGTAATTAGATAATTGTTGGGATTCCATTGTTG
ATAAAGGCTATAATATTAGGTATACAGAATATACTAGAAGTTCTCCTCGAGGATATAGGA
ATCCTCAAAATGGAATCTATATTTCTACATACTAATATTACGATTATTCCTCATTCCGTT
TTATATGTTTATATTCATTGATCCTATTACATTATCAATCCTTGCGTTTCAGCTTCCTCT
AACATCGATGACAGCTTCTCATAACTTATGTCATCATCTTAACACCGTATATGATAATAT
ATTGATAATATAACTATTAGTTGATAGACGATAGTGGATTTTTATTCCAACAGAAGGAGT
GGATGGAAAAGTATGCGAATTAAAGTAATCCATGTGGTAAATAAAATCACTAAGACTAGC
AACCACGTTTTGTTTTGTAGTTGAGAGTAATAGTTACAAATGGAAGATATATATCCGTTT
CGTACTCAGTGACGTACCGGGCGTAGAAGTTGGGCGGCTATTTTGACAGATATATCAAAA
ATATTGTCATGAACTATACCATATACAACTTAGGATAAAAATACAGGTAGAAAAACTATA

TTTCCTTCTGGTTCGTAGGCTTCTTCAAGTCCTTAATACCGCTTTTACCGACCCGATAGT
TATTAGTGTCCTTTTTTGTATAAGAATGGTTGATGCAAGTATTTTCTTCTTCGTTCACCA
AAGTTTTGTCCTTGTCTAGCCACTCTTCCTGATTGTGCATTACTATTAGATAACTGTAAT
TTGGTGCTTTTCCTGGAAAGTATACTTGTGATGTGGAAGTATTTTAAGTTCAAGTTTCTT
GTTTTCTTTCCTATTTATGCGGAAGGTACATAGAAGTTTGGGCGGCTAATACTTTTTCCG
CGGCTAATCCTATAGTAAAATGATCACTTTCATATAGAAAGTTGGTATATAAAGTGTCAA
CTAAGAGAGAAATAGTTCGAACCAGGTGTATTTTAAATCAACTATCGGGAAGTATGGACT
GGTGGTATAATCGAATTACATAGTCCTTTTACCTTCATTAGTAGTACTTAAGTGTCACCC
GCCTGGGGATTTTGCTCTCATAGAAGTAAAAGGGTAGTGCTATGGGAGCACATTAGGTAG
TTCAGTTACGTTTTATGGCAGTCACTGTTTTCGCAAAGACTCCCAGACACGGGCATTAAA

Occurrences vs. Colors

Some notations

() : number of of
 () : number of of

Depending on the application, ()
and/or () is used. In general, these
quantities ar

occurrences
co

e calle

lors

suppd the ort f .o

f y y
c y y

f y
c y

y

8

Occurrences: types

non-overlapping

adjacent

overlapping

For our purposes, any of the above is simply an occurrence
Keep in mind that in some cases you may have to distinguish them

Example (DNA)

x1 = CCACCCTTTTGTGGGGCTTCTATTTCAAGG
x2 = TTGTTCTTCCTGCATGTTGCGCGCAGTGCG
x3 = TTCTAAAAGGGGCATTATCAGAAAAAGAAG
x4 = GTGTAAAATTGTGTGCTACCTACCGTATTA
• Σ = {A,C,G,T} |Σ| = 4 n = 120
• e.g., y = AAAA is a substring of x3 and x4

– f(y) = 4 (occurrences can overlap)
– c(y) = 2

9

Bernoulli and Markov models

• Two typical hypothesis about the source
(probabilistic models)

• Bernoulli: symbols are generated
independently and they are identically
distributed (i.i.d. or memoryless)

• Markov: the probability distribution for the
“next” symbol depends on the previous h
symbols (h>0 is the order of Markov chain)

Example (no. of occurrences)

• We want to describe the number of
occurrences f(y) of a pattern y in the text x

• Recall |x|=n, |y|=m
• Let us choose a particular location i in the text

(i < n-m+1)

y

x

i

10

Example on no. of occurrences

• Assuming a Bernoulli model for the source
that generated x, i.e., symbols are generated
i.i.d., the probability that y occurs at position i
in the text is
P(x[i]=y[1] , x[i+1]=y[2] ,…,x[i+m-1]=y[m])=
P(x[i]=y[1]) P(x[i+1]=y[2]) … P(x[i+m-1]=y[m])=
py[1] py[2] … py[m]

• Note that in general we do not know the “true”
pa and they have to be estimated from the
observation x

Example on no. of occurrences

• Now we have to consider that y can occur in n-
m+1 positions (from 1 to n-m+1)

• At each position the probability is py[1] py[2] …
py[m]

• Since we assumed a Bernoulli model, the
random variables for each position are
independent, then

E[X] = (n-m+1) Πj=1..m py[j]

11

A r.v. for the no. of occurrences

[]
1

2

Let be a r.v. for the number of occurrences of ,

 be the probability of , and (1) 2, then

ˆ () (1) (1)

ˆ ˆ ˆ () ()(1) (1)() 2 ()

where () (1

i

y

a

m

y y
i

y y

Z y

p a y m n

E Z n m p n m p

Var Z E Z p p n m n m pB y

B y n m

=

∈Σ = ≤ +

= − + = − +

= − − − + − +

= − +

∏o

o

[]
() - 1

)

and () is the set of period leng

ths of

i

m

y
d P y i m d

d p

P y y
∈ = +

−∑ ∏

A r.v. for the no. of colors

{ } 1 2

1

Let be a r.v. for the number of colors

of in , , , , and be the

random variable of occurrences of in the
i-th sequence (1), then

 () [0]

(because () [0])

y

i
k y

k
i

y y
i

i
y y

W

y x x x Z

y
i k

E W k P Z

E W P Z
=

≤ ≤

= − =

= >

∑

…

o

12

“Pattern Discovery”: the problem

Pattern discovery: the problem

• Given a set of sequences S+ and a model of the
source for S+

• Find a set of patterns in S+ which have a
support that is statistically significant with
respect to the probabilistic model

• If we are also given negative examples S-, we
must ensure that the patterns do not appear in
S-

13

Pattern discovery problem

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+

Noisy data

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+

14

Pattern discovery “dimensions”

• Type of learning
– from positive examples only (unsupervised)
– from both positive and negative examples

(supervised)
– noisy data

• Type of patterns
– deterministic, rigid, profiles, …

• Measure of statistical significance
• A priori knowledge

Output

• True positive: a pattern belonging to the
positive training set which has been correctly
classified

• True negative: a pattern belonging to the
negative training set which has been correctly
classified

• False positive: misclassified as positive
• False negative: misclassified as negative

15

Measuring pattern discovery

• Complete: if no true pattern is missed
– but we may report too many patterns

• Sound: if no false pattern is reported
– but we may miss true positives

• Usually there is a tradeoff between soundness
and completeness: if you increase one, you
will decrease the other

Measuring the performance

• Information Retrieval measures
– Precision = true pos / (true pos + false pos)

• expresses the proportion of discovered patterns out of
the total reported positive

• also called sensitivity

– Recall = true pos / (true pos + true neg)
• expresses the proportion of discovered patterns out of

the total of true patterns

16

A classification of patterns

Types of patterns

• Deterministic patterns
• Rigid patterns

– Hamming distance

• Flexible patterns
– Edit distance

• Matrix profiles
üA motif is any of these patterns, as long as it is

associated with biological relevance

17

Deterministic Patterns

• Definition: Deterministic patterns are strings
over the alphabet Σ
– e.g., “TATAAA” (TATA-box consensus)

• Discovery algorithms are faster on these types
of patterns

• Usually not flexible enough for the needs of
molecular biology

Rigid patterns

• Definition: Rigid patterns are patterns which
allow substitutions/“don’t care” symbols
– e.g., the patterns under IUPAC alphabet

{A,C,G,T,U,M,R,W,S,Y,K,V,H,D,B,X,
N} where for example R=[A|G], Y=[C|T], etc.

– e.g, “ARNNTTYGA” under IUPAC means
“A[A|G][A|C|G|T][A|C|G|T]TT[C|T]GA”

• Note that the size of the pattern is not allowed
to change

18

Hamming distance

• Definition: Given two strings y and w such that
|y|=|w|, the Hamming distance h(w,y) is given
by the number of mismatches between y and w

• Example:
y=GATTACA
w=TATAATA
h(w,y)=h(y,w)=3

Hamming neighborhood

• Definition: Given a string y, all strings at
Hamming distance at most d from y are in its
d-neighborhood

• Fact: The size N(m,d) of the d-neighborhood
of a string y, |y|=m, is

() ()
0

(,) 1
d j dd

j

m
N m d O m

j=

= Σ − ∈ Σ

∑

19

Hamming neighborhood

• Example:
y = ATA the 1-neighborhood is
{CTA,GTA,TTA,
AAA,ACA,AGA,
ATC,ATG,ATT,
ATA}

• This set can be written as a rigid pattern
{NTA|ANA|ATN}

Models

• We may be able to observe occurrences of the
neighbors of y, but we may never observe an
occurrence of y

• Definition: The center of the d- neighborhood
y is also called the model

• Definition: We say that a model is valid if it
has enough support (occurrences/colors)

20

y is the (unknown) model
d is the number of allowed mismatches
w1, w2, w3 belongs to the neighborhood of y

Hamming neighborhood

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, then
h(w1,w2)�2d

• The problem of finding y given w1,w2,… is
sometimes called Steiner sequence problem

• Unfortunately, even if we were able to
determine exactly all the wi in the
neighborhood, there is no guarantee to find the
unknown model y

21

Example

• Suppose m=4, d=1 and that we found
occurrences of {AAAA,TATA,CACA}

• The pairwise Hamming distance is 2 but there
is no string at Hamming distance 1 to each of
these

Word match filtering

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, they both
contain an occurrence of a word of length at
least m/(2d+1)

• Example: y = GATTACA
w1 = GATTTCA
w2 = GGTTACA
TT and CA are occurring exactly. In fact
m/(2d+1)=7/3=2

22

Word match filtering

• Proof: there are at least m-2d matching
positions, divided into at most 2d+1 segments
(some possibly of length 0) by intervening
mismatches. The average length of a segment
is therefore (m-2d)/(2d+1).
Hence there exists a segment with no
mismatches of length at least (m-2d)/(2d+1)
= m/(2d+1).

Flexible patterns

• Definition: Flexible patterns are patterns
which allow substitutions/“don’t care”
symbols and variable-length gaps
– e.g., Prosite F-x(5)-G-x(2,4)-G-*-H

• Note that the length of these pattern is variable
• Very expressive
• Space of all patterns is huge

23

Edit distance

• Definition: the edit distance between two
strings y and w is defined as the minimum
number of edit operations - insertions,
deletions and substitutions - necessary to
transform y into w (matches do not count)

• Definition: a sequence of edit operations to
transform y into w is called an edit script

Edit distance

• The edit distance problem is to compute the
edit distance between y and w, along with an
optimal edit script that describes the
transformation

• An alternative representation of the edit script
is the alignment

24

Example

• Given w = GATTACA
y = TATATA

GATTACA%ATTACA%TTACA
%TATACA%TATATA (1 ins, 2 del, 1 sub)

GATTACA%TATTACA
%TATACA%TATATA (0 ins, 1 del, 2 sub)

• Edit distance is 3

Corresponding global alignment

• Given w = GATTACA
y = TATATA

• We can produce the following alignments
GAT-TAC-A G-ATTAC-A
--TATA-TA -TAT-A-TA

where “–” represents a space (we cannot have
“–” aligned with “–”)

25

Profiles

• Position weight matrices, or profiles, are
|Σ|×m matrices containing real numbers in the
interval [0,1]
– e.g.

– consensus

0.48

0.09

0.17

0.26

0.540.000.410.45T
0.000.000.000.15G
0.350.000.590.18C
0.111.000.000.22A

Profiles as classifiers

• Profiles can be used directly to implement very
simple classifiers

• Suppose we have a sample S+ of known sites,
and a sample S- of non-sites

• Given a new sequence x, how do we classify x
in S+ or in S-?

26

Example: CRP binding sites

• S+={TTGTGGC, ACGTGAT, CTGTGAC,
TTTTGAT, ATGTGAG, ATGAGAC,
AAGTGTC, TTGTGAG, TTGTGAG}
ATTTGCA, CTGTAAC,
CTGTGCG, CTGTAAC,
ATGCAAA, TTGTGAC,
GTGTTAA, GCCTGAC,
ATTTGAA, TTGTGAT,
TTGTGAT, TTGTGAT,
ATTTATT, GTGTGAA,

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]

Training (CRP sites)

0.2600.0870.0430.9100.1700.8700.350G
0.1700.0430.8300.0000.7800.0000.130T
0.3000.0430.0000.0430.0430.0870.170C
0.2600.8300.1300.0430.0000.0430.350A

• Assume the uniform Bernoulli model for the
non-sites S-, that is pA=0.25, pC=0.25, pT=0.25,
pG=0.25 for all the positions

• Assume a Bernoulli model for each position

27

Testing

• Suppose you get x = GGTGTAC
Is x more likely to belong to S+ or to S-?
In other words, it is more likely to be generated from
the Bernoulli model for S+ or from the uniform
Bernoulli model (for S-)?

• Let’s compute the probability

7

(|) .35*.87*.78*.91*.83*.83*.3 0.045

(|) (.25) 0.0000061
() (|) / (|)

P x GGTGTAC S

P x GGTGTAC S
LR x P x S P x S

= + = =

= − = =
= + +

Discovering Deterministic
Patterns

28

Enumerative approach: idea

• Define the search space
• List exhaustively all the patterns in the search

space
• Compute the statistical significance for all of

them
• Report the patterns with the highest statistical

significance

Enumerative approach

• E.g., search space for deterministic patterns of
size m is O(|Σ|m)

• Can we do better than |Σ|m?

29

Enumerative approach

• The search space for deterministic pattern is
already too big
– e.g., there are 1,048,576 possible deterministic

patterns of size 10 on the DNA alphabet

• How to prune it?

Detection of Unusual Patterns

MODELMODEL

…ATGACAAGTCCTAAAAAGAGCGAAAACACAGGGTTGTTTGATTGTAGAAAATCACAGCG

>MEK1

CCACCCTTTTGTGGGGCTTCTATTTCAAGGACCTTCATTATGGAAACAGGGCGAGGTTGT

TTGTTCTTCCTGCATGTTGCGCGCAGTGCGTAAGAAAGCGGGACGTAAGCAGTTTAGCCA

TTCTAAAAGGGGCATTATCAGAATAAGAAGGCCCTATGAGGTATGATTGTAAAGCAAGTG

GTGTAAAATTGTGTGCTACCTACCGTATTAGTAGGAACAATTATGCAAGAGGGGTCCTGT

GCAAATAAAAAATATATATCTAGAAAAAGAGTAGGTAGGTCCTTCACAATATTGACTGAT

AGCGATCTCCTCACTATTTTTCACTTATATGCAGTATATTTGTCTGCTTATCTTTCATTA

AGTGGAATCATTTGTAGTTTATTCCTACTTTATGGGTATTTTCCAATCATAAAGCATACC

GTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTAAATTTCGGCGGC…

parameters

??

30

Naïve approaches

2) Enumerate and test all patterns which
occur in the sequences

1) Enumerate and test all patterns
composed by m symbols, for 1�m�n

n=1,000,000 |Σ|=4

2) Patterns to be tested O(n2)
in this case ∝ 1,000,0002

1) Patterns to be tested O(|Σ|n)
in this case ∝ 41,000,000

31

Enumerating the O(n2) patterns

a c g t

a c g t

a c g t

a c g t

a c g t

“Trie”

Basic operations on the trie

(“trie” comes from information retrieval)
• Construction
• Traversals

– Breadth-first
– Depth-first

• Query
– Given a pattern of length m, we can check if it

belongs to the trie in time O(m)

32

Suffix trie

• We build a trie with all the suffixes of the text
x

• Example: if x = GATTACA we use
GATTACA
ATTACA
TTACA
TACA
ACA
CA
A

Suffix trie for “GATTACA”

G

A

T

C

A T T A C

T

A

T A C A

T A C A

A C A

C A

A

The suffix trie collects in
the internal nodes all the
substrings of x

A

33

Suffix trie for “GATTACA$”

G

A

T

C

A T T A C

T T A C

T A C

A C

C

The suffix trie collects in
the internal nodes all the
substrings of x$

$A

A $

A

A

A

A

$

$

$

$

$
$

Suffix trie

• Construction O(n2)
• Space O(n2)
• Query O(m)

• We can do better by removing unary nodes
from the tree, and coalescing the edges

• The result is called suffix tree

34

Suffix tree for “GATTACA$”
The suffix tree collects in
the implicit internal nodes
all the substrings of x$

1

2

3

5

7

4

6

GAT
TAC

A$

TTA
CA$

A
CA$

$

T

CA$
ACA$

TACA$ The label in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leaves in
the subtree corresponds to
the number of occurrences

The locus of a string is the
node in the tree corre-
sponding to it

1 2 3 4 5 6 7 8

8

$

Space analysis

• Every node is branching
• The number of leaves is n
• Therefore the overall number of nodes is at

most 2n-1
• Use two integers (constant space) to identify

labels on the arcs
• Therefore the overall size of the tree is n
• Note: we assume the standard RAM model that log n bits can

be read, written or compared in constant time

35

Brute force construction

baab$

aabaab$

ab$

1

1 2 3 4 5 6
a b a a b $

2 3

abaab$
1

baab$
2

baab$
1

$

a b a a b $ b a a b $ a a b $

a

ab$
3

$

b
1

b

4

aab$

$
5

6

2

$

......

aab$

Worst case O(n2) Average case O(n log n)

Computing number of occurrences

Time complexity is O(n)

36

Suffix tree for “abaababaabaababaababa$”

Internal nodes are
annotated the count of the
number of occurrences

Suffix links

Suffix links connect the
locus of cw to the locus
of w, c in Σ, w in Σ*

37

Suffix links

Suffix links help identifying
isomorphic subtrees

All the suffix links (except leaves)

38

Suffix trees in a nutshell

• Suffix trees can be built in O(n) time and space
[Weiner73, McCreight76, Ukkonen95,
Farach97]

• Number of occurrences can be computed in
O(n) time

• Number of colors can be computed in O(n)
time [Hui92, Muthu02]

Which patterns do we count? What do we expect, under the given model?

What is unusual?

How do we count efficiently?

How many patterns can be unusual?

How do we compute statistical
parameters efficiently?

39

Scores based on occurrences

1

2

3

4

() () ()

() ()
()

()

() ()
()

ˆ() (1)

() ()
()

()

where is a r.v. for the number of occurrences of

y

y

y

y

y

y

y

y

z y f y E Z

f y E Z
z y

E Z

f y E Z
z y

E Z p

f y E Z
z y

Var Z

Z y

= −

−
=

−
=

−

−
=

Scores based on colors

7

8

() () ()

() ()
()

()

where is a r.v. for the number of colors of

y

y

y

y

z y c y E W

c y E W
z y

E W

W y

= −

−
=

40

What is “unusual” ?

over-represente

Definition:

Let be a substring of and
 if () , then is

d
under-represented

u

if () , then is

 if () , then is al nusu

y x T
z y T y
z y T y

z y T y

+∈
>
< −

>

i
i
i

R

Problem

Given
• Single/multi sequence x
• Type of count (f or c)
• Score function z
• Threshold T
Find
• The set of all unusual patterns in x w.r.t.

(f/c,z,T)

41

How to choose the threshold

-5 -4 -3 -2 -1 0 1 2 3 4 5

() ()
2 .0456

()
P y

y

f y E Z

Var Z

 −
 > =

N(0,1)

Computational Problems

• Counting “events” in strings
– occurrences
– colors

• Computing expectations, variances, and scores
(under the given model)

• Detecting and visualizing unusual patterns

42

Combinatorial Problem

• A sequence of size n could have O(n2) unusual
patterns

• How to limit the set of unusual patterns?

Theorem:
Let be a set of patterns from text . If () remains

 for all in , then any score of the type
() ()

 ()
()

is monotonically

constant

increasi n with provid d tg e

C x f y
y C

f y E y
z y

N y

y

−
=

hat

 () is monotonically with

 () () is monotonically with

decreasing

decre i as ng

N y y

E y N y y

o
o

43

Theorem:
Score functions

() () (), () () (),

() () () ()
() , () ,

() ()

() ()
() ,

ˆ()(1)

are monotonically with , for all

in cl

incr

as

eas g

s

in

y y

y y

y y

y

y

z y f y E Z z y c y E W

f y E Z c y E W
z y z y

E Z E W

f y E Z
z y

E Z p

y y

C

= − = −

− −
= =

−
=

−

{ }max

Theorem:

If min 1 4 , 2 1 , then

() ()
 ()

()

is mon increasinotonically with , for all

in clas

g

s

y

y

y

p y

f y E Z
z y

Var Z

y y

C

< −

−
=

44

abaababaabaababaababa

abaababaabaababaababa
aaaa

45

abaababaabaababaababa
baa baa

abaababaabaababaababa
abaa abaa

46

abaababaabaababaababa
abaababaab

abaababaabaababaababa
abaabaabaaba

47

abaababaabaababaababa
abaaba abaaba

min(C): candidate under-repr

max(C): candidate over-repr

aa aab aaba

baa baab baaba

abaa abaab abaaba

48

ab
abk

ak akbk

bk

akb …

…

…

…

x = ak bk

{ }

() ()

() ()()

1 2The partition , , , of the set of all

substrings of , has to satisfy the following
properties, for all 1 ,

 min and max are unique

 all in belong to some

 min ,max -path

 all in

l

i i

i

i i

i

C C C

x
i l

C C

w C

C C

w C

≤ ≤

…

i
i

i have the same count

49

a
(13)

b
ba
ab
aba
(8)

aa
aab
aaba
baa
baab
baaba
abaa
abaab
abaaba

(4)

bab
baba
abab
ababa
ababb
aababa
baabab
baababa

(3)

babaa
babaab
babaaba
ababaa
ababaab
ababaaba
aababaa
aababaab
aababaaba
baababaa
baababaab
baababaaba
abaababaa
abaababaab
abaababaaba

(2)

………
………
………
………
………
………
………
………
………
………
………
………
………
………
………
(1)

x = abaababaabaababaababa

50

Theorem:
The number of classes is at most 2n

51

Computing on the Suffix Tree

• Equivalence classes can be computed in O(n)
time (by merging isomorphic sub-trees of the
suffix tree [ABL, Recomb02])

• Expectations, variances and scores can be
computed in amortized constant time per node
[ABLX, JCB00]

Theorem:
The set of over- and under-represented patterns
can be detected in () time and spaceO n

52

http://www.cs.ucr.edu/~stelo/Verbumculus

Conclusions on Verbumculus

• Pros:
– exhaustive
– linear time and space

• Cons:
– limited to deterministic patterns

53

Discovering Rigid Patterns

Complexity results

• Li et al., [STOC 99] proved several important
theoretical facts

• Many of the problems in pattern discovery turn
out to be NP-hard

• For some there is a polynomial time
approximation scheme (PTAS)

54

Consensus Patterns

• Consensus patterns problem: Given a
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a string y of length m
and substring ti of length m from each xi such
that Σi h(y,ti) is minimized

• Theorem [Li et al., 99]: The consensus pattern
problem is NP-hard

Closest string

• Closest string problem: given a multisequence
{x1,x2,…,xk} each of length n, FIND a string y
of length n and the minimum d such that
h(y,xi)�d, for all i

• Theorem: The closest string problem is NP-
hard

55

Closest substring

• Closest substring problem: given a
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a string y of length m
and the minimum d such that for each i there is
a substring ti of xi of length m satisfying h(y,ti) � d

• Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)

NP-hard: what to do?

• Change the problem
– e.g., “relax” the class of patterns

• Accept the fact that the method may fail to
find the optimal patterns
– Heuristics
– Randomized algorithms
– Approximation schemes

56

Discovering Rigid Patterns

• We report on four recent algorithms

• Teiresias [1998]
• Winnower [2000]
• Projection [2001]
• Weeder [2001]

• (disclaimer: my selection is biased)

Teiresias

57

Teiresias algorithm

• By Rigoustos and Floratos [Bioinformatics, 1998]
• Server at http://cbcsrv.watson.ibm.com/Tspd.html

• The worst case running time is exponential, but
works reasonably fast on average

• A recent improved algorithm runs in polynomial time
by reporting only to irredundant patterns [Parida et
al., 2000]

Teiresias patterns

• Teiresias searches for rigid patterns on the
alphabet Σ U {.} where “.” is the don’t care
symbol

• However, there are some constrains on the
density of “.” that can appear in a pattern

58

<L,W> patterns

• Definition: Given integers L and W, L�W, y is
a <L,W> pattern if
– y is a string over Σ U {.}
– y starts and ends with a symbol from Σ
– any substring of y containing exactly L symbols

from Σ has to be shorter (or equal) to W

Example of <3,5> patterns

• AT..CG..T is a <3,5> pattern

• AT..CG.T. is not a <3,5> pattern, because it
ends with “.”

• AT.C.G..T is not a <3,5> pattern, because
the substring C.G..T is 6 characters long

59

Teiresias

• Definition: A pattern w is more specific than a
pattern y, if w can be obtained from y by
changing one or more “.” to symbols from Σ,
or by appending any sequence of Σ U {.} to the
left or to the right of y

• Example: given y = AT.CG.T, the following
patterns are more specific then y
ATCCG.T, CAT.CGCT, AT.CG.T.A,
T.AT.CGTT.A

Teiresias

• Definition: A pattern y is maximal with respect
to the sequences {x1,x2,…,xk} if there exists no
pattern w which is more specific than y and
f(w)=f(y)

• Given {x1,x2,…,xk} and parameters L,W,K,
Teiresias reports all the maximal <L,W>
patterns that have at least K colors

60

Teiresias algorithm

• Idea: if y is a <L,W> pattern with at least K
colors, then its substrings are also <L,W>
patterns with at least K colors

• Therefore, Teiresias assembles the maximal
patterns from smaller patterns

• Definition: A pattern y is elementary if is a
<L,W> pattern containing exactly L symbols
from Σ

Teiresias algorithm

• Teiresias works in two phases
– Scanning: find all elementary patterns with at least

K colors; these become the initial set of patterns
– Convolution: repeatedly extend the patterns by

“gluing” them together

• Example: y = AT..CG.T and w = G.T.A
can be merged to obtain AT..CG.T.A

61

Convolution phase

• For each elementary pattern y, try to extend it
with all the other elementary patterns

• Any pattern that cannot be extended without
losing support can be potentially maximal

Convolution phase

• To speed-up this phase, one wants to avoid the
all-against-all comparison

• The authors devise two partial orderings <pf
and <sf on the universe of patterns

• Using these orderings to schedule the
convolution phase, they guarantee that
– all patterns are generated
– a maximal pattern y is generated before any non-

maximal pattern subsumed by y

62

Partial ordering <pf

• Definition: determine whether y <pf w or w <pf
y using the following algorithm
– align y and w such that the leftmost residues are in

the same column
– examine one column after the other (left to right)

and stop whenever one column has a residue and
the other has a “.”

– if the residue comes from y then y <pf w
– if the residue comes from w then w <pf y

Example

• y = ASD...F
w = SE.ERF.DG
y <pf w

• y = ASD...F
w = SE.ERF.DG
w <sf y

63

Teiresias algorithm

• Initialize the stack with elementary patterns with
support at least K

• Order the stack according to <pf and <sf
• Repeat

– Repeat
• Try to extend the top pattern to the right with all the others in the

prefix-wise ordering
• If a new pattern is formed with have enough support, it becomes

the new top
– Until the top can no longer be extended to the right
– Do the same for left extension, using the ordering <sf
– Check the top for maximality, if so pop it and report it

• Until stack is empty

Conclusions on Teiresias

• It can be proved that Teiresias correctly reports
all <L,W> maximal patterns

• Pros:
– provably correct
– fast on average input

• Cons:
– exponential time complexity
– limited to <L,W> patterns

64

Winnower

Pevzner and Sze, UCSD

Winnower

• Invented by Pevzner and Sze [ISMB 2000]
• Initially designed to solve the (15,4)-motif

challenge
• Planted (m,d)-motif problem:

– The problem is to determine an unknown pattern y
of length m in a set of k nucleotide sequences, each
of length n, and each one containing exactly one
occurrence of a string w such that h(y,w)=d

65

Winnower

• Pevzner and Sze show that the most popular
algorithms (Consensus, GibbsDNA, MEME)
fail to solve (most of the times) the (15,4)-
motif problem [n=600, k=20]

• (Note: this comparison is not totally fair)
• Why the (15,4)-motif problem is difficult?
• Because two strings in the class of the (15,4)

unknown pattern may differ by as many as 8
positions out of 15, a rather large number

Winnower

• Idea: Search for groups of strings of length m
such that any two in a group differ at most by
2d positions

• Remember however that this may not be
sufficient

66

Winnower

• How to find groups of patterns such that given
any two elements w1 and w2 in the group,
h(w1,w2)�2d?

• One could generate (k choose 2) multiple
alignments to find out all pairs of substrings of
length m that have at most 2d mismatches
(Consensus [Hertz & Stormo 1999])

Winnower
• Winnower builds a graph G in which

– each vertex corresponds to a distinct string of
length m

– two vertices are connected by an edge if the
Hamming distance between the corresponding
strings is at most 2d, and the strings do not come
from the same sequence (remember that we are
guaranteed that there is only one occurrence of the
unknown pattern in each sequence)

67

Graph for the (15,4)-problem

• They report that for each “signal”-edge there
are about 20,000 spurious-edges

• Finding the signal among the noise is a
“daunting task”

Winnower

• Winnower searches the graph G for cliques,
which are subsets of vertices totally connected

• But the problem of finding large cliques in
graphs is NP-complete

68

Multipartite graphs

• Definition: A graph G is n-partite if its vertices
can be partitioned into n sets, such that there is
no edge between any two vertices within a set

• Fact: Winnower’s graph is k-partite

Example

• Given sequences {abde,afcg,hbci,jbck} we
look for a (3,1)-motif

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

69

Idea

• Each vertex of the clique has to be in a
different partition

• We look for cliques that have exactly one
vertex in each partition

Extendable cliques

• Definition: a vertex u is a neighbor of a clique
{v1,…,vs} if {v1,…,vs,u} is also a clique for G,
when s<k

• Definition: a clique is called extendable if it
has at least one neighbor which has at least one
vertex in every part of the k-partite graph G

70

Extendable cliques

• Definition: A clique with k vertices, each in a
different partition is called maximal

• Consider a maximal clique and take a subset
of t of its vertices: this subset is an
extendable clique

• Idea: remove edges that do not belong to
extendable cliques

Extendable cliques

Fact: For any clique of size there are

extendable cliques with vertices

Fact: Any edge belonging to a clique with

- 2
vertices is member of at least

- 2

extendable cliques of size

k
k

t

t

k

k
t

t

71

Idea

- 2
An edge that is not member of at least

- 2

expandable cliques of size cannot be part of
a maximal clique and therefore it can be
removed

k
t

t

t=1

• For t=1, each vertex is a clique
– it is extendable if it is connected to at least one

vertex in each partition

• Delete all edges corresponding to vertices that
do not have a neighbor in each partition

• Iterate

72

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

73

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

74

t=2

• For t=2, each pair of vertices u,v such that
there is an edge (u,v) is a clique
– it is extendable if there is vertex z in each of the

other k-2 partitions such that (u,v,z) is a cycle of
length 3

– each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2

t>2

• For t=3, Winnower removes edges that belong
to less than k-2 extendable cliques of size 3

• For t=4, Winnower remove edges that belong
to less than (k-2)(k-1)/2 extendable cliques of
size 4

• …

75

Remarks on Winnower

• Pros:
– more effective than Meme, Consensus and

GibbsDNA for the (15,4) problem

• Cons:
– randomized
– time-complexity can be very high (e.g., for t=3 is

O(n4))
– need to know m and d in advance
– assume exactly one occurrence per sequence

Projection

76

Random Projection algorithm

• Proposed by Buhler and Tompa [Recomb
2001]

• The algorithm was initially designed to solve
the (m,d)-motif planted problem

Analysis on (m,d)-motif problem

(0)

(1) (0)

Suppose A,C,T,G have probability 1/ 4. Then the
probability that a pattern of size occurs at a

given position is (1/ 4) . If we allow up to

one mismatch, the probability becomes

(3/ 4)(1/ 4)

m

m

p

p p m

=

= + 1

2 2
(2) (1)

()
0

. If we allow at most two, it

(1)
becomes (3/ 4) (1/ 4) . In general, if

2

3 1
we allow up to mismatches, .

4 4

m

m

i m id

d
i

m m
p p

m
d p

i

−

−

−

=

−
= +

 =
∑

77

Analysis on (m,d)-motif problem

1
()

If is the r.v. for the number of occurrences,

then (0) 1- (0) 1 - (1-)

If we have sequences, we get that the probability
that a particular y occurs at least once in each

sequence is 1 - (1-

n m
d

Z

P Z P Z p

k

p

− +> = = =

()

()

- 1
()

1
()

) .

Therefore, the expected number of patterns is

 (, , ,) 4 1 - (1-) .

kn m
d

km n m
dE n m k d p

+

− +≡

Stats of spurious (m,d)-motifs in
simulated data (k=20,n=600)

m iterE(600,m,20,d) E(600,m+1,20,d)

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve

78

Random Projections

• Idea: select t random positions and for each
substring of length m of the text hash its
selected positions into a table

• Hopefully, the cell corresponding to the
planted motif will be the one with the highest
count

Random Projection algorithm

• Parameters (m,d), n, k, s, possibly i
• Set t < m-d and 4t > k(n-m+1)
• Build a table with all substrings of length m
• Repeat i times

– Select randomly t positions
– Repeat for all substrings in the table

• Increase the count of the cell indexed by the t positions

• Select all cells with count �s

79

Random Projection algorithm

• We want t < m-d because we want to sample
from the “non-varying” positions

• The number of iterations i can be estimated
from m, d and t

Random Projection algorithm

• Since we are hashing k(n-m+1) substrings of
size m into 4t buckets, if 4t > k(n-m+1) each
bucket will contain on average less than one
substring (set s=1)

• The constrain is designed to filter out the noise
• The bucket corresponding to the planted motif

is expected to contain more motif instances
than those produced by a random sequence

80

Random Projection algorithm

• If the constrain 4t > k(n-m+1) cannot be
enforced, the authors suggest to set
t = m-d-1 and the threshold
s = 2 [k(n-m+1)/4t] (twice the average bucket
size)

Motif refinement

• The algorithm will try to recover the unknown
motif from each cell having at least s elements

• The primary tool for motif refinement is
expectation maximization (EM)

81

Experiments

• Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20,
n=600)

• Winnower fails the (14,4)- (16,5)- and (18,6)-
motif problem

Results

m iter

k=20, n=600, winnower (t=2), projection (t=7,s=4, 20 random instances)

82

Remarks about Projection

• Pros:
– fast and effective

• Cons:
– need to know m and d in advance
– randomized

Weeder

83

Weeder

• Proposed by Pavesi, Mauri and Pesole [ISMB
2001]

• Draw ideas from PRATT by [Jonassen95,
Jonassen97] and [Sagot98]

• It is an exhaustive approach for a particular
class of rigid patterns

Exhaustive approach

• Suppose that you want to spell out all possible
(m,d) rigid patterns that has at support least q

• One way to do it, is to use a (generalized)
suffix tree [Sagot 98]

84

Idea [Sagot 98]

• Any deterministic pattern (substring) w
corresponds to a path in the tree ending in a
node u, called the locus of w – the number of
leaves in the subtree rooted at u gives the
support

• Any model (rigid pattern) corresponds to a set
of paths in the tree ending in nodes
{u1,u2,…,ul} – the total number of leaves in the
subtrees rooted at {u1,u2,…,ul} gives the
support

Example

Hamming distance

approx c(ATA)=2 f(ATA)=4
d = 2
q = 2

85

Example

This path belongs to models:
(AGA,0)
(AAA,1)

(CGA,1) (ACA,1) (AGC,1)
(TGA,1) (ATA,1) (AGT,1)

(GGA,1) (AGG,1)
………

d = 2
q = 2

Exhaustive approach [Sagot 98]

• Start with all paths of length d with enough
support (they represent valid models)

• At each path-extension keep track of the
mismatches and the support
– if the number of mismatches has not been reached

the model will be extended by the symbols in Σ
(therefore the number of models will be scaled up
by a factor |Σ|)

– otherwise we are allowed just to follow the arcs

86

Time complexity [Sagot 98]

• Finding all the models with
support=occurrences in a single sequence takes
O(n N(m,d)) = O(n md |Σ|d)

• Finding all the models with support=colors in
a multisequence takes
O(n k2 N(m,d)) = O(n k2 md |Σ|d)

• Note that the complexity is exponential (with
d)

Weeder

• Pavesi et al., implemented the algorithm by
Sagot but it was running too slow, and they
decided to change the class of patterns

• Weeder is designed to find rigid patterns
which have an amount of mismatches
proportional to their length (the same constrain
applies also to all their prefixes)

87

Example ε =0.25

1

2

3

4

Time complexity

• By restricting the number of mismatches to
εm, the time complexity becomes
O(n k 1/ε εm |Σ|εm)

88

The (15,4)-motif challenge … again

• Since the restriction on the density of the
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE
sequence

• Then, the probability of Weeded to get the
motif in all the 20 sequence is almost zero

• On the other hand, running the Sagot’s version
is too time-consuming

Idea

• Split the set of sequence into two halves
• Run Weeder on each of the two sets requiring

support k/4 (instead of k/2)
• The probability that the (15,4)-motif will be in

either subset is 0.98
• The pool of model candidates is then

processed with Sagot’s algorithm

89

Remarks about Weeder

• Pros:
– Possibly exhaustive (if using Sagot’s algorithm)
– The relative error rate ε may be more meaningful

than d and allows one not to specify in advance m

• Cons:
– Very slow if run exhaustively - it cannot be

considered exhaustive in practice

Discovering Profiles

90

Discovering Profiles

• If one assumes the unknown profile to have
been generated by a sequence of independent
r.v.s then the observed frequency of letters in
the columns of the profile are the ML
estimates of the distributions of the r.v.s

• Unfortunately we do not know the positions of
the profile in the multisequence

Gibbs sampler

91

Gibbs sampling

• Proposed by Lawrence, et al., [Science, 1993]
• Web servers at

http://bayesweb.wadsworth.org/gibbs/gibbs.html and
http://argon.cshl.org/ioschikz/gibbsDNA/

• Input: multisequence {x1,x2,…,xk}
pattern length m

• Output: a matrix profile qi,b, b∈Σ, 1�i�m, and
positions sj, 1�j�k, of the profile in the k
sequences

Gibbs sampling

• The algorithm maintains the background
distribution pA,…,pT of the symbols not
described by the profiles

• P(y) is the probability of y based on the
background distribution pb, b∈Σ

• Q(y) is the probability of y based on the
profile qi,b , 1�i�m, b∈Σ

92

Gibbs sampling

• Idea: the profile is obtained by locating the
positions which maximizes Q(y)/P(y); once the
positions are obtained a new, more accurate,
version of the profile can be obtained

• Initialize the initial positions sj randomly

Gibbs sampling

Gibbs sampler iterates 1), 2) until convergence
1) Predictive update step: randomly choose one of

the k sequences, say r. The matrix profile qi,b
and the background frequencies pb are
recomputed from the current positions sj in all
sequences excluding r

2) Sampling step: assign a weight z(y)=Q(y)/P(y)
to each substring y of length m. Select randomly
a substring y with probability z(y)/Σyz(y), and
then update sj

93

Gibbs sampling

• The more accurate the pattern description in step 1),
the more accurate the determination of its position in
step 2), and vice versa

• Once some correct positions have been selected by
chance, qi,b begins to reflect, albeit imperfectly, the
unknown pattern

• This process tends to recruit further correct positions
which in turn improve the discriminating power of
the evolving pattern

Gibbs sampling

• How to update the matrix profile qi,b and the
background frequencies pb?

• We set qi,b=(f i(b)+db)/(k-1+Σc dc) where f i(b) is
the number of times we observe symbol b in the
position i of the profile (currently placed at
position sj), except for sequence r (db are pseudo-
counts)

• We set the background probabilities
pb=f(b)/Σc f(c) for all symbols in positions not
covered by the profile

94

Phase shift problem

• Suppose that the “strongest” pattern begin, for
example, at position 7, 19, 8, 23, …

• If Gibbs happens to choose s1=9, s2=21 it will
most likely choose s3=10 and s4=25

• The algorithm can get stuck in local maxima,
which are the shifted form of the optimal
pattern

Phase shift problem

• The problem can be alleviated by adding a step
in which the current set of positions are
compared with sets of shifted left and right
positions, up to a certain number of symbols

• Probability ratios may be calculated for all
positions, and a random selection is made with
respect to the appropriate weight

95

Gibbs sampling

• It can be generalized to:

• Find also the length of pattern m

• Find a set of matrix profiles, instead of one

Gibbs sampling

• Since Gibbs sampler is an heuristic rather than
a rigorous optimization procedure, one cannot
guarantee the optimality of the result

• It is a good practice to run the algorithm
several times from different random initial
positions

96

Gibbs sampling vs. EM

• Although EM and Gibbs are built on common
statistical foundation, the authors claim that
Gibbs outperforms EM both in term of time
complexity and performance

• “EM is deterministic and tends to get trapped
by local optima which are avoided by Gibbs …
HMMs permit arbitrary gaps … have greater
flexibility, but suffer the same penalties …”

Expectation Maximization
and MEME

97

Expectation maximization

• EM was designed by Dempster, Laird, Rubin
[1977]

• EM is a family of algorithms for maximum
likelihood estimation of parameters with
“missing data”

EM, when?

• When we want to find the maximum
likelihood estimate of the parameters of a
model and
– data is incomplete, or
– the optimization of the maximum likelihood

function is analytically intractable but the
likelihood function can be simplified by assuming
the existence of additional, missing, parameters
value

98

Expectation maximization

• EM approaches the problem of missing
information by iteratively solving a sequence
of problems in which expected information is
substituted for missing information

Expectation maximization

• All EM algorithms consists of two steps:
1) the expectation step (E-step)
2) the maximization step (M-step)

• The expectation step is with respect to the
unknown underlying variables, using the
current estimate of the parameters and
conditioned upon the observation

99

Expectation maximization

• The maximization step provides a new
estimate of the parameters

• θ1% θ2 % θ3 % … % θt % θt+1 % …

• The two steps are iterated until convergence

General framework for EM

• Suppose we want to find the parameters θ of a
model (training)

• We observe x (training set)

• The probability of x under θ is also determined
by the missing data y

100

Incomplete data model

Incomplete data model

Complete data model

(x,y)

An occurrence of (x,y) implies an occurrence of x, however only x can be
observed. This observation reveals the subset {(x,y), for all y}

x

Expectation maximization

• Example: For HMMs, x is the sequence we
want to learn from, θ is the transition and
emission probabilities, y is the path through the
model

• Example: In the case of Random Projections, x
are the subsequences corresponding to a cell
with count higher than the threshold, θ are the
parameters of a representation of the (m,d)
pattern, y are all the missing positions

101

MEME

• Proposed by Bailey and Elkan [Machine
Learning J., 1995]

• “Multiple EM for Motif Elicitation” (MEME)
is an improved version of the expectation
maximization approach by Lawrence and
Reilly [Proteins, 1990] (see appendix)

• Designed to discover profiles (no gaps)
• Server at http://meme.sdsc.edu/meme/

MEME

• There are three main differences w.r.t.
Lawrence et al.:

1) the initial profiles are not chosen randomly,
but they are substrings which actually occur
in the sequences

2) the assumption that there is only one
occurrence of the motif is dropped

3) once a profile has been found, it is reported,
and the iterative process continues

102

Using substring as starting points

• Idea: substrings actually occurring in sequence
are better starting points than random choices

• Each substring is converted into a profile
• Assigning 1.0 to the occurring symbol and 0.0

to the others is a bad choice, because EM
cannot move from this

• The authors arbitrarily assign probability 0.5 to
the symbol and 0.5/3 for the other three

Using substring as starting points

• It would be too expensive to run EM until
convergence from each substring

• It turns out that this is not necessary

• EM converges very quickly from profiles
obtained from substrings, and the best starting
point can be found running only one iteration

103

MEME algorithm

• Repeat
– For each substring y in {x1,x2,…,xk} do

• Run one EM iteration with profile computed from y
• Choose the profile q with highest likelihood
• Run EM until convergence starting from q
• Report the profile q
• Erase the occurrences of q from dataset

• Until max number of iterations is reached

Dealing with multiple occurrences

• MEME allows to drop the “one-per-sequence”
assumption

• The basic idea is to require the user to supply
an estimated number of occurrences of the
unknown profile and use that to normalize the
estimation process of the EM algorithm

• The authors claim that the exact value of the
number of occurrences is not critical

104

Finding multiple profiles

• MEME does not stop after finding the most
likely profile

• Once a profile is found and reported, it is
“probabilistically erased” by changing some
position-dependent weight

• The process continues until a number of
predetermined motifs have been found

• (see appendix for mega-prior heuristic)

THE END

Latest version of the slides atLatest version of the slides at http://www.cs.ucr.edu/~stelo/ismb02/http://www.cs.ucr.edu/~stelo/ismb02/
Check out alsoCheck out also http://www.cs.ucr.edu/~stelo/cs260/http://www.cs.ucr.edu/~stelo/cs260/

