Pattern Discovery in Biosequences
|ISMB 2002 tutorial

Stefano Lonardi

University of California, Riverside

Latest version of the dides at http://www.cs.ucr.edu/~stelo/ismb02/

Roadmap

Why * pattern discovery”
Basic concepts

Problem definition
Classification of patterns
Complexity results

Efficient algorithms for pattern discovery

— Deterministic patterns: Verbumculus

— Rigid patterns: Teiresias, Winnower, Projection, Weeder
— Profiles: Gibbs sampling, Meme

Appendix




Why “pattern discovery”?

Discovery of regulatory elements

* Promoter: aregion of DNA involved in
binding of RNA polymerase to initiate
transcription

» Enhancer: aregion of DNA that increases the
utilization of (some) promoters (it can function
in either orientation and any location relative
to the promoter)

» Repressor: aregion of DNA that decreases the
utilization of (some) promoters




Enhancer Promoter Gene

AN /A N\ Vo V2 AVY2\Y5, V2 AV2:A V54 <T7\VZ:\
SN\ LIV NN NN
~100 bp ~200 bp upstream of startpoint
Contains several closely Separation of Contains dispersed sequence elements that bind
arranged sequence enhancer from transcription factors
elements that bind promoter may be
transcription factors several kb Only the elements in the immediate vicinity (<50
bp) of the startpoint for transcription are fixed in
location

Source: Lewin, genes VII

Transcription

 Different factors areinvolved in the
transcription machinery
— presence of transcription factors and their binding
sites
— ability of DNA to bend
— relative location of the binding sites
— presence of CpG islands (“p” isfor phosphate)
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Pattern discovery

Putative binding sites

Basic concepts




Some notations

S: aphabet
a,b,c,... : symbolsfrom a
X : sequence/string over a,

x| =n
%, %,..., %} : multi-sequence, § ik:lw =n
y (or w) : substring of x,

y' : the substring yy:--y (i 3 0)
%/_J

i times

y|=m

Some notations

Yy - thei-th symbol of y (LE£1 £ m)

Vi gy - the string Vi, Yiug - ¥ AETE JEM)
Y j - arethe prefixesof y (1£ | £ m)

Yi;.m - a@rethesuffixesof y (L£ | £m)




Occurrences vs. Colors

=]

CACAGGOGCTACCATGAGAAATTTGTGGTAATTAGATAATTGTTGGGAT TCCATTGTTG
ATAAAGGCTATAATATTAGGTATACAGAATATACTAGAAGT TCTCCTCGAGGATATAGGA
ATCCTCAAAATGGAATCTATATTTCTACATACTAATATTACGATTATTCCTCATTCOGT T
TTATATGTTTATATTCATTGATCCTATTACATTATCAATCCTTGOGT TTCAGCTTCCTCT
AACATCGATGACAGCTTCTCATAACTTATGT CATCATCTTAACACCGT ATATGATAATAT
ATTGATAATATAACTATTAGT TGATAGACGATAGT GGATTTTTATTCCAACAGAAGGAGT
GGATGGAAAAGT ATGCGAATTAAAGT AATCCAT GTGGTAAATAAAATCACTAAGACTAGC
AACCACGTTTTGITTTGTAGT TGAGAGTAATAGT TACAAATGGAAGATATATATCCGTTT
CGTACTCAGT GACGT ACCGGGOGT AGAAGT THGGOGGC ATTTTGACAGATATATCAAA
ATATTGTCATGAACTATACCATATACAACT TAGGATAAAAATACAGGTAGAAAAACTATA

1

=3

CAAATATCTACAATGOOGTCTGCTTTATGTCTTTTTCTAAAGGCATCGATTTTATGIGIG
GATAATTGCAT CGCAGTAATAT GTAGAGCACAATTTGTAGAAATCGGAATTGGAGGTATC
GGATCTTGT TGAATATOCACCAATGT CTTACCCCTGTATTTTAACAAGAGT TTACGCTGT
TATATGGT TAAAGGT GT GGACGOCT TGAAGGT TTACCT TACCGAATGACACCT TTACAAT
AGTCAGATCACGT TCT GT GBOGT TATCCAAAGT TAGOGCAGT TTTCCGATGGTOCAATGT
AATCATTAGAAATAGTAAAAACT GT GTAATGGTAAAGATTGT GTCACTGGAAAAAAACTG
CTACAAATAAT AAATAAATAAAAAAAT ACGAAAGCACAGT ACTACGGGT GCCT CCACAAA
TAGATAAGAAACCAAGOGGAGACATGOGT TTAGATGAGGATATAAATTATTTATACAACC
AGACTATATAAAAGAGCATCTAGT TTACCTGT TATGATGAATGGACATTCGCTACATATC
TTACTCTCTATTTGT TAAAAAAAAT TACAAAGAGAACTACTGCATATATAAATAACATAC

ATAAGOGTCCTTCTGT GGT TTAGATATGCTATACCGGOGGAACT TTGT TACACACGGCTC
GOGOGAAT CCT TAGGGGAAAACAT TGOGCTGACT TTCCCCAGAGT TGT TGCCACAACATA
AGCCGCTTTGGAGT GT TGAACAAATCOGT CCTTGGGT CAT TCAAT CAAT GGCT TGGOGGT
ATCTCAAAAGAGOGCAAACT AATAGCGCGCACAT TCGACGCAT TTATCCGGT GGTCATCG
ACT AGGGGOGAAGAGGT CACGACCTATTTTTTCTTGCAGAAAAAAAGT GTGACCTTTTCC
GTAGCTAGACGT CTAT CAGEGOGT CAGCAAT GRGAGGCACAGTGGAAAAACAATAACAAT
GGTAAGCGCAATTACCT TTTGAGCGT TACATTOGTATGAAAT TGGTGACGT TAATCTAAA
GATAGT CATGCTCTCAAAAGGGOCCAT TATTCTCGACGT TGAGOGTATATAAGACTATTA
AAACTTGGTTCTTTAGATATGGTGT TCGT TCCTCATTATTAAGT TTCAGGGAACAATATC
AACACATATCATAACAGGT TCTCAAAACTTTTTGT TTTAATAATACTAGTAACAAGAAAA

Some notations

f (y) : number of occurrences of y
c(y) : number of colorsof y

Depending on the application, f (y)
and/or c(y) is used. In general, these
guantities are called the support of y.




Occurrences:. types

(i) non-overlapping
w u
(i) ) adjacent
” !
(iii) overlapping

For our purposes, any of the above is simply an occurrence
Keep in mind that in some cases you may have to distinguish them

Example (DNA)

X, = CCACCCTTTTGIGGEGECTTCTATTTCAAGG
X, = TTGITCTTCCTGCATGTI TGCGCGCAGT GCG
X3 = TTCTAAAAGGGGCATTATCAGAAAAAGAAG
X, = GIGTAAAATTGTGTGCTACCTACCGTATTA
e« X={ACGT} [|X]=4 n=120
* ed., Y=AAAA isasubstring of x;and x,

— f(y) = 4 (occurrences can overlap)

—c(y)=2




Bernoulli and Markov models

Two typical hypothesis about the source
(probabilistic models)

Bernoulli: symbols are generated
independently and they are identically
distributed (i.i.d. or memoryless)

Markov: the probability distribution for the
“next” symbol depends on the previous h
symbols (h>0 isthe order of Markov chain)

Example (no. of occurrences)

We want to describe the number of
occurrences f(y) of a pattern y in the text x

Recall |x|=n, |[y|=m
L et us choose a particular location i in the text
(i < n-nt1)




Example on no. of occurrences

» Assuming a Bernoulli model for the source
that generated x, i.e., symbols are generated
1.1.d., the probability that y occurs at position |
inthetext is
P =Yy » Xis = Y2 o+ |+m1] =Yim)=
P(X [i]— y 1] >g(X[|+1] y[2] (X[|+m-1] Y m])_
Py Py - Py

. Note that in general we do not know the “true”
p, and they have to be estimated from the
observation x

Example on no. of occurrences

* Now we have to consider that y can occur in n-
m+ 1 positions (from 1 to n-m+ 1)

» At each position the probability is Pyry Pyz -

py[m]

» Since we assumed a Bernoulli model, the
random variables for each position are
independent, then

E[X] = (n-n+1) Hj:l,.m Py




A r.v. for the no. of occurrences

Let Z, bear.v. for the number of occurrences of y,
p, bethe probability of al S, and |y| = m£(n+1)/2, then

cE(Z,)=(n- m+DQ p,, =(n- m+1) p
o Var(Z,) =E(Z,)(1- p)- p*(n- m+D(n- m)+2pB(y)
where B(y) = é (n- m+1- d) ém) Py,

di P(y) i=m-d+1

and P(y) isthe set of period lengths of y

A r.v. for the no. of colors

Let W, bear.v. for the number of colors
of y in {X,%,,...,%}, and Z, be the
random variable of occurrencesof y in the
I-th sequence (1£i £ k), then

k .
o E(W,)=k- a P[Z, =0]

i=1

(because E(W,) = P[Z, >Q])




“Pattern Discovery”: the problem

Pattern discovery: the problem

» Given aset of sequences S* and amodel of the
source for S

» Find aset of patternsin S" which have a
support that is statistically significant with
respect to the probabilistic model

 If we are aso given negative examples S, we
must ensure that the patterns do not appear in
S




Pattern discovery problem

¢l

Pos & Neg examples Only Pos examples

Noisy data

Pos & Neg examples Only Pos examples




Pattern discovery “dimensions’

Type of learning
— from positive examples only (unsupervised)
— from both positive and negative examples
(supervised)
— noisy data
Type of patterns
— deterministic, rigid, profiles, ...
Measure of statistical significance
A priori knowledge

Output

True positive: a pattern belonging to the
positive training set which has been correctly
classified

True negative: a pattern belonging to the
negative training set which has been correctly
classified

False positive: misclassified as positive
False negative: misclassified as negative




Measuring pattern discovery

o Complete: if no true pattern is missed
— but we may report too many patterns
» Sound: if no false pattern is reported
— but we may miss true positives
o Usually thereis atradeoff between soundness

and completeness: if you increase one, you
will decrease the other

Measuring the performance

» Information Retrieval measures

— Precision = true pos/ (true pos + false pos)

* expresses the proportion of discovered patterns out of
the total reported positive

* also called sensitivity

— Recall = true pos/ (true pos + true neg)

* expresses the proportion of discovered patterns out of
the total of true patterns




A classification of patterns

Types of patterns

o Deterministic patterns
 Rigid patterns
— Hamming distance
» Flexible patterns
— Edit distance
o Matrix profiles

v A motif is any of these patterns, aslong asit is
associated with biological relevance




Deterministic Patterns

» Definition: Deterministic patterns are strings
over the aphabet X

—e.g., “TATAAA’ (TATA-box consensus)

» Discovery algorithms are faster on these types
of patterns

» Usually not flexible enough for the needs of
molecular biology

Rigid patterns

» Definition: Rigid patterns are patterns which
allow substitutions/*don’t care” symbols

— e.g., the patterns under IUPAC al phabet
{ACGT,UMR WS, Y, KV, HD, B, X
N} where for example R=[A|J, Y=[C|T], etc.

—e.g, “ARNNTTYGA” under IUPAC means
“AIAIG[AICIGT][AICIGT] TTICIT] GA”

» Note that the size of the pattern is not allowed
to change




Hamming distance

» Definition: Given two strings y and w such that
ly|=|w]|, the Hamming distance h(w,y) is given
by the number of mismatches between y and w

» Example:

y=CATTACA
W=TATAATA

h(w.y)=h(y,w)=3

Hamming neighborhood
o Definition: Given astring y, all strings at

Hamming distance at most d fromy areinits
d-neighborhood

 Fact: The size N(m,d) of the d-neighborhood
of astringy, |[y|=m, is

N(m.d)= 4 ?f(|s|- 1)'T o(m*[sf')
el g




Hamming neighborhood

Example:
y = ATA the 1-neighborhood is

{CTA, GTA, TTA,
AAA, ACA, AGA,
ATC, ATG, ATT,
ATA}

This set can be written as arigid pattern
{ NTA| ANA| ATN}

Models

We may be able to observe occurrences of the
neighbors of y, but we may never observe an
occurrence of y

Definition: The center of the d- neighborhood
y is aso called the model

Definition: We say that amodel isvalid if it
has enough support (occurrences/colors)




y is the (unknown) model
d is the number of allowed mismatches
w;, W, W, belongs to the neighborhood of y

Hamming neighborhood

 Fact: Given two strings w, and w,, in the d-
neighborhood of the model y, then
h(w,,w,)<2d

» The problem of finding y given wy,w,,...is
sometimes called Seiner sequence problem

» Unfortunately, even if we were ableto
determine exactly all the w; in the
neighborhood, there is no guarantee to find the
unknown model y




Example

» Suppose m=4, d=1 and that we found
occurrences of { AAAA, TATA, CACA}

» The pairwise Hamming distance is 2 but there
IS no string at Hamming distance 1 to each of
these

Word match filtering

« Fact: Given two strings w; and w, in the d-
neighborhood of the model y, they both

contain an occurrence of aword of length at
least [m/(2d+ 1)!

» Example: y= GATTACA
w, = GATTTCA
w,= GGTTACA
TT and CA are occurring exactly. In fact
lm/(2d+ 1) =17/31=2




Word match filtering

» Proof: there are at least m-2d matching
positions, divided into at most 2d+ 1 segments
(some possibly of length 0) by intervening
mismatches. The average length of a segment
istherefore (m-2d)/(2d+1).

Hence there exists a segment with no
mismatches of length at least [(m-2d)/(2d+1)]

= [Im/(2d+1)..

Flexible patterns

» Definition: Flexible patterns are patterns
which allow substitutions/*don’t care”
symbols and variable-length gaps

—eg., PrositeF-x(5)-Gx(2,4)-G *-H
» Note that the length of these pattern is variable
* Very expressive
» Space of all patternsis huge




Edit distance

» Definition: the edit distance between two
strings y and w is defined as the minimum
number of edit operations - insertions,
deletions and substitutions - necessary to
transform y into w (matches do not count)

» Definition: a sequence of edit operations to
transform y into w is called an edit script

Edit distance

» The edit distance problemisto compute the
edit distance between y and w, along with an
optimal edit script that describes the
transformation

» An alternative representation of the edit script
IS the alignment




Example

e Givenw = GATTACA

y = TATATA
CATTACA» ATTACA» TTACA

» TATACARTATATA (Lins, 2 de, 1 sub)

ATTACA»TATTACA
» TATACARTATATA (Oins, 1 dd, 2 sub)

» Edit distanceis3

Corresponding global alignment

e Givenw = GATTACA
y = TATATA

» We can produce the following alignments
GAT- TAC-A G ATTAC- A
--TATA-TA  -TAT-A-TA

where “—" represents a space (we cannot have
“~"digned with “-"




Profiles

» Position weight matrices, or profiles, are
|>>[><m matrices containing real numbersin the

interval [0,1]

-eg.
A| 026 | 022 | 000 | 1.00 | 0.11
C| 017 | 018 | 059 | 0.00 | 0.35
G| 009 | 015 | 000 | 000 | 0.00
T| 048 | 045 | 041 | 0.00 | 0.54

— consensus

Profiles as classifiers

 Profiles can be used directly to implement very
simple classifiers

» Suppose we have asample S+ of known sites,
and asample S of non-sites

» Given anew sequence x, how do we classify x
inSt orinS?




e S+={ TTGTGC,

TTTTGAT,
AAGTIGIC,
ATTTGCCA,
CTGIGCG,
ATGCAAA,
GIGITAA,
ATTTGAA,
TTGIGAT,
ATTTATT,

ACGTGAT,
ATGTGAG
TTGIGAG,
CTGTAAC,
CTGTAAC,
TTGIGAC,
GCCTGAC,
TTGIGAT,
TTGIGAT,
GIGIGAA,

Example: CRP binding sites

CTGTGAC,
ATGAGAC,
TTGTGAG

Cyclic AMP receptor protein TFs in E.coli [Stormo & Hartzell, 89]

Training (CRP sites)

» Assume a Bernoulli model for each position

A | 0.350 | 0.043 | 0.000 | 0.043 | 0.130 | 0.830 | 0.260
C |0.170 | 0.087 | 0.043 | 0.043 | 0.000 | 0.043 | 0.300
T 0.130 | 0.000 | 0.780 | 0.000 | 0.830 | 0.043 | 0.170
G | 0350 | 0.870 | 0.170 | 0.910 | 0.043 | 0.087 | 0.260

» Assume the uniform Bernoulli model for the
non-sites S, that is p,=0.25, p.=0.25, p=0.25,
ps=0.25 for al the positions




Testing

* Suppose you get x = GGTGTAC
Isx more likely to belong to S+ or to S?
In other words, it is more likely to be generated from
the Bernoulli model for S+ or from the uniform
Bernoulli model (for S)?

» Let’s compute the probability

P(x = GGTGTAC | S+) =.35* .87+ .78* .91* .83* .83* .3=0.045
P(x = GGTGTAC |S-) =(.25)" = 0.0000061
LR(X) = P(x | S+)/ P(x | S+)

Discovering Deterministic
Patterns




Enumerative approach: idea

» Define the search space

 List exhaustively all the patternsin the search
space

» Compute the statistical significance for all of
them

* Report the patterns with the highest statistical
significance

Enumerative approach

* E.g., search space for deterministic patterns of
sizemis O(]X|™M

» Can we do better than |>|™?




Enumerative approach

» The search space for deterministic pattern is
aready too big

—e.g., there are 1,048,576 possible deterministic
patterns of size 10 on the DNA alphabet

e How to pruneit?

Detection of Unusual Patterns

parameters

.. ATGACAAGT CCTAAAAAGAGCGAAAACACAGGGT TGT TTGAT TGTAGAAAAT CACAGCG
>MEK1

CCACCCTTTTGTGGGGCT TCTATTTCAAGGACCT TCATTATGGAAACAGGGCGAGGT TGT
TTGTTCTTCCTGCATGT TGCGCGCAGT GCGTAAGAAAGCGGGACGT AAGCAGT TTAGCCA
TTCTAAAAGGGGCATTATCAGAATAAGAAGGCCCTATGAGGTATGATTGTAAAGCAAGT G
GTGTAAAATTGTGT'GCTACCTACCGT ATTAGTAGGAACAATTATGCAAGAGGGGT CCTGT
GCAAATAAAAAATATATATCTAGAAAAAGAGT AGGTAGGT CCTTCACAATATTGACTGAT
AGCGATCTCCTCACTATTTTTCACTTATATGCAGTATATTTGTCTGCTTATCTTTCATTA
AGTGGAATCATTTGTAGTTTATTCCTACTTTATGGGTATTTTCCAATCATAAAGCATACC
GTGGTAAT TTAGCCGGGGAAAAGAAGAAT GAT GCCGECTAAATTTCGGECGEC. .




Naive approaches

1) Enumerate and test all patterns
composed by m symbols, for 1<m<n

2) Enumerate and test all patterns which
occur in the sequences

n=1,000,000 |S|=4

1) Patterns to be tested O(|S|")
in this case oc 41,000,000

2) Patterns to be tested O(n?)
in this case o« 1,000,000?




Enumerating the O(n?) patterns

@
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Basic operations on the trie

(“trie” comes from information retrieval)
« Construction
e Traversals

— Breadth-first
— Depth-first

* Query
— Given a pattern of length m, we can check if it
belongs to the trie in time O(m)




Suffix trie

* We build atrie with all the suffixes of the text
X
* Example: if x= GATTACA weuse
GATTACA
ATTACA
TTACA
TACA

ACA
CA
A

Suffix trie for “GATTACA”

The suffix trie collectsin
the internal nodes all the
substrings of x




Suffix trie for “GATTACAS$”

—
@

©—@—1s

B—18]

The suffix trie collectsin
the internal nodes all the
substrings of x$

Suffix trie
 Construction O(n?)
 Space O(n?)
* Query O(m)

» We can do better by removing unary nodes
from the tree, and coalescing the edges

 Theresultiscalled suffix tree




Suffix treefor “ GATTACA$”

1 23 4567

The suffix tree collectsin
the implicit internal nodes
all the substrings of x$

The locus of astring isthe
node in the tree corre-
sponding to it

Thelabel in the leaves
identifies the suffix position
(used to find pos all occs)

The number of leavesin
the subtree corresponds to
the number of occurrences

Space analysis

» Every nodeis branching
The number of leavesisn

Therefore the overall number of nodesis at
most 2n-1

Use two integers (constant space) to identify
|abels on the arcs

Therefore the overall size of thetreeisn

Note: we assume the standard RAM model that log n bits can
be read, written or compared in constant time




Brute force construction

abaab$ abaab$ a baab$
O | a {1
baab$ ab$
baab$
2
abaab$ baab$ aabs$ $
Worst case O(n?) abaabs Average case O(n log n)

Comyputing number of occurrences

ANNOTATE- f(w) (suffix_tree T)
for each leaf u of T do
let f(L(u)) =1
visit T in depth-first traversal, for each internal node u do
let f(L(u)) equal to the sum of f(-) of the children of u

Time complexity is O(n)




Suffix tree for “abaababaabaababaababa$”

ab a aba..$
2 3]
ba$
{16] (1]

Internal nodes are
annotated the count of the
number of occurrences

Suffix links

a ba aba ba aba aba..$
O 13 8 @ 3 1
§ $ bas
21] [14]
ba$
(17] 12]
aba aba..s
3]
; 5 ; bas
16] (11
aba aba..$
2 =
bas
5] [10]

Suffix links connect the
locus of cw to the locus
ofw,cin,winX*




Suffix links

a ba aba ba aba aba..$

Suffix links help identifying
isomorphic subtrees




Suffix trees in a nutshell

» Suffix trees can be built in O(n) time and space
[Weiner73, McCreight76, Ukkonen95,
Farach97]

* Number of occurrences can be computed in
O(n) time

* Number of colors can be computed in O(n)
time [Hui92, Muthu02]

Which patterns do we count? What do we expect, under the given model ?

\’ What is unusual ? /

How do we count efficiently?

How many patterns can be unusual ?

How do we compute statistical
parameters efficiently?




Scores based on occurrences

z(y) = f(y)- E(Z,)
2y =1 EZ)
JE@)
f(y)- E(Z,)
JEZ,) @- P)
f(y)- E(Z,)

z,(y) = /\T.I‘(Zy)

where Z  isar.v. for the number of occurrences of y

z,(y) =

Scores based on colors

z,(y) =c(y)- EW))
c(y)- EW))

where W, isar.v. for the number of colors of y




What 1s “unusual” ?

Definition:

Lety beasubstringof xand TT R*

«if z(y) >T, theny is over-represented
«if z(y) <-T, theny is under-represented
« if |z(y)|>T, theny is unusual

Problem

Given

» Single/multi sequence x

» Type of count (f or c)

 Score function z

e Threshold T

Find

* The set of all unusual patternsin x w.r.t.

(flc,zT)




How to choose the threshold

5
> 2+=.0456
2

pa (V- EZ)
g ,/Var(zy)

Computational Problems

» Counting “events’ in strings
— occurrences
—colors

» Computing expectations, variances, and scores
(under the given model)

» Detecting and visualizing unusual patterns




Combinatorial Problem

* A sequence of size n could have O(n?) unusual
patterns

» How to limit the set of unusual patterns?

Theorem:
Let C be a set of patterns from text x. If f (y) remains
constant for all y in C, then any score of the type
f(y)- E(y)

N(y)
is monotonically increasing with |y| provided that

z(y) =

o N(y) ismonotonically decreasing with |y|
o E(y)/N(y) is monotonically decreasing with |y|




Theorem:

Score functions
z(y) = f(y)- E(Z)), z(y) =c(y)- EW,),

4w=””'a4) dw:quﬂm)
JE@Z,) JEW)
f(y)- E(Z,)

RONCEAED)

are monotonically increasing with |y|, for al y

InclassC
Theorem:
Ifp... <min{]/|w,x/§- ]},then

f(y)- E(Z,)
2(y) = :
1/Var(Zy)
is monotonically increasing with |y|, for al y
inclassC




abaababaabaababaababa

abaababaabaababaababa
aa aa




abaababaabaababaababa
baa baa

abaababaabaababaababa
abaa abaa




abaababaabaababaababa
abaab abaab

abaababaabaababaababa
abaaba abaaba




abaab @ abdal

A abaaba

paaba

abaa

O

baa(

max(C): candidate over-repr

abaab

O—0

~

X
(/

min(C): candidate under-repr

)baaba

aaba




x = ak bk

O O O
b O O Qan
O v

The partition {C,,C,,...,C,} of the set of all

substrings of x, has to satisfy the following

properties, forall 1£1i £1,

« min(C;) and max(C,) are unique

- all win C, belong to some
(min(C,),max(C,))-path

- al win C. have the same count




x = abaababaabaababaababa

P (13) i i ba i i babaab i i ...
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5|
%
NE

,,,,,

“\%Yn\‘g\‘q\\\\
% R




baabab baababa

aabab aababa

abab ababa

baf, pavR

baababaa baababaaba

aababaa aababaaba

ababaa ababaaba

S5 a0
b3, b 5

Theorem:
The number of classesis at most 2n




Computing on the Suffix Tree

» Equivalence classes can be computed in O(n)
time (by merging isomorphic sub-trees of the
suffix tree [ABL, Recomb02])

 Expectations, variances and scores can be
computed in amortized constant time per node
[ABLX, JCBOO]

Theorem:
The set of over- and under-represented patterns
can be detected in O(n) time and space
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Conclusions on Verbumculus

* Pros.
— exhaustive
— linear time and space
» Cons:
— limited to deterministic patterns




Discovering Rigid Patterns

Complexity results

e Lietal., [STOC 99] proved several important
theoretical facts

* Many of the problemsin pattern discovery turn
out to be NP-hard

» For somethereisapolynomia time
approximation scheme (PTAYS)




Consensus Patterns

» Consensus patterns problem: Given a

multisequence {X;,X,,....%} €ach of length n
and an integer m, FIND a string y of length m

and substring t; of length mfrom each x; such
that 3> h(y,t,) is minimized

Theorem [Li et al., 99]: The consensus pattern
problem is NP-hard

Closest string

Closest string problem: given a multisequence
{X X%, %} €ach of length n, FIND astring y

of length n and the minimum d such that
h(y,x)<d, for all i

Theorem: The closest string problem is NP-
hard




Closest substring

o Closest substring problem: given a
multisequence {X;,X,,....%} €ach of length n
and an integer m, FIND a string y of length m
and the minimum d such that for each i thereis
i sgbstring t. of x, of length m satisfying h(y,t;)

» Theorem: The closest substring problem is NP-
hard (it is an harder version of Closest string)

NP-hard: what to do?

» Change the problem
—eg., “relax” the class of patterns

» Accept the fact that the method may fail to
find the optimal patterns
— Heuristics
— Randomized algorithms
— Approximation schemes




Discovering Rigid Patterns

We report on four recent algorithms

Teiresias [1999]
Winnower [2000]
Projection [2001]
Weeder [2001]

(disclaimer: my selection is biased)

Teresias




Teiresias algorithm

By Rigoustos and Floratos [Bioinformatics, 1998]
Server at http://cbesrv.watson.ibm.com/Tspd.html

The worst case running time is exponential, but
works reasonably fast on average

A recent improved algorithm runs in polynomial time
by reporting only to irredundant patterns [Parida et
al., 2000]

Telresias patterns

Teiresias searches for rigid patterns on the
aphabet X u{.} where“.” isthedon’t care

symbol

However, there are some constrains on the

[ 1]

density of “.” that can appear in a pattern




<L,W> patterns

» Definition: GivenintegersL and W, L<W, yis
a<L,W> pattern if
—yisastring over X u{.}
—y starts and ends with a symbol from X

— any substring of y containing exactly L symbols
from X hasto be shorter (or equal) to W

Example of <3,5> patterns

o AT. . CG . Tisa<3,5> pattern

« AT. . CG T. isnot a<3,5> pattern, because it

ends with “.

« AT. C. G . Tisnot a<3,5> pattern, because
the substring C. G. . T is6 characterslong




Teiresias

» Definition: A pattern w is more specific than a

patterny, if w can be obtained from y by
changing one or more “.” to symbols from %,

or by appending any sequence of > u{.} tothe
left or to the right of y

« Example: giveny = AT. CG. T, thefollowing

patterns are more specific theny
ATCCG T, CAT.CGCT, AT.CG T.A,

T. AT. CGIT. A

Telresias

» Definition: A patterny is maximal with respect
to the sequences {X,X,, ..., %} If there exists no
pattern w which is more specific than y and

f(w)=1(y)

o Given {X;,%,,... X} and parameters L, WK,
Teiresias reports all the maximal <L,W>
patterns that have at least K colors




Teiresias algorithm

o |dea if yisa<L,W> pattern with at least K
colors, then its substrings are also <L,W>
patterns with at least K colors

» Therefore, Teiresias assembles the maximal
patterns from smaller patterns

o Definition: A patterny iselementary if isa
<L,W> pattern containing exactly L symbols
from X

Teiresias algorithm

e Teresiasworksin two phases

— Scanning: find all elementary patterns with at |east
K colors; these become theinitial set of patterns

— Convolution: repeatedly extend the patterns by
“gluing” them together

 Example:y=AT. . CG Tandw=G T. A
can be merged to obtain AT. . CG._T. A




Convolution phase

» For each elementary patterny, try to extend it
with all the other elementary patterns

» Any pattern that cannot be extended without
losing support can be potentially maximal

Convolution phase

» To speed-up this phase, one wants to avoid the
all-against-all comparison

* The authors devise two partial orderings <
and < on the universe of patterns

» Using these orderings to schedule the
convolution phase, they guarantee that
— all patterns are generated

—amaximal patterny is generated before any non-
maximal pattern subsumed by y




Partial ordering <

* Definition: determine whether y <, wor w <
y using the following algorithm

—aligny and w such that the leftmost residues arein
the same column

— examine one column after the other (l€eft to right)
and stop whenever one column has a residue and
the other hasa*“.”

— if the residue comes fromy then'y < w
— if the residue comes from w then w < y

Example
«y= ASD...F
w= SE. ERF. DG
y<hW
ey= ASD...F

w = SE. ERF. DG
W<gY




Teiresias algorithm

Initialize the stack with elementary patterns with
support at least K
Order the stack according to < and <4
Repeat
— Repeat
 Try to extend the top pattern to the right with all the othersin the
prefix-wise ordering

« If anew pattern isformed with have enough support, it becomes
the new top

— Until the top can no longer be extended to the right
— Do the same for left extension, using the ordering <«
— Check the top for maximality, if so pop it and report it

Until stack is empty

Conclusionson Teiresias

* It can be proved that Teiresias correctly reports
al <L, W> maximal patterns
* Pros.
— provably correct
— fast on average input
e Cons:
— exponential time complexity
— limited to <L,W> patterns




Winnower

Pevzner and Sze, UCSD

Winnower

 Invented by Pevzner and Sze [ISMB 2000]

* Initially designed to solve the (15,4)-motif
challenge

» Planted (m,d)-motif problem:

— The problem is to determine an unknown pattern y
of length min a set of k nucleotide sequences, each
of length n, and each one containing exactly one
occurrence of a string w such that h(y,w)=d




Winnower

Pevzner and Sze show that the most popular
algorithms (Consensus, GibbsDNA, MEME)
fail to solve (most of the times) the (15,4)-
motif problem [ n=600, k=20]

(Note: this comparison is not totally fair)
Why the (15,4)-motif problem is difficult?
Because two strings in the class of the (15,4)
unknown pattern may differ by as many as 8
positions out of 15, a rather large number

Winnower

Idea: Search for groups of strings of length m
such that any two in a group differ at most by
2d positions

Remember however that this may not be
sufficient




Winnower

» How to find groups of patterns such that given

any two elements w, and w,, in the group,
h(w,,w,)<2d?

» One could generate (k choose 2) multiple
alignments to find out all pairs of substrings of
length m that have at most 2d mismatches
(Consensus [Hertz & Stormo 1999])

Winnower

» Winnower builds agraph G in which

— each vertex corresponds to a distinct string of
length m

— two vertices are connected by an edge if the
Hamming distance between the corresponding
stringsis at most 2d, and the strings do not come
from the same sequence (remember that we are
guaranteed that there is only one occurrence of the
unknown pattern in each sequence)




Graph for the (15,4)-problem

» They report that for each “signal” -edge there
are about 20,000 spurious-edges

» Finding the signal among the noiseisa
“daunting task”

Winnower

» Winnower searches the graph G for cliques,
which are subsets of vertices totally connected

 But the problem of finding large cliquesin
graphs is NP-complete




Multipartite graphs
» Definition: A graph G is n-partiteif its vertices

can be partitioned into n sets, such that thereis
no edge between any two vertices within a set

 Fact: Winnower’s graph is k-partite

Example

» Given sequences{abde, af cg, hbci , j bck} we
look for a (3,1)-motif




|dea

» Each vertex of the cliqgue hastobeina
different partition

» Welook for cliques that have exactly one
vertex in each partition

Extendable cliques

o Definition: avertex uisaneighbor of aclique
{vy,...vg if {v,,...,v U} isalso aclique for G,
when s<k

» Definition: acliqueiscalled extendableif it
has at |east one neighbor which has at least one
vertex in every part of the k-partite graph G




Extendable cliques

» Definition: A clique with k vertices, eachin a
different partition is called maximal

» Consider a maximal clique and take a subset
of t of itsvertices: this subset is an
extendable clique

 |dea remove edges that do not belong to
extendable cliques

Extendable cliques

Fact: For any clique of sizek there are g‘:?
2

extendable cliques with t vertices

Fact: Any edge belonging to a clique with k

Y
vertices is member of at least g( 22
“Lg

extendable cliques of sizet




|dea

Y
An edge that is not member of at least oK 2
&t-2
expandable cliques of sizet cannot be part of
amaximal clique and therefore it can be

removed

t=1

» For t=1, each vertex isaclique

—itisextendableif it is connected to at |east one
vertex in each partition

» Delete all edges corresponding to vertices that
do not have a neighbor in each partition

* lterate










t=2

» For t=2, each pair of vertices u,v such that
thereis an edge (u,v) isaclique
—itisextendableif thereisvertex zin each of the
other k-2 partitions such that (u,v,z) is acycle of
length 3

— each edge should belong to at least (k-2 choose t-
2)=(n-2 choose 0)=1 clique of size 2

t>2

 For t=3, Winnower removes edges that belong
to less than k-2 extendable cliques of size 3

 For t=4, Winnower remove edges that belong
to less than (k-2)(k-1)/2 extendable cliques of
Size4




Remarks on Winnower

e Pros:

— more effective than Meme, Consensus and
GibbsDNA for the (15,4) problem

» Cons:
— randomized
— time-complexity can be very high (e.g., for t=3is
O(n%)
— need to know mand d in advance
— assume exactly one occurrence per sequence

Projection




Random Projection algorithm

» Proposed by Buhler and Tompa [Recomb
2001]

» The algorithm was initially designed to solve
the (m,d)-motif planted problem

Analysis on (m,d)-motif problem

Suppose A,C,T,G have probability 1/4. Then the
probability that a pattern of sizem occurs at a

given positionisp,, = (1/4)". If wealow upto
one mismatch, the probability becomes
P = Py + M(3/4)(1/4)™*. If we alow at most two, it

m(m- 1)

becomesp,,, = p, + (3/4)*(1/4)™>. In general, if

. { @N0aB0 o
wealow up to d mismatches, p.., = 8 o —or o o=2 |
P Po =i 815845




Analysis on (m,d)-motif problem

If Z isther.v. for the number of occurrences,

then P(Z >0) =1-P(Z =0) =1-(1- p,))" ™

If we have k sequences, we get that the probability
that a particular y occurs at least once in each
sequenceis (1- 1- p(d))”'m+1)k.

Therefore, the expected number of patternsis

E(n,mk,d)© 4" (1-(L- po,)"™)".

Stats of spurious (m,d)-motifsin
simulated data (k=20,n=600)

m d | Eeoom20d) E@0OME120d) | apc Correct Spurious  19/20  iter

9 2 1.6 61x10°8]0.28 11 5 4 1483
11 3 47  3.2x1077 | 0.026 1 13 6 2443
13 4 5.2 4.2x 1077 | 0.062 2 15 3 4178
15 5 2.8 2.3%x 1077 | 0.018 0 7 13 6495
17 6| 088 7.1x107% | 0.022 0 8 12 9272

Bottom-line: the (9,2)-, (11,3)-, (13,4)-, (15,5)- and (17,6)-motif
problems are probably impossible to solve




Random Projections

 |dea select t random positions and for each
substring of length m of the text hash its
selected positions into atable

» Hopefully, the cell corresponding to the
planted motif will be the one with the highest
count

Random Projection algorithm

e Parameters (m,d), n, k, s, possibly i
o Sett< mdand4'> k(n-m+1)
» Build atable with al substrings of length m
* Repeat i times
— Select randomly t positions

— Repeat for all substrings in the table
* Increase the count of the cell indexed by the t positions
» Select all cellswith count >s




Random Projection algorithm

 Wewant t < m-d because we want to sample
from the “non-varying” positions

* The number of iterationsi can be estimated
fromm, dandt

Random Projection algorithm

 Since we are hashing k(n-m+ 1) substrings of
size minto 4! buckets, if 4'> k(n-n+ 1) each
bucket will contain on average less than one
substring (set s=1)

* The constrain is designed to filter out the noise

» The bucket corresponding to the planted motif
IS expected to contain more motif instances
than those produced by a random sequence




Random Projection algorithm

o |f the constrain 4'> k(n-m+ 1) cannot be
enforced, the authors suggest to set
t = m-d-1 and the threshold
s= 2 [k(n-m+1)/4Y (twice the average bucket
Size)

Motif refinement

» The agorithm will try to recover the unknown
motif from each cell having at least s elements

* The primary tool for motif refinement is
expectation maximization (EM)




Experiments

» Projection can handle the (15,4)- (14,4)-
(16,5)- and (18,6)-motif problem (k=20,
n=600)

* Winnower failsthe (14,4)- (16,5)- and (18,6)-
motif problem

Results

m d | Gibbs WINNOWER SP-STAR | PROJECTION Correct iter
10 2| 020 0.78 0.56 0.82 20 72
Ir 2] 0.68 0.90 0.84 091 20 16
12 3] 0.03 0.75 0.33 0.81 20 259
13 3| 0.60 0.92 0.92 0.92 20 62
14 4] 0.02 0.02 0.20 0.77 19 647
15 4 019 0.92 0.73 0.93 20 172
16 5| 0.02 0.03 0.04 0.70 16 1292
17 51 028 0.03 0.69 0.93 19 378
18 6| 0.03 0.03 0.03 0.74 16 2217
19 6| 0.05 0.03 0.40 0.96 20 711
k=20, n=600, winnower (t=2), projection (t=7,5=4, 20 random instances)




e Pros:

Remarks about Projection

— fast and effective

e Cons:
— need to know m and d in advance
— randomized

Weeder




Weeder

Proposed by Pavesi, Mauri and Pesole [ISMB
2001]

Draw ideas from PRATT by [Jonassen95,
Jonassen97] and [ Sagot98]

It is an exhaustive approach for a particular
class of rigid patterns

Exhaustive approach

Suppose that you want to spell out all possible
(m,d) rigid patterns that has at support least g

One way to do it, isto use a (generalized)
suffix tree [ Sagot 98]




|dea [ Sagot 98]

» Any deterministic pattern (substring) w
corresponds to a path in the tree ending in a
node u, called the locus of w — the number of
leaves in the subtree rooted at u gives the
support

» Any model (rigid pattern) corresponds to a set
of pathsin the tree ending in nodes
{u,,u,,...,u} —the total number of leavesin the
subtrees rooted at {u,,u,,...,u;} givesthe
support

Example

Virtual trie of the models Suffix tree of the sequences
"TCAGAS$ " and "CTTAGS )

o o
I

Hamming distancé™




Example

Virtual trie of the models Suffix tree of the sequences
"TCAGAS," and "CTTAGS )

.. |This path belongs to models:
(AGA,0) 3
(AAAL)
"I (CGA1) (ACA1) (AGC,1)
(TGA1) (ATAL) (AGT,1) ®
(GAD (AGGL) | T I ¢ )|

NN

o o

Exhaustive approach [ Sagot 98]

« Start with all paths of length d with enough
support (they represent valid models)

At each path-extension keep track of the
mismatches and the support

— if the number of mismatches has not been reached
the model will be extended by the symbolsin X

(therefore the number of models will be scaled up
by afactor |X|)

— otherwise we are allowed just to follow the arcs




Time complexity [Sagot 98]

 Finding all the models with
support=occurrences in a single sequence takes
O(n N(m,d)) = O(n m? | |9

» Finding all the models with support=colorsin
a multisequence takes
O(n k> N(m,d)) = O(n k? m™ |X]9)

» Note that the complexity is exponential (with
d)

Weeder

» Paves et al., implemented the algorithm by
Sagot but it was running too slow, and they
decided to change the class of patterns

» Weeder isdesigned to find rigid patterns
which have an amount of mismatches
proportional to their length (the same constrain
applies also to all their prefixes)




Example € =0.25

Time complexity

By restricting the number of mismatchesto
em, the time complexity becomes
O(n kll/elem [X]|sm)




The (15,4)-motif challenge ... again

 Since the restriction on the density of the
mismatches, the authors report that Weeder
has probability 0.6 to catch the motif in ONE
sequence

» Then, the probability of Weeded to get the
motif in all the 20 sequence is amost zero

» On the other hand, running the Sagot’s version
IS too time-consuming

|dea

 Split the set of sequence into two halves

* Run Weeder on each of the two sets requiring
support k/4 (instead of k/2)

» The probability that the (15,4)-motif will bein
either subset is0.98

» The pool of model candidatesis then
processed with Sagot’ s algorithm




Remarks about Weeder

* Pros.
— Possibly exhaustive (if using Sagot’ s agorithm)
— Therelative error rate e may be more meaningful
than d and alows one not to specify in advance m
» Cons:

— Very slow if run exhaustively - it cannot be
considered exhaustive in practice

Discovering Profiles




Discovering Profiles

* |f one assumes the unknown profile to have
been generated by a sequence of independent
r.v.s then the observed frequency of lettersin
the columns of the profile are the ML
estimates of the distributions of ther.v.s

» Unfortunately we do not know the positions of
the profile in the multisequence

Gibbs sampler




Gibbs sampling

» Proposed by Lawrence, et al., [Science, 1993]

* Web servers at
http://bayesweb.wadsworth.org/gibbs/gibbs.html and
http://argon.cshl.org/ioschikz/gibbsDNA/

* Input: multisequence {X;,X,, ..., X}

pattern length m

» Output: amatrix profile g, bl 3, 1<i<m, and

positions §, 1< <k, of the profile in the k

Sequences

Gibbs sampling

» The agorithm maintains the background
distribution p,,...,p; of the symbols not
described by the profiles

» P(y) isthe probability of y based on the
background distribution p,, bl %

* Q(y) isthe probability of y based on the
profileq, ,, 1<i<m, bl X




Gibbs sampling

* |dea the profileis obtained by locating the
positions which maximizes Q(y)/P(y); once the
positions are obtained a new, more accurate,
version of the profile can be obtained

* Initialize theinitial positions 5 randomly

Gibbs sampling

Gibbs sampler iterates 1), 2) until convergence

1) Predictive update step: randomly choose one of
the k sequences, say r. The matrix profileq; ,,
and the background frequencies p, are
recomputed from the current positions s in all
sequences excluding r

2) Sampling step: assign aweight z(y)=Q(y)/P(y)
to each substring y of length m. Select randomly
a substring y with probability z(y)/ Zyz(y), and
then update 5




Gibbs sampling

» The more accurate the pattern description in step 1),
the more accurate the determination of its position in
step 2), and vice versa

» Once some correct positions have been selected by
chance, g, , begins to reflect, albeit imperfectly, the
unknown pattern

» This process tends to recruit further correct positions
which in turn improve the discriminating power of
the evolving pattern

Gibbs sampling

 How to update the matrix profile ¢ , and the
background frequencies p,?

« Weset g;,=(f(b)+d,)/(k-1+ > d.) wherefi(b) is
the number of times we observe symbol b in the
position i of the profile (currently placed at
position s), except for sequencer (d, are pseudo-
counts)

» We set the background probabilities
p,=f(b)/2.. f(c) for all symbolsin positions not
covered by the profile




Phase shift problem

» Suppose that the “strongest” pattern begin, for
example, at position 7, 19, 8, 23, ...

* If Gibbs happensto choose s;=9, s,=21 it will
most likely choose s,=10 and s,=25

» The algorithm can get stuck in local maxima,
which are the shifted form of the optimal
pattern

Phase shift problem

* The problem can be alleviated by adding a step
in which the current set of positions are
compared with sets of shifted left and right
positions, up to a certain number of symbols

* Probability ratios may be calculated for all
positions, and a random selection is made with
respect to the appropriate weight




Gibbs sampling

* |t can be generalized to:

» Find also the length of pattern m

» Find aset of matrix profiles, instead of one

Gibbs sampling

» Since Gibbs sampler is an heuristic rather than
arigorous optimization procedure, one cannot
guarantee the optimality of the result

 |[tisagood practiceto run the algorithm
several times from different random initial

positions




Gibbs sampling vs. EM

 Although EM and Gibbs are built on common
statistical foundation, the authors claim that
Gibbs outperforms EM both in term of time
complexity and performance

» “EM isdeterministic and tends to get trapped
by local optima which are avoided by Gibbs ...
HMMs permit arbitrary gaps ... have greater
flexibility, but suffer the same penalties...”

Expectation Maximization
and MEME




Expectation maximization

* EM was designed by Dempster, Laird, Rubin
[1977]

 EM isafamily of algorithms for maximum
likelihood estimation of parameters with
“missing data’

EM, when?

* When we want to find the maximum
likelihood estimate of the parameters of a
model and

— dataisincomplete, or

— the optimization of the maximum likelihood
function is analytically intractable but the
likelihood function can be simplified by assuming
the existence of additional, missing, parameters
value




Expectation maximization

» EM approaches the problem of missing
information by iteratively solving a sequence
of problemsin which expected information is
substituted for missing information

Expectation maximization

» All EM algorithms consists of two steps:
1) the expectation step (E-step)
2) the maximization step (M-step)

» The expectation step is with respect to the
unknown underlying variables, using the
current estimate of the parameters and
conditioned upon the observation




Expectation maximization

The maximization step provides a new
estimate of the parameters

Ol 02p 03 ... » 0L p Ol p ...

The two steps are iterated until convergence

General framework for EM

Suppose we want to find the parameters 6 of a
model (training)

We observe x (training set)

The probability of x under 6 is also determined
by the missing datay




Incompl ete data model

Complete data model

Incomplete data model

An occurrence of (x,y) implies an occurrence of x, however only x can be
observed. This observation reveal s the subset {(x,y), for all y}

Expectation maximization

« Example: For HMMs, x is the sequence we
want to learn from, 6 is the transition and
emission probabilities, y is the path through the
model

» Example: In the case of Random Projections, X

are the subsequences corresponding to a cell
with count higher than the threshold, 6 are the

parameters of arepresentation of the (m,d)
pattern, y are al the missing positions




MEME

Proposed by Bailey and Elkan [Machine

Learning J., 1995]

» “Multiple EM for Matif Elicitation” (MEME)
Is an improved version of the expectation
maximization approach by Lawrence and
Reilly [Proteins, 1990] (see appendix)

» Designed to discover profiles (no gaps)

e Server a http://meme.sdsc.edu/meme/

MEME

e There arethree main differences w.r.t.
Lawrence et al.:

1) theinitial profiles are not chosen randomly,
but they are substrings which actually occur
in the sequences

2) the assumption that thereisonly one
occurrence of the motif is dropped

3) once aprofile has been found, it is reported,
and the iterative process continues




Using substring as starting points

|dea: substrings actually occurring in sequence
are better starting points than random choices

Each substring is converted into a profile

Assigning 1.0 to the occurring symbol and 0.0
to the othersis a bad choice, because EM
cannot move from this

The authors arbitrarily assign probability 0.5 to
the symbol and 0.5/3 for the other three

Using substring as starting points

It would be too expensive to run EM until
convergence from each substring

It turns out that thisis not necessary

EM converges very quickly from profiles
obtained from substrings, and the best starting
point can be found running only one iteration




MEME algorithm

* Repeat
— For each substring y in {X;,X,,...,%} do
* Run one EM iteration with profile computed from y
 Choose the profile g with highest likelihood
* Run EM until convergence starting from q
* Report the profileq
» Erase the occurrences of g from dataset

e Until max number of iterations is reached

Dealing with multiple occurrences

« MEME allows to drop the “one-per-sequence”
assumption

e The basic ideaisto require the user to supply
an estimated number of occurrences of the
unknown profile and use that to normalize the
estimation process of the EM algorithm

* The authors claim that the exact value of the
number of occurrencesis not critica




Finding multiple profiles

 MEME does not stop after finding the most
likely profile

» Onceaprofileisfound and reported, itis
“probabilistically erased” by changing some
position-dependent weight

» The process continues until a number of

predetermined motifs have been found
* (see appendix for mega-prior heuristic)

THE END

Latest version of the slides at http://www.cs.ucr.edu/~stelo/ismb02/
Check out also http://www.cs.ucr.edu/~stelo/cs260/




