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Roadmap

• Why “pattern discovery”
• Basic concepts
• Problem definition
• Classification of patterns
• Complexity results
• Efficient algorithms for pattern discovery

– Deterministic patterns: Verbumculus
– Rigid patterns: Teiresias, Winnower, Projection, Weeder
– Profiles: Gibbs sampling, Meme

• Appendix 
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Why “pattern discovery”?

Discovery of regulatory elements

• Promoter: a region of DNA involved in 
binding of RNA polymerase to initiate 
transcription

• Enhancer: a region of DNA that increases the 
utilization of (some) promoters (it can function 
in either orientation and any location relative 
to the promoter)

• Repressor: a region of DNA that decreases the 
utilization of (some) promoters 
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Source: Lewin, genes VII

Transcription

• Different factors are involved in the 
transcription machinery
– presence of transcription factors and their binding 

sites
– ability of DNA to bend
– relative location of the binding sites
– presence of  CpG islands (“p” is for phosphate)
– …
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Transcription factors binding sites

…

CoCo--regulated genesregulated genes

Pattern discoveryPattern discovery

…

Putative binding sites

Basic concepts
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CACTCATCTCATAAGCTTAGCTGAATGGATAGGCTTGCTTTCTGATGGAAATTTGCCTTG
CTTTTCCAACTATTCCATTACTCAGGTTTTATTTTTTTATTTTGTAATATGGGGAGAAGG
CCGGCAGAATATTTACGGACAAATGAATAAATTGGATTGGATTGACTAGTGGAACGTGTA
AAGATCGCGATACTCCGTACCAATCACCGAAAGATTGCCCGTAACCGAAATGACTCCATT
CTCTGAATTTTTTGTGAAACCAATATCTGAGACTCTTCCTTCATCTTATCAACGTATTGT
TCAGTCAATTAAGTAAGAAGTATATTTGAGCGCAGCCTTAATCATATATAGCACCAGTTA
TATGTTTGCCCCTCTCTTGAGTTGAAAAACACATAATACATAGTACTGTACTTTTCTCTT
TTTCATCGTTGGCGAAAATATAATCTTTCTCAAAAATATATATATATGTATATATATCCT
TAGATTTGCCGTTGACAATAAGGTGGGCGGCAAATCTACGAAATGCGAGGCGGTTAAAAG
AGAGTGACAACATTTTCATAAAAATATTCTGATCTCAAACTGAAGACATAAAATAAGGAT

CAAATATCTACAATGCCGTCTGCTTTATGTCTTTTTCTAAAGGCATCGATTTTATGTGTG
GATAATTGCATCGCAGTAATATGTAGAGCACAATTTGTAGAAATCGGAATTGGAGGTATC
GGATCTTGTTGAATATCCACCAATGTCTTACCCCTGTATTTTAACAAGAGTTTACGCTGT
TATATGGTTAAAGGTGTGGACGCCTTGAAGGTTTACCTTACCGAATGACACCTTTACAAT
AGTCAGATCACGTTCTGTGGCGTTATCCAAAGTTAGCGCAGTTTTCCGATGGTCCAATGT
AATCATTAGAAATAGTAAAAACTGTGTAATGGTAAAGATTGTGTCACTGGAAAAAAACTG
CTACAAATAATAAATAAATAAAAAAATACGAAAGCACAGTACTACGGGTGCCTCCACAAA
TAGATAAGAAACCAAGCGGAGACATGCGTTTAGATGAGGATATAAATTATTTATACAACC
AGACTATATAAAAGAGCATCTAGTTTACCTGTTATGATGAATGGACATTCGCTACATATC
TTACTCTCTATTTGTTAAAAAAAATTACAAAGAGAACTACTGCATATATAAATAACATAC

ATAAGCGTCCTTCTGTGGTTTAGATATGCTATACCGGCGGAACTTTGTTACACACGGCTC
GCGCGAATCCTTAGGGGAAAACATTGCGCTGACTTTCCCCAGAGTTGTTGCCACAACATA
AGCCGCTTTGGAGTGTTGAACAAATCCGTCCTTGGGTCATTCAATCAATGGCTTGGCGGT
ATCTCAAAAGAGCGCAAACTAATAGCGCGCACATTCGACGCATTTATCCGGTGGTCATCG
ACTAGGGGCGAAGAGGTCACGACCTATTTTTTCTTGCAGAAAAAAAGTGTGACCTTTTCC
GTAGCTAGACGTCTATCAGGGCGTCAGCAATGGGAGGCACAGCGGAAAAACAATAACAAT
GGTAAGCGCAATTACCTTTTGAGCGTTACATTCGTATGAAATTGGTGACGTTAATCTAAA
GATAGTCATGCTCTCAAAAGGGCCCATTATTCTCGACGTTGAGCGTATATAAGACTATTA
AAACTTGGTTCTTTAGATATGGTGTTCGTTCCTCATTATTAAGTTTCAGGGAACAATATC
AACACATATCATAACAGGTTCTCAAAACTTTTTGTTTTAATAATACTAGTAACAAGAAAA

CCACCCTTTTGTGGGGCTTCTATTTCAAGGACCTTCATTATGGAAACAGGGCGAGGTTGT
TTGTTCTTCCTGCATGTTGCGCGCAGTGCGTAAGAAAGCGGGACGTAAGCAGTTTAGCCA
TTCTAAAAGGGGCATTATCAGAATAAGAAGGCCCTATGAGGTATGATTGTAAAGCAAGTG
GTGTAAAATTGTGTGCTACCTACCGTATTAGTAGGAACAATTATGCAAGAGGGGTCCTGT
GCAAATAAAAAATATATATCTAGAAAAAGAGTAGGTAGGTCCTTCACAATATTGACTGAT
AGCGATCTCCTCACTATTTTTCACTTATATGCAGTATATTTGTCTGCTTATCTTTCATTA
AGTGGAATCATTTGTAGTTTATTCCTACTTTATGGGTATTTTCCAATCATAAAGCATACC
GTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTAAATTTCGGCGGCTATTTCAT
TCATTCAAGTATAAAAGGGAGAGGTTTGACTAATTTTTTACTTGAGCTCCTTCTGGAGTG
CTCTTGTACGTTTCAAATTTTATTAAGGACCAAATATACAACAGAAAGAAGAAGAGCGGA

CACAGGCGCTACCATGAGAAATTTGTGGGTAATTAGATAATTGTTGGGATTCCATTGTTG
ATAAAGGCTATAATATTAGGTATACAGAATATACTAGAAGTTCTCCTCGAGGATATAGGA
ATCCTCAAAATGGAATCTATATTTCTACATACTAATATTACGATTATTCCTCATTCCGTT
TTATATGTTTATATTCATTGATCCTATTACATTATCAATCCTTGCGTTTCAGCTTCCTCT
AACATCGATGACAGCTTCTCATAACTTATGTCATCATCTTAACACCGTATATGATAATAT
ATTGATAATATAACTATTAGTTGATAGACGATAGTGGATTTTTATTCCAACAGAAGGAGT
GGATGGAAAAGTATGCGAATTAAAGTAATCCATGTGGTAAATAAAATCACTAAGACTAGC
AACCACGTTTTGTTTTGTAGTTGAGAGTAATAGTTACAAATGGAAGATATATATCCGTTT
CGTACTCAGTGACGTACCGGGCGTAGAAGTTGGGCGGCTATTTTGACAGATATATCAAAA
ATATTGTCATGAACTATACCATATACAACTTAGGATAAAAATACAGGTAGAAAAACTATA

TTTCCTTCTGGTTCGTAGGCTTCTTCAAGTCCTTAATACCGCTTTTACCGACCCGATAGT
TATTAGTGTCCTTTTTTGTATAAGAATGGTTGATGCAAGTATTTTCTTCTTCGTTCACCA
AAGTTTTGTCCTTGTCTAGCCACTCTTCCTGATTGTGCATTACTATTAGATAACTGTAAT
TTGGTGCTTTTCCTGGAAAGTATACTTGTGATGTGGAAGTATTTTAAGTTCAAGTTTCTT
GTTTTCTTTCCTATTTATGCGGAAGGTACATAGAAGTTTGGGCGGCTAATACTTTTTCCG
CGGCTAATCCTATAGTAAAATGATCACTTTCATATAGAAAGTTGGTATATAAAGTGTCAA
CTAAGAGAGAAATAGTTCGAACCAGGTGTATTTTAAATCAACTATCGGGAAGTATGGACT
GGTGGTATAATCGAATTACATAGTCCTTTTACCTTCATTAGTAGTACTTAAGTGTCACCC
GCCTGGGGATTTTGCTCTCATAGAAGTAAAAGGGTAGTGCTATGGGAGCACATTAGGTAG
TTCAGTTACGTTTTATGGCAGTCACTGTTTTCGCAAAGACTCCCAGACACGGGCATTAAA

Occurrences vs. Colors

Some notations

( ) : number of  of 
 ( ) : number of  of 

Depending on the application, ( )
and/or ( ) is used. In general, these
quantities ar
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co
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f y y
c y y

f y
c y
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Occurrences: types

non-overlapping

adjacent

overlapping

For our purposes, any of the above is simply an occurrence
Keep in mind that in some cases you may have to distinguish them

Example (DNA)

x1 = CCACCCTTTTGTGGGGCTTCTATTTCAAGG
x2 = TTGTTCTTCCTGCATGTTGCGCGCAGTGCG
x3 = TTCTAAAAGGGGCATTATCAGAAAAAGAAG
x4 = GTGTAAAATTGTGTGCTACCTACCGTATTA
• Σ = {A,C,G,T}    |Σ| = 4    n = 120
• e.g., y = AAAA is a substring of x3 and x4

– f(y) = 4 (occurrences can overlap)
– c(y) = 2
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Bernoulli and Markov models

• Two typical hypothesis about the source 
(probabilistic models)

• Bernoulli: symbols are generated 
independently and they are identically 
distributed (i.i.d. or memoryless)

• Markov: the probability distribution for the 
“next” symbol depends on the previous h
symbols (h>0 is the order of Markov chain)

Example (no. of occurrences)

• We want to describe the number of 
occurrences f(y) of a pattern y in the text x

• Recall |x|=n, |y|=m
• Let us choose a particular location i in the text

(i < n-m+1)

y

x

i
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Example on no. of occurrences

• Assuming a Bernoulli model for the source 
that generated x, i.e., symbols are generated 
i.i.d., the probability that y occurs at position i 
in the text is
P(x[i]=y[1] , x[i+1]=y[2] ,…,x[i+m-1]=y[m])=
P(x[i]=y[1] ) P(x[i+1]=y[2]) … P(x[i+m-1]=y[m])=
py[1] py[2] … py[m]

• Note that in general we do not know the “true” 
pa and they have to be estimated from the 
observation x

Example on no. of occurrences

• Now we have to consider that y can occur in n-
m+1 positions (from 1 to n-m+1)

• At each position the probability is py[1] py[2] … 
py[m]

• Since we assumed a Bernoulli model, the 
random variables for each position are 
independent, then

E[X] = (n-m+1) Πj=1..m py[j]
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A r.v. for the no. of occurrences
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“Pattern Discovery”: the problem

Pattern discovery: the problem

• Given a set of sequences S+ and a model of the 
source for S+

• Find a set of patterns in S+ which have a 
support that is statistically significant with 
respect to the probabilistic model

• If we are also given negative examples S-, we 
must ensure that the patterns do not appear in 
S-
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Pattern discovery problem

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+

Noisy data

Pos & Neg examples Only Pos examples

S+

F+ F+

F- F-

S-

S+
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Pattern discovery “dimensions”

• Type of learning
– from positive examples only (unsupervised)
– from both positive and negative examples 

(supervised)
– noisy data

• Type of patterns
– deterministic, rigid, profiles, …

• Measure of statistical significance
• A priori knowledge

Output

• True positive: a pattern belonging to the 
positive training set which has been correctly 
classified

• True negative: a pattern belonging to the 
negative training set which has been correctly 
classified

• False positive: misclassified as positive
• False negative: misclassified as negative
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Measuring pattern discovery

• Complete: if no true pattern is missed
– but we may report too many patterns

• Sound: if no false pattern is reported
– but we may miss true positives

• Usually there is a tradeoff between soundness 
and completeness: if you increase one, you 
will decrease the other

Measuring the performance

• Information Retrieval measures
– Precision = true pos / (true pos + false pos)

• expresses the proportion of discovered patterns out of 
the total reported positive

• also called sensitivity

– Recall = true pos / (true pos + true neg)
• expresses the proportion of discovered patterns out of 

the total of true patterns
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A classification of patterns

Types of patterns

• Deterministic patterns
• Rigid patterns

– Hamming distance

• Flexible patterns
– Edit distance

• Matrix profiles
üA motif is any of these patterns, as long as it is 

associated with biological relevance
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Deterministic Patterns

• Definition: Deterministic patterns are strings 
over the alphabet Σ
– e.g., “TATAAA” (TATA-box consensus)

• Discovery algorithms are faster on these types 
of patterns

• Usually not flexible enough for the needs of 
molecular biology

Rigid patterns

• Definition: Rigid patterns are patterns which 
allow substitutions/“don’t care” symbols
– e.g., the patterns under IUPAC alphabet 

{A,C,G,T,U,M,R,W,S,Y,K,V,H,D,B,X, 
N} where for example R=[A|G], Y=[C|T], etc.

– e.g, “ARNNTTYGA” under IUPAC means 
“A[A|G][A|C|G|T][A|C|G|T]TT[C|T]GA”

• Note that the size of the pattern is not allowed 
to change
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Hamming distance

• Definition: Given two strings y and w such that 
|y|=|w|, the Hamming distance h(w,y) is given 
by the number of mismatches between y and w

• Example:
y=GATTACA
w=TATAATA
h(w,y)=h(y,w)=3

Hamming neighborhood

• Definition: Given a string y, all strings at 
Hamming distance at most d from y are in its
d-neighborhood

• Fact: The size N(m,d) of the d-neighborhood 
of a string y, |y|=m, is

( ) ( )
0

( , ) 1
d j dd

j

m
N m d O m

j=

 
= Σ − ∈ Σ 

 
∑
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Hamming neighborhood

• Example:
y = ATA the 1-neighborhood is
{CTA,GTA,TTA,
AAA,ACA,AGA,
ATC,ATG,ATT,
ATA}

• This set can be written as a rigid pattern
{NTA|ANA|ATN}

Models

• We may be able to observe occurrences of the 
neighbors of y, but we may never observe an 
occurrence of y

• Definition: The center of the d- neighborhood
y is also called the model

• Definition: We say that a model is valid if it 
has enough support (occurrences/colors)
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y is the (unknown) model
d is the number of allowed mismatches
w1, w2, w3 belongs to the neighborhood of y

Hamming neighborhood

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, then 
h(w1,w2)�2d

• The problem of finding y given w1,w2,… is 
sometimes called Steiner sequence problem

• Unfortunately, even if we were able to 
determine exactly all the wi in the 
neighborhood, there is no guarantee to find the 
unknown model y
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Example

• Suppose m=4, d=1 and that we found 
occurrences of {AAAA,TATA,CACA}

• The pairwise Hamming distance is 2 but there 
is no string at Hamming distance 1 to each of 
these

Word match filtering

• Fact: Given two strings w1 and w2 in the d-
neighborhood of the model y, they both 
contain an occurrence of a word of length at 
least m/(2d+1)

• Example: y = GATTACA
w1 = GATTTCA
w2 = GGTTACA
TT and CA are occurring exactly. In fact 
m/(2d+1)=7/3=2
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Word match filtering

• Proof: there are at least m-2d matching 
positions, divided into at most 2d+1 segments 
(some possibly of length 0) by intervening 
mismatches. The average length of a segment 
is therefore (m-2d)/(2d+1).
Hence there exists a segment with no 
mismatches of length at least (m-2d)/(2d+1)
= m/(2d+1).

Flexible patterns

• Definition: Flexible patterns are patterns 
which allow substitutions/“don’t care” 
symbols and variable-length gaps 
– e.g., Prosite F-x(5)-G-x(2,4)-G-*-H

• Note that the length of these pattern is variable
• Very expressive
• Space of all patterns is huge
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Edit distance

• Definition: the edit distance between two 
strings y and w is defined as the minimum 
number of edit operations - insertions, 
deletions and substitutions - necessary to 
transform y into w (matches do not count)

• Definition: a sequence of edit operations to 
transform y into w is called an edit script

Edit distance

• The edit distance problem is to compute the 
edit distance between y and w, along with an 
optimal edit script that describes the 
transformation

• An alternative representation of the edit script 
is the alignment
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Example

• Given w = GATTACA
y = TATATA

GATTACA%ATTACA%TTACA
%TATACA%TATATA (1 ins, 2 del, 1 sub)

GATTACA%TATTACA
%TATACA%TATATA (0 ins, 1 del, 2 sub)

• Edit distance is 3

Corresponding global alignment

• Given w = GATTACA
y = TATATA

• We can produce the following alignments
GAT-TAC-A G-ATTAC-A
--TATA-TA -TAT-A-TA

where “–” represents a space (we cannot have 
“–” aligned with “–”)
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Profiles

• Position weight matrices, or profiles, are 
|Σ|×m matrices containing real numbers in the 
interval [0,1]
– e.g.

– consensus

0.48

0.09

0.17

0.26

0.540.000.410.45T
0.000.000.000.15G
0.350.000.590.18C
0.111.000.000.22A

Profiles as classifiers

• Profiles can be used directly to implement very 
simple classifiers

• Suppose we have a sample S+ of known sites, 
and a sample S- of non-sites

• Given a new sequence x, how do we classify x
in S+ or in S-?
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Example: CRP binding sites

• S+={TTGTGGC,  ACGTGAT,    CTGTGAC,
TTTTGAT,  ATGTGAG,    ATGAGAC,
AAGTGTC,  TTGTGAG,    TTGTGAG}
ATTTGCA,  CTGTAAC,
CTGTGCG,  CTGTAAC,
ATGCAAA,  TTGTGAC,
GTGTTAA,  GCCTGAC,
ATTTGAA,  TTGTGAT,
TTGTGAT,  TTGTGAT,
ATTTATT,  GTGTGAA,

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]

Training (CRP sites)

0.2600.0870.0430.9100.1700.8700.350G
0.1700.0430.8300.0000.7800.0000.130T
0.3000.0430.0000.0430.0430.0870.170C
0.2600.8300.1300.0430.0000.0430.350A

• Assume the uniform Bernoulli model for the 
non-sites S-, that is pA=0.25, pC=0.25, pT=0.25,
pG=0.25 for all the positions

• Assume a Bernoulli model for each position
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Testing

• Suppose you get x = GGTGTAC 
Is x more likely to belong to S+ or to S-?
In other words, it is more likely to be generated from 
the Bernoulli model for S+ or from the uniform 
Bernoulli model (for S-)?

• Let’s compute the probability

7

( | ) .35*.87*.78*.91*.83*.83*.3 0.045

( | ) (.25) 0.0000061
( ) ( | ) / ( | )

P x GGTGTAC S

P x GGTGTAC S
LR x P x S P x S

= + = =

= − = =
= + +

Discovering Deterministic
Patterns
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Enumerative approach: idea

• Define the search space
• List exhaustively all the patterns in the search 

space
• Compute the statistical significance for all of 

them
• Report the patterns with the highest statistical 

significance

Enumerative approach

• E.g., search space for deterministic patterns of 
size m is O(|Σ|m)

• Can we do better than |Σ|m?
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Enumerative approach

• The search space for deterministic pattern is 
already too big
– e.g., there are 1,048,576 possible deterministic 

patterns of size 10 on the DNA alphabet

• How to prune it?

Detection of Unusual Patterns

MODELMODEL

…ATGACAAGTCCTAAAAAGAGCGAAAACACAGGGTTGTTTGATTGTAGAAAATCACAGCG

>MEK1

CCACCCTTTTGTGGGGCTTCTATTTCAAGGACCTTCATTATGGAAACAGGGCGAGGTTGT

TTGTTCTTCCTGCATGTTGCGCGCAGTGCGTAAGAAAGCGGGACGTAAGCAGTTTAGCCA

TTCTAAAAGGGGCATTATCAGAATAAGAAGGCCCTATGAGGTATGATTGTAAAGCAAGTG

GTGTAAAATTGTGTGCTACCTACCGTATTAGTAGGAACAATTATGCAAGAGGGGTCCTGT

GCAAATAAAAAATATATATCTAGAAAAAGAGTAGGTAGGTCCTTCACAATATTGACTGAT

AGCGATCTCCTCACTATTTTTCACTTATATGCAGTATATTTGTCTGCTTATCTTTCATTA

AGTGGAATCATTTGTAGTTTATTCCTACTTTATGGGTATTTTCCAATCATAAAGCATACC

GTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTAAATTTCGGCGGC…

parameters

??
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Naïve approaches

2) Enumerate and test all patterns which 
occur in the sequences

1) Enumerate and test all patterns 
composed by m symbols, for 1�m�n

n=1,000,000   |Σ|=4

2) Patterns to be tested O(n2)
in this case ∝ 1,000,0002

1) Patterns to be tested O(|Σ|n)
in this case ∝ 41,000,000
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Enumerating the O(n2) patterns

a c g t

a c g t

a c g t

a c g t

a c g t

“Trie”

Basic operations on the trie

(“trie” comes from information retrieval)
• Construction
• Traversals

– Breadth-first
– Depth-first

• Query
– Given a pattern of length m, we can check if it 

belongs to the trie in time O(m)
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Suffix trie

• We build a trie with all the suffixes of the text 
x

• Example: if x = GATTACA we use
GATTACA
ATTACA
TTACA
TACA
ACA
CA
A

Suffix trie for “GATTACA”

G

A

T

C

A T T A C

T

A

T A C A

T A C A

A C A

C A

A

The suffix trie collects in
the internal nodes all the
substrings of x

A
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Suffix trie for “GATTACA$”

G

A

T

C

A T T A C

T T A C

T A C

A C

C

The suffix trie collects in
the internal nodes all the
substrings of x$

$A

A $

A

A

A

A

$

$

$

$

$
$

Suffix trie

• Construction O(n2)
• Space O(n2)
• Query O(m)

• We can do better by removing unary nodes 
from the tree, and coalescing the edges

• The result is called suffix tree



34

Suffix tree for “GATTACA$”
The suffix tree collects in
the implicit internal nodes
all the substrings of x$

1

2

3

5

7

4

6

GAT
TAC

A$

TTA
CA$

A
CA$

$

T

CA$
ACA$

TACA$ The label in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leaves in
the subtree corresponds to
the number of occurrences 

The locus of a string is the
node in the tree corre-
sponding to it

1    2   3    4   5   6   7   8

8

$

Space analysis

• Every node is branching
• The number of leaves is n
• Therefore the overall number of nodes is at 

most 2n-1
• Use two integers (constant space) to identify 

labels on the arcs
• Therefore the overall size of the tree is n
• Note: we assume the standard RAM model that log n bits can 

be read, written or compared in constant time
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Brute force construction

baab$

aabaab$

ab$

1

1 2 3 4 5 6
a b a a b $

2 3

abaab$
1

baab$
2

baab$
1

$

a b a a b $ b a a b $ a a b $

a

ab$
3

$

b
1

b

4

aab$

$
5

6

2

$

......

aab$

Worst case O(n2) Average case O(n log n)

Computing number of occurrences

Time complexity is O(n)
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Suffix tree for “abaababaabaababaababa$”

Internal nodes are
annotated the count of the
number of occurrences

Suffix links

Suffix links connect the
locus of cw to the locus
of w, c in Σ, w in Σ*
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Suffix links

Suffix links help identifying
isomorphic subtrees

All the suffix links (except leaves)
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Suffix trees in a nutshell

• Suffix trees can be built in O(n) time and space 
[Weiner73, McCreight76, Ukkonen95, 
Farach97]

• Number of occurrences can be computed in 
O(n) time

• Number of colors can be computed in O(n)
time [Hui92, Muthu02]

Which patterns do we count? What do we expect, under the given model?

What is unusual?

How do we count efficiently?

How many patterns can be unusual?

How do we compute statistical
parameters efficiently? 
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Scores based on occurrences

1

2

3

4

( ) ( ) ( )

( ) ( )
( )

( )

( ) ( )
( )

ˆ( ) (1 )
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y
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y

y
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y
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f y E Z
z y

E Z

f y E Z
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E Z p

f y E Z
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Scores based on colors

7

8

( ) ( ) ( )

( ) ( )
( )

( )

where  is a r.v. for the number of colors of 

y

y

y

y

z y c y E W

c y E W
z y

E W

W y

= −

−
=
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What is “unusual” ?

over-represente

Definition:

Let  be a substring of  and 
 if ( ) , then  is 
 

d
under-represented

u

if ( ) , then  is 

 if ( ) , then  is al nusu

y x T
z y T y
z y T y

z y T y

+∈
>
< −

>

i
i
i

R

Problem

Given
• Single/multi sequence x
• Type of count (f or c)
• Score function z
• Threshold T
Find
• The set of all unusual patterns in x w.r.t.

(f/c,z,T)
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How to choose the threshold

-5 -4 -3 -2 -1 0 1 2 3 4 5

( ) ( )
2 .0456

( )
P y

y

f y E Z

Var Z

 −
 > =
 
 

N(0,1)

Computational Problems

• Counting “events” in strings
– occurrences
– colors

• Computing expectations, variances, and scores 
(under the given model)

• Detecting and visualizing unusual patterns
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Combinatorial Problem

• A sequence of size n could have O(n2) unusual 
patterns

• How to limit the set of unusual patterns?

Theorem:
Let  be a set of patterns from text . If ( ) remains

 for all  in , then any score of the type
( ) ( )

                       ( )
( )

is monotonically 

constant

increasi  n with  provid d tg e

C x f y
y C

f y E y
z y

N y

y

−
=

hat

 ( ) is monotonically  with 

 ( ) ( )  is monotonically  with

decreasing

decre i  as ng

N y y

E y N y y

o
o
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Theorem:
Score functions

( ) ( ) ( ),          ( ) ( ) ( ),

( ) ( ) ( ) ( )
( ) ,        ( ) ,

( ) ( )

( ) ( )
( ) ,

ˆ( )(1 )

are monotonically  with , for all 

in cl

incr

as

eas g

s 

in

y y

y y

y y

y

y

z y f y E Z z y c y E W

f y E Z c y E W
z y z y

E Z E W

f y E Z
z y

E Z p

y y

C
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− −
= =

−
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−

{ }max

Theorem:

If min 1 4 , 2 1 , then

( ) ( )
                     ( )

( )

is mon increasinotonically  with , for all 

in clas

g
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y

y

y

p y

f y E Z
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abaababaabaababaababa

abaababaabaababaababa
aaaa
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abaababaabaababaababa
baa baa

abaababaabaababaababa
abaa abaa
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abaababaabaababaababa
abaababaab

abaababaabaababaababa
abaabaabaaba
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abaababaabaababaababa
abaaba abaaba

min(C): candidate under-repr

max(C): candidate over-repr

aa aab aaba

baa baab baaba

abaa abaab abaaba
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ab
abk

ak akbk

bk

akb …

…

…

…

x = ak bk

{ }

( ) ( )

( ) ( )( )

1 2The partition , , ,  of the set of all

substrings of , has to satisfy the following
properties, for all 1 ,

 min  and max  are unique

 all  in  belong to some

 min ,max -path

 all  in  

l

i i

i

i i

i

C C C

x
i l

C C

w C

C C

w C

≤ ≤

…

i
i

i have the same count
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a
(13)

b
ba
ab
aba
(8)

aa
aab
aaba
baa
baab
baaba
abaa
abaab
abaaba

(4)

bab
baba
abab
ababa
ababb
aababa
baabab
baababa

(3)

babaa
babaab
babaaba
ababaa
ababaab
ababaaba
aababaa
aababaab
aababaaba
baababaa
baababaab
baababaaba
abaababaa
abaababaab
abaababaaba

(2)

………
………
………
………
………
………
………
………
………
………
………
………
………
………
………
(1)

x = abaababaabaababaababa
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Theorem:
The number of classes is at most 2n
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Computing on the Suffix Tree

• Equivalence classes can be computed in O(n)
time (by merging isomorphic sub-trees of the 
suffix tree [ABL, Recomb02])

• Expectations, variances and scores can be 
computed in amortized constant time per node 
[ABLX, JCB00]

Theorem:
The set of over- and under-represented patterns
can be detected in ( ) time and spaceO n
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http://www.cs.ucr.edu/~stelo/Verbumculus

Conclusions on Verbumculus

• Pros:
– exhaustive
– linear time and space

• Cons:
– limited to deterministic patterns
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Discovering Rigid Patterns

Complexity results

• Li et al., [STOC 99] proved several important 
theoretical facts

• Many of the problems in pattern discovery turn 
out to be NP-hard

• For some there is a polynomial time 
approximation scheme (PTAS)
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Consensus Patterns

• Consensus patterns problem: Given a 
multisequence {x1,x2,…,xk} each of length n
and an integer m, FIND a string y of length m
and substring ti of length m from each xi such 
that Σi h(y,ti) is minimized

• Theorem [Li et al., 99]: The consensus pattern 
problem is NP-hard

Closest string

• Closest string problem: given a multisequence
{x1,x2,…,xk} each of length n, FIND a string y 
of length n and the minimum d such that 
h(y,xi)�d, for all i

• Theorem: The closest string problem is NP-
hard
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Closest substring

• Closest substring problem: given a 
multisequence {x1,x2,…,xk} each of length n 
and an integer m, FIND a string y of length m
and the minimum d such that for each i there is 
a substring ti of xi of length m satisfying h(y,ti) � d

• Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)

NP-hard: what to do?

• Change the problem
– e.g., “relax” the class of patterns

• Accept the fact that the method may fail to 
find the optimal patterns
– Heuristics
– Randomized algorithms
– Approximation schemes



56

Discovering Rigid Patterns

• We report on four recent algorithms

• Teiresias [1998]
• Winnower [2000]
• Projection [2001]
• Weeder [2001]

• (disclaimer: my selection is biased)

Teiresias
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Teiresias algorithm

• By Rigoustos and Floratos [Bioinformatics, 1998]
• Server at http://cbcsrv.watson.ibm.com/Tspd.html

• The worst case running time is exponential, but 
works reasonably fast on average

• A recent improved algorithm runs in polynomial time 
by reporting only to irredundant patterns [Parida et 
al., 2000]

Teiresias patterns

• Teiresias searches for rigid patterns on the 
alphabet Σ U {.} where “.” is the don’t care 
symbol

• However, there are some constrains on the 
density of “.” that can appear in a pattern



58

<L,W> patterns

• Definition: Given integers L and W, L�W, y is 
a <L,W> pattern if 
– y is a string over Σ U {.} 
– y starts and ends with a symbol from Σ
– any substring of y containing exactly L symbols 

from Σ has to be shorter (or equal) to W 

Example of <3,5> patterns

• AT..CG..T is a <3,5> pattern

• AT..CG.T. is not a <3,5> pattern, because it 
ends with “.”

• AT.C.G..T is not a <3,5> pattern, because 
the substring C.G..T is 6 characters long
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Teiresias

• Definition: A pattern w is more specific than a 
pattern y, if w can be obtained from y by 
changing one or more “.” to symbols from Σ, 
or by appending any sequence of Σ U {.} to the 
left or to the right of y

• Example: given y = AT.CG.T, the following 
patterns are more specific then y
ATCCG.T, CAT.CGCT, AT.CG.T.A, 
T.AT.CGTT.A

Teiresias

• Definition: A pattern y is maximal with respect 
to the sequences {x1,x2,…,xk} if there exists no 
pattern w which is more specific than y and 
f(w)=f(y)

• Given {x1,x2,…,xk} and parameters L,W,K,
Teiresias reports all the maximal <L,W>
patterns that have at least K colors
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Teiresias algorithm

• Idea: if y is a <L,W> pattern with at least K 
colors, then its substrings are also <L,W> 
patterns with at least K colors

• Therefore, Teiresias assembles the maximal 
patterns from smaller patterns

• Definition: A pattern y is elementary if is a 
<L,W> pattern containing exactly L symbols 
from Σ

Teiresias algorithm

• Teiresias works in two phases
– Scanning: find all elementary patterns with at least 

K colors; these become the initial set of patterns
– Convolution: repeatedly extend the patterns by 

“gluing” them together 

• Example: y = AT..CG.T and w = G.T.A 
can be merged to obtain AT..CG.T.A
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Convolution phase

• For each elementary pattern y, try to extend it 
with all the other elementary patterns

• Any pattern that cannot be extended without 
losing support can be potentially maximal 

Convolution phase

• To speed-up this phase, one wants to avoid the 
all-against-all comparison

• The authors devise two partial orderings <pf
and <sf on the universe of patterns

• Using these orderings to schedule the 
convolution phase, they guarantee that
– all patterns are generated
– a maximal pattern y is generated before any non-

maximal pattern subsumed by y
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Partial ordering <pf

• Definition: determine whether y <pf w or w <pf
y using the following algorithm
– align y and w such that the leftmost residues are in 

the same column
– examine one column after the other (left to right) 

and stop whenever one column has a residue and 
the other has a “.”

– if the residue comes from y then y <pf w 
– if the residue comes from w then w <pf y 

Example

• y = ASD...F
w = SE.ERF.DG
y <pf w

• y = ASD...F
w = SE.ERF.DG
w <sf y
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Teiresias algorithm

• Initialize the stack with elementary patterns with 
support at least K

• Order the stack according to <pf and <sf
• Repeat

– Repeat
• Try to extend the top pattern to the right with all the others in the 

prefix-wise ordering
• If a new pattern is formed with have enough support, it becomes 

the new top
– Until the top can no longer be extended to the right
– Do the same for left extension, using the ordering <sf
– Check the top for maximality, if so pop it and report it

• Until stack is empty

Conclusions on Teiresias

• It can be proved that Teiresias correctly reports 
all <L,W> maximal patterns

• Pros:
– provably correct
– fast on average input

• Cons:
– exponential time complexity
– limited to <L,W> patterns
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Winnower

Pevzner and Sze, UCSD

Winnower

• Invented by Pevzner and Sze [ISMB 2000]
• Initially designed to solve the (15,4)-motif 

challenge
• Planted (m,d)-motif problem:

– The problem is to determine an unknown pattern y 
of length m in a set of k nucleotide sequences, each 
of length n, and each one containing exactly one 
occurrence of a string w such that h(y,w)=d
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Winnower

• Pevzner and Sze show that the most popular 
algorithms (Consensus, GibbsDNA, MEME) 
fail to solve (most of the times) the (15,4)-
motif problem [n=600, k=20]

• (Note: this comparison is not totally fair)
• Why the (15,4)-motif problem is difficult?
• Because two strings in the class of the (15,4)

unknown pattern may differ by as many as 8 
positions out of 15, a rather large number

Winnower

• Idea: Search for groups of strings of length m 
such that any two in a group differ at most by
2d positions

• Remember however that this may not be 
sufficient
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Winnower

• How to find groups of patterns such that given 
any two elements w1 and w2 in the group, 
h(w1,w2)�2d?

• One could generate (k choose 2) multiple 
alignments to find out all pairs of substrings of 
length m that have at most 2d mismatches 
(Consensus [Hertz & Stormo 1999])

Winnower
• Winnower builds a graph G in which

– each vertex corresponds to a distinct string of 
length m

– two vertices are connected by an edge if the 
Hamming distance between the corresponding 
strings is at most 2d, and the strings do not come 
from the same sequence (remember that we are 
guaranteed that there is only one occurrence of the 
unknown pattern in each sequence)
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Graph for the (15,4)-problem

• They report that for each “signal”-edge there 
are about 20,000 spurious-edges

• Finding the signal among the noise is a 
“daunting task”

Winnower

• Winnower searches the graph G for cliques, 
which are subsets of vertices totally connected

• But the problem of finding large cliques in 
graphs is NP-complete
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Multipartite graphs

• Definition: A graph G is n-partite if its vertices 
can be partitioned into n sets, such that there is 
no edge between any two vertices within a set

• Fact: Winnower’s graph is k-partite

Example

• Given sequences {abde,afcg,hbci,jbck} we  
look for a (3,1)-motif

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck
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Idea

• Each vertex of the clique has to be in a 
different partition

• We look for cliques that have exactly one 
vertex in each partition

Extendable cliques

• Definition: a vertex u is a neighbor of a clique 
{v1,…,vs} if {v1,…,vs,u} is also a clique for G, 
when s<k

• Definition: a clique is called extendable if it 
has at least one neighbor which has at least one 
vertex in every part of the k-partite graph G
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Extendable cliques

• Definition: A clique with k vertices, each in a 
different partition is called maximal

• Consider a maximal clique and take a subset 
of t of its vertices: this subset is an 
extendable clique

• Idea: remove edges that do not belong to 
extendable cliques

Extendable cliques

Fact: For any clique of size  there are 

extendable cliques with  vertices

Fact: Any edge belonging to a clique with 

- 2
vertices is member of at least 

- 2

extendable cliques of size 

k
k

t

t

k

k
t

t
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Idea

- 2
An edge that is not member of at least 

- 2

expandable cliques of size  cannot be part of
a maximal clique and therefore it can be
removed

k
t

t

 
 
 

t=1

• For t=1, each vertex is a clique
– it is extendable if it is connected to at least one 

vertex in each partition

• Delete all edges corresponding to vertices that 
do not have a neighbor in each partition

• Iterate
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Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck
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Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck

Example

abd bde

fcg

afc hbc

bci

jbc bck

hbci

abde

afcg

jbck
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t=2

• For t=2, each pair of vertices u,v such that 
there is an edge (u,v) is a clique
– it is extendable if there is vertex z in each of the 

other k-2 partitions such that (u,v,z) is a cycle of 
length 3

– each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2

t>2

• For t=3, Winnower removes edges that belong 
to less than k-2 extendable cliques of size 3

• For t=4, Winnower remove edges that belong 
to less than (k-2)(k-1)/2 extendable cliques of 
size 4

• …
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Remarks on Winnower

• Pros:
– more effective than Meme, Consensus and 

GibbsDNA for the (15,4) problem

• Cons:
– randomized
– time-complexity can be very high (e.g., for t=3 is 

O(n4))
– need to know m and d in advance
– assume exactly one occurrence per sequence

Projection
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Random Projection algorithm

• Proposed by Buhler and Tompa [Recomb
2001]

• The algorithm was initially designed to solve 
the (m,d)-motif planted problem

Analysis on (m,d)-motif problem

(0)

(1) (0)

Suppose A,C,T,G have probability 1/ 4. Then the
probability that a pattern of size  occurs at a

given position is (1/ 4) . If we allow up to

one mismatch, the probability becomes

(3/ 4)(1/ 4)

m

m

p

p p m

=

= + 1

2 2
(2) (1)

( )
0

. If we allow at most two, it

( 1)
becomes (3/ 4) (1/ 4) . In general, if

2

3 1
we allow up to  mismatches, .

4 4

m

m

i m id

d
i

m m
p p

m
d p

i

−

−

−

=

−
= +

    =         
∑
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Analysis on (m,d)-motif problem

1
( )

If  is the r.v. for the number of occurrences,

then ( 0) 1- ( 0) 1 - (1- )

If we have  sequences, we get that the probability
that a particular y occurs at least once in each

sequence is 1 - (1-

n m
d

Z

P Z P Z p

k

p

− +> = = =

( )

( )

- 1
( )

1
( )

) .

Therefore, the expected number of patterns is

 ( , , , ) 4 1 - (1- ) .

kn m
d

km n m
dE n m k d p

+

− +≡

Stats of spurious (m,d)-motifs in 
simulated data (k=20,n=600)

m iterE(600,m,20,d) E(600,m+1,20,d)

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve
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Random Projections

• Idea: select t random positions and for each 
substring of length m of the text hash its 
selected positions into a table

• Hopefully, the cell corresponding to the 
planted motif will be the one with the highest 
count 

Random Projection algorithm

• Parameters (m,d), n, k, s, possibly i
• Set t < m-d and 4t > k(n-m+1)
• Build a table with all substrings of length m
• Repeat i times

– Select randomly t positions
– Repeat for all substrings in the table

• Increase the count of the cell indexed by the t positions

• Select all cells with count �s
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Random Projection algorithm

• We want t < m-d because we want to sample 
from the “non-varying” positions

• The number of iterations i can be estimated 
from m, d and t

Random Projection algorithm

• Since we are hashing k(n-m+1) substrings of 
size m into 4t buckets, if 4t > k(n-m+1) each 
bucket will contain on average less than one 
substring (set s=1)

• The constrain is designed to filter out the noise
• The bucket corresponding to the planted motif 

is expected to contain more motif instances 
than those produced by a random sequence
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Random Projection algorithm

• If the constrain 4t > k(n-m+1) cannot be 
enforced, the authors suggest to set
t = m-d-1 and the threshold
s = 2 [k(n-m+1)/4t] (twice the average bucket 
size)

Motif refinement

• The algorithm will try to recover the unknown 
motif from each cell having at least s elements

• The primary tool for motif refinement is 
expectation maximization (EM)
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Experiments

• Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20, 
n=600)

• Winnower fails the (14,4)- (16,5)- and (18,6)-
motif problem

Results

m iter

k=20, n=600,  winnower (t=2), projection (t=7,s=4, 20 random instances)
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Remarks about Projection

• Pros:
– fast and effective

• Cons:
– need to know m and d in advance
– randomized

Weeder
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Weeder

• Proposed by Pavesi, Mauri and Pesole [ISMB 
2001]

• Draw ideas from PRATT by [Jonassen95, 
Jonassen97] and [Sagot98]

• It is an exhaustive approach for a particular 
class of rigid patterns

Exhaustive approach

• Suppose that you want to spell out all possible 
(m,d) rigid patterns that has at support least q

• One way to do it, is to use a (generalized) 
suffix tree [Sagot 98]
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Idea [Sagot 98]

• Any deterministic pattern (substring) w
corresponds to a path in the tree ending in a 
node u, called the locus of w – the number of 
leaves in the subtree rooted at u gives the 
support

• Any model (rigid pattern) corresponds to a set 
of paths in the tree ending in nodes 
{u1,u2,…,ul} – the total number of leaves in the 
subtrees rooted at {u1,u2,…,ul} gives the 
support

Example

Hamming distance

approx c(ATA)=2   f(ATA)=4
d = 2
q = 2



85

Example

This path belongs to models:
(AGA,0)
(AAA,1)

(CGA,1) (ACA,1) (AGC,1)
(TGA,1) (ATA,1) (AGT,1)

(GGA,1) (AGG,1)
………

d = 2
q = 2

Exhaustive approach [Sagot 98]

• Start with all paths of length d with enough 
support (they represent valid models)

• At each path-extension keep track of the 
mismatches and the support
– if the number of mismatches has not been reached 

the model will be extended by the symbols in Σ
(therefore the number of models will be scaled up 
by a factor |Σ|)

– otherwise we are allowed just to follow the arcs 
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Time complexity [Sagot 98]

• Finding all the models with 
support=occurrences in a single sequence takes 
O(n N(m,d)) = O(n md |Σ|d)

• Finding all the models with support=colors in 
a multisequence takes
O(n k2 N(m,d)) = O(n k2 md |Σ|d)

• Note that the complexity is exponential (with
d)

Weeder

• Pavesi et al., implemented the algorithm by 
Sagot but it was running too slow, and they 
decided to change the class of patterns

• Weeder is designed to find rigid patterns 
which have an amount of mismatches 
proportional to their length (the same constrain 
applies also to all their prefixes)
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Example ε =0.25

1

2

3

4

Time complexity

• By restricting the number of mismatches to 
εm, the time complexity becomes
O(n k 1/ε εm |Σ|εm)
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The (15,4)-motif challenge … again

• Since the restriction on the density of the 
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE 
sequence

• Then, the probability of Weeded to get the 
motif in all the 20 sequence is almost zero

• On the other hand, running the Sagot’s version 
is too time-consuming

Idea

• Split the set of sequence into two halves
• Run Weeder on each of the two sets requiring 

support k/4 (instead of k/2)
• The probability that the (15,4)-motif will be in 

either subset is 0.98
• The pool of model candidates is then 

processed with Sagot’s algorithm
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Remarks about Weeder

• Pros:
– Possibly exhaustive (if using Sagot’s algorithm)
– The relative error rate ε may be more meaningful 

than d and allows one not to specify in advance m

• Cons:
– Very slow if run exhaustively - it cannot be 

considered exhaustive in practice

Discovering Profiles
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Discovering Profiles

• If one assumes the unknown profile to have 
been generated by a sequence of independent 
r.v.s then the observed frequency of letters in 
the columns of the profile are the ML 
estimates of the distributions of the r.v.s

• Unfortunately we do not know the positions of 
the profile in the multisequence

Gibbs sampler
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Gibbs sampling

• Proposed by Lawrence, et al., [Science, 1993]
• Web servers at 

http://bayesweb.wadsworth.org/gibbs/gibbs.html and
http://argon.cshl.org/ioschikz/gibbsDNA/

• Input: multisequence {x1,x2,…,xk}
pattern length m

• Output: a matrix profile qi,b, b∈Σ, 1�i�m, and 
positions sj, 1�j�k, of the profile in the k
sequences

Gibbs sampling

• The algorithm maintains the background 
distribution pA,…,pT of the symbols not 
described by the profiles

• P(y) is the probability of y based on the 
background distribution pb, b∈Σ

• Q(y) is the probability of y based on the 
profile qi,b , 1�i�m, b∈Σ
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Gibbs sampling

• Idea: the profile is obtained by locating the 
positions which maximizes Q(y)/P(y); once the 
positions are obtained a new, more accurate, 
version of the profile can be obtained

• Initialize the initial positions sj randomly

Gibbs sampling

Gibbs sampler iterates 1), 2) until convergence
1) Predictive update step: randomly choose one of 

the k sequences, say r. The matrix profile qi,b
and the background frequencies pb are 
recomputed from the current positions sj in all 
sequences excluding r

2) Sampling step: assign a weight z(y)=Q(y)/P(y)
to each substring y of length m. Select randomly 
a substring y with probability z(y)/Σyz(y), and 
then update sj
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Gibbs sampling

• The more accurate the pattern description in step 1), 
the more accurate the determination of its position in 
step 2), and vice versa

• Once some correct positions have been selected by 
chance, qi,b begins to reflect, albeit imperfectly, the 
unknown pattern

• This process tends to recruit further correct positions 
which in turn improve the discriminating power of 
the evolving pattern

Gibbs sampling

• How to update the matrix profile qi,b and the 
background frequencies pb?

• We set qi,b=(f i(b)+db )/(k-1+Σc dc) where f i(b) is 
the number of times we observe symbol b in the 
position i of the profile (currently placed at 
position sj), except for sequence r (db are pseudo-
counts)

• We set the background probabilities
pb=f(b)/Σc f(c) for all symbols in positions not 
covered by the profile
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Phase shift problem

• Suppose that the “strongest” pattern begin, for 
example, at position 7, 19, 8, 23, …

• If Gibbs happens to choose s1=9,  s2=21 it will 
most likely choose s3=10 and s4=25 

• The algorithm can get stuck in local maxima, 
which are the shifted form of the optimal 
pattern 

Phase shift problem

• The problem can be alleviated by adding a step 
in which the current set of positions are 
compared with sets of shifted left and right 
positions, up to a certain number of symbols

• Probability ratios may be calculated for all 
positions, and a random selection is made with 
respect to the appropriate weight
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Gibbs sampling

• It can be generalized to:

• Find also the length of pattern m

• Find a set of matrix profiles, instead of one

Gibbs sampling

• Since Gibbs sampler is an heuristic rather than 
a rigorous optimization procedure, one cannot 
guarantee the optimality of the result

• It is a good practice to run the algorithm 
several times from different random initial 
positions
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Gibbs sampling vs. EM

• Although EM and Gibbs are built on common 
statistical foundation, the authors claim that 
Gibbs outperforms EM both in term of time 
complexity and performance

• “EM is deterministic and tends to get trapped 
by local optima which are avoided by Gibbs … 
HMMs permit arbitrary gaps … have greater 
flexibility, but suffer the same penalties …”

Expectation Maximization
and MEME
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Expectation maximization

• EM was designed by Dempster, Laird, Rubin 
[1977]

• EM is a family of algorithms for maximum 
likelihood estimation of parameters with 
“missing data”

EM, when?

• When we want to find the maximum 
likelihood estimate of the parameters of a 
model and
– data is incomplete, or
– the optimization of the maximum likelihood 

function is analytically intractable but the 
likelihood function can be simplified by assuming 
the existence of additional, missing, parameters 
value
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Expectation maximization

• EM approaches the problem of missing 
information by iteratively solving a sequence 
of problems in which expected information is 
substituted for missing information

Expectation maximization

• All EM algorithms consists of two steps:
1) the expectation step (E-step)
2) the maximization step (M-step)

• The expectation step is with respect to the 
unknown underlying variables, using the 
current estimate of the parameters and 
conditioned upon the observation
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Expectation maximization

• The maximization step provides a new 
estimate of the parameters

• θ1% θ2 % θ3 % … % θt  % θt+1 % …

• The two steps are iterated until convergence

General framework for EM

• Suppose we want to find the parameters θ of a 
model (training)

• We observe x (training set)

• The probability of x under θ is also determined 
by the missing data y
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Incomplete data model

Incomplete data model

Complete data model

(x,y)

An occurrence of (x,y) implies an occurrence of x, however only x can be 
observed. This observation reveals the subset {(x,y), for all y}

x

Expectation maximization

• Example: For HMMs, x is the sequence we 
want to learn from, θ is the transition and 
emission probabilities, y is the path through the 
model

• Example: In the case of Random Projections, x
are the subsequences corresponding to a cell 
with count higher than the threshold, θ are the 
parameters of a representation of the (m,d)
pattern, y are all the missing positions 
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MEME

• Proposed by Bailey and Elkan [Machine 
Learning J., 1995]

• “Multiple EM for Motif Elicitation” (MEME) 
is an improved version of the expectation 
maximization approach by Lawrence and 
Reilly [Proteins, 1990] (see appendix)

• Designed to discover profiles (no gaps)
• Server at http://meme.sdsc.edu/meme/

MEME

• There are three main differences w.r.t. 
Lawrence et al.:

1) the initial profiles are not chosen randomly, 
but they are substrings which actually occur 
in the sequences

2) the assumption that there is only one 
occurrence of the motif is dropped

3) once a profile has been found, it is reported, 
and the iterative process continues
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Using substring as starting points

• Idea: substrings actually occurring in sequence 
are better starting points than random choices

• Each substring is converted into a profile
• Assigning 1.0 to the occurring symbol and 0.0 

to the others is a bad choice, because EM 
cannot move from this

• The authors arbitrarily assign probability 0.5 to 
the symbol and 0.5/3 for the other three

Using substring as starting points

• It would be too expensive to run EM until 
convergence from each substring

• It turns out that this is not necessary

• EM converges very quickly from profiles 
obtained from substrings, and the best starting 
point can be found running only one iteration
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MEME algorithm

• Repeat
– For each substring y in {x1,x2,…,xk} do

• Run one EM iteration with profile computed from y
• Choose the profile q with highest likelihood
• Run EM until convergence starting from q
• Report the profile q
• Erase the occurrences of q from dataset

• Until max number of iterations is reached

Dealing with multiple occurrences

• MEME allows to drop the “one-per-sequence” 
assumption

• The basic idea is to require the user to supply 
an estimated number of occurrences of the 
unknown profile and use that to normalize the 
estimation process of the EM algorithm

• The authors claim that the exact value of the 
number of occurrences is not critical
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Finding multiple profiles

• MEME does not stop after finding the most 
likely profile

• Once a profile is found and reported, it is 
“probabilistically erased” by changing some 
position-dependent weight

• The process continues until a number of 
predetermined motifs have been found

• (see appendix for mega-prior heuristic)

THE END

Latest version of the slides atLatest version of the slides at http://www.cs.ucr.edu/~stelo/ismb02/http://www.cs.ucr.edu/~stelo/ismb02/
Check out alsoCheck out also http://www.cs.ucr.edu/~stelo/cs260/http://www.cs.ucr.edu/~stelo/cs260/


