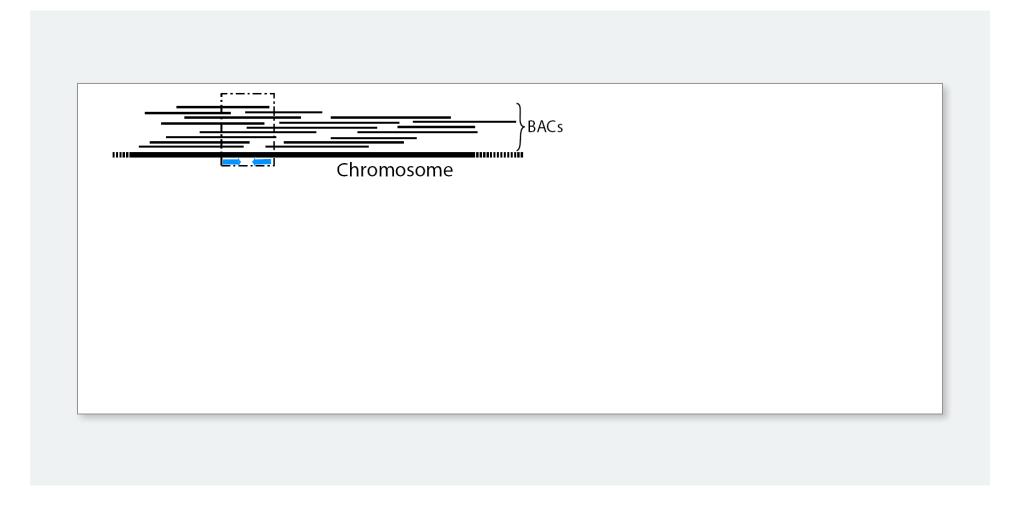
Deconvoluting BAC-gene Relationships Using a Physical Map

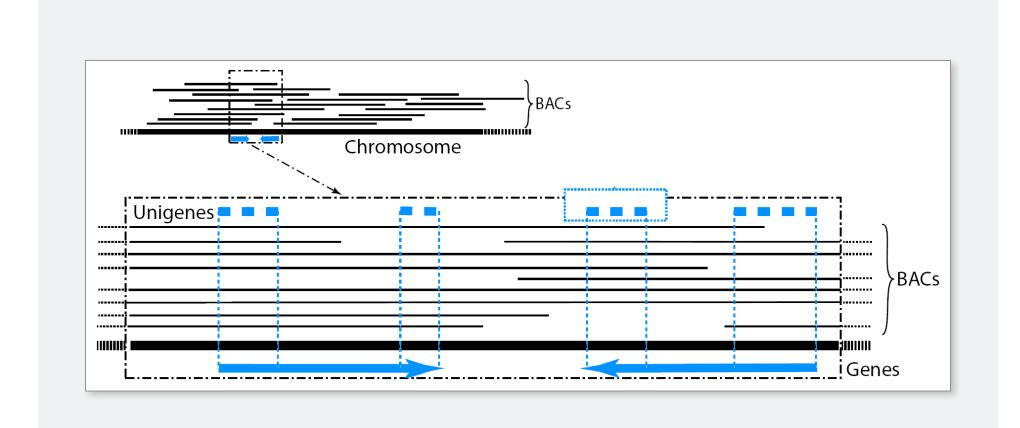
Y. Wu<sup>1</sup>, L. Liu<sup>1</sup>, T. Close<sup>2</sup>, S. Lonardi<sup>1</sup> <sup>1</sup>Department of Computer Science & Engineering <sup>2</sup>Department of Botany & Plant Sciences




### Selective sequencing

- Many organisms are unlikely to be sequenced in the near future due to the large size and highly repetitive content of their genomes
- Selective sequencing: obtain the sequence of a small set of BAC clones that contain a specific set of genes of interest
- How do we identify these BAC clones? BAC-gene deconvolution problem

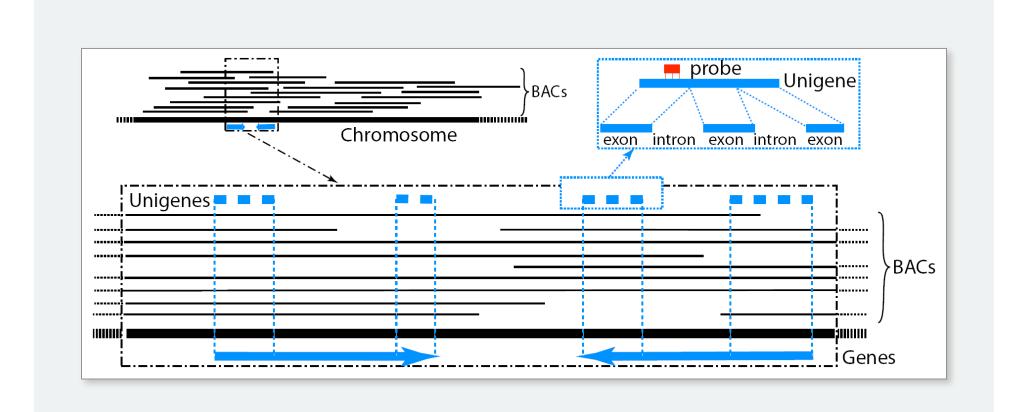



# An illustration of the problem



Stefano Lonardi, Department of Computer Science and Engineering, CSB 2007

UC RIVERSITY OF CALIFORNIA


# An illustration of the problem



Stefano Lonardi, Department of Computer Science and Engineering, CSB 2007

### UCRIVERSITY OF CALIFORNIA

# An illustration of the problem



### UC RIVERSITY OF CALIFORNIA

# Hybridization with probes

- The presence of a gene in a BAC can be determined by an hybridization experiment (e.g., using a <u>unique</u> probe designed from it)
- Given that typically BAC clones and probes could be in the order of tens of thousands, carrying out an experiment for each pair (BAC,probe) is usually unfeasible
- Group testing (or pooling) has to be used



# Hybridization with pools of probes

- Probes can be arranged into pools for group testing. However, in order to achieve exact deconvolution this strategy could be still unfeasible due to the large number of pools
- Question: Can we use a small number of pools (e.g., 1- or 2-decodable pool design) and still achieve accurate deconvolution?



### Dealing with the limitations of pooling

- Answer: Yes, if one compensates for the lack of information obtained by a weak pooling design with the knowledge of the overlapping structure of the BACs
- In this way, the number of pools required is reduced ⇒ less expensive/timeconsuming



### Hybridization data

*h*(*b*,*p*)=1 (pool *p* hybridizes to BAC *b*)

- b <u>must</u> contain at least one of the probes/genes represented by p
- positive information

h(b,p)=0 (pool p does not hybridize to BAC b)

- b <u>cannot</u> contain any of the probes/genes
  represented by p
- negative information

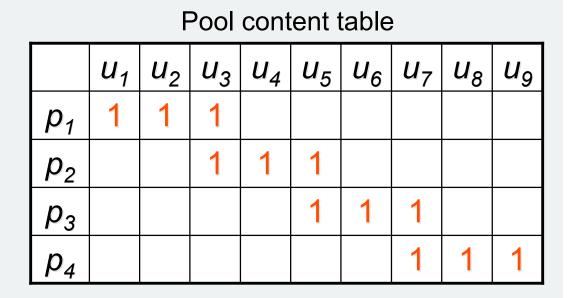
### **Deconvolution problem**

- Given h(b,p) for all pairs (b,p) the deconvolution problem is to establish a one-to-many assignment between the probes p and the clones b in such a way that it satisfies the value of h
- 1. Basic deconvolution: uses only on information obtained from group testing
- 2. Improved deconvolution: also uses the physical map

### Input to the basic deconvolution

Hybridization table

| h                     | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> | <i>p</i> <sub>3</sub> | <i>p</i> <sub>4</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <i>b</i> <sub>1</sub> | 1                     | 0                     | 0                     | 0                     |
| <i>b</i> <sub>2</sub> | 1                     | 1                     | 0                     | 0                     |
| <i>b</i> <sub>3</sub> | 0                     | 1                     | 1                     | 0                     |
| <i>b</i> <sub>4</sub> | 0                     | 0                     | 1                     | 1                     |
| <i>b</i> <sub>5</sub> | 0                     | 0                     | 0                     | 1                     |


 $p_i$  is a pool  $b_j$  is a BAC  $u_k$  is a probe/gene



### Input to the basic deconvolution

Hybridization table

| h                     | <i>p</i> <sub>1</sub> | <i>p</i> <sub>2</sub> | <i>p</i> <sub>3</sub> | <i>p</i> <sub>4</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| <b>b</b> <sub>1</sub> | 1                     |                       |                       |                       |
| <i>b</i> <sub>2</sub> | 1                     | 1                     |                       |                       |
| <i>b</i> <sub>3</sub> |                       | 1                     | 1                     |                       |
| <i>b</i> <sub>4</sub> |                       |                       | 1                     | 1                     |
| <i>b</i> <sub>5</sub> |                       |                       |                       | 1                     |



 $p_i$  is a pool  $b_j$  is a BAC  $u_k$  is a probe/gene

Stefano Lonardi, Department of Computer Science and Engineering, CSB 2007

### UCRIVERSITY OF CALIFORNIA

### **Positive information**

|                                               | <i>u</i> <sub>1</sub> | <i>u</i> <sub>2</sub> | <i>u</i> <sub>3</sub> | <i>u</i> <sub>4</sub> | <i>u</i> <sub>5</sub> | <i>u</i> <sub>6</sub> | <i>u</i> <sub>7</sub> | U <sub>8</sub> | U <sub>9</sub> |                                       |
|-----------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|---------------------------------------|
| <i>b</i> <sub>1</sub> , <i>p</i> <sub>1</sub> | 1                     | 1                     | 1                     |                       |                       |                       |                       |                |                |                                       |
| b <sub>2</sub> ,p <sub>1</sub>                | 1                     | 1                     | 1                     |                       |                       |                       |                       |                |                |                                       |
| <i>b</i> <sub>2</sub> , <i>p</i> <sub>2</sub> |                       |                       | 1                     | 1                     | 1                     |                       |                       |                |                |                                       |
| b <sub>3</sub> ,p <sub>2</sub>                |                       |                       | 1                     | 1                     | 1                     |                       |                       |                |                |                                       |
| b <sub>3</sub> ,p <sub>3</sub>                |                       |                       |                       |                       | 1                     | 1                     | 1                     |                |                |                                       |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>3</sub> |                       |                       |                       |                       | 1                     | 1                     | 1                     |                |                |                                       |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>4</sub> |                       |                       |                       |                       |                       |                       | 1                     | 1              | 1              | $p_i$ is a pool<br>$b_j$ is a BAC     |
| b <sub>5</sub> ,p <sub>4</sub>                |                       |                       |                       |                       |                       |                       | 1                     | 1              | 1              | $b_j$ is a BAC<br>$u_k$ is a probe/ge |



### **Negative information**

|                       | <b>U</b> <sub>1</sub> | <i>u</i> <sub>2</sub> | <i>u</i> <sub>3</sub> | <i>u</i> <sub>4</sub> | <i>u</i> <sub>5</sub> | <i>u</i> <sub>6</sub> | <i>u</i> <sub>7</sub> | и <sub>8</sub> | U <sub>9</sub> |
|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|----------------|
| <i>b</i> <sub>1</sub> |                       |                       | 0                     | 0                     | 0                     | 0                     | 0                     | 0              | 0              |
| <i>b</i> <sub>2</sub> |                       |                       |                       |                       | 0                     | 0                     | 0                     | 0              | 0              |
| <i>b</i> <sub>3</sub> | 0                     | 0                     | 0                     |                       |                       |                       | 0                     | 0              | 0              |
| <i>b</i> <sub>4</sub> | 0                     | 0                     | 0                     | 0                     | 0                     |                       |                       |                |                |
| <i>b</i> <sub>5</sub> | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     | 0                     |                |                |

 $p_i$  is a pool  $b_j$  is a BAC  $u_k$  is a probe/gene

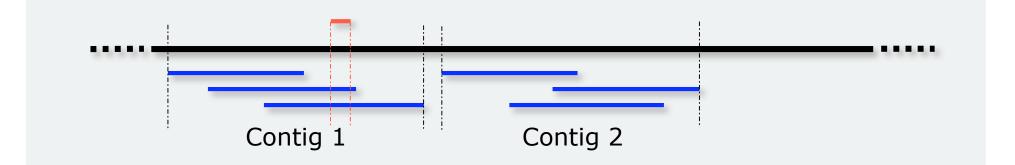
### Combining positive & negative

|                                               | <i>u</i> <sub>1</sub> | <i>u</i> <sub>2</sub> | <i>u</i> <sub>3</sub> | <i>u</i> <sub>4</sub> | <i>u</i> <sub>5</sub> | <i>u</i> <sub>6</sub> | <i>u</i> <sub>7</sub> | U <sub>8</sub> | <i>u</i> 9 |
|-----------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|------------|
| <i>b</i> <sub>1</sub> , <i>p</i> <sub>1</sub> | 1                     | 1                     | 1                     |                       |                       |                       |                       |                |            |
| <i>b</i> <sub>2</sub> , <i>p</i> <sub>1</sub> | 1                     | 1                     | 1                     |                       |                       |                       |                       |                |            |
| <i>b</i> <sub>2</sub> , <i>p</i> <sub>2</sub> |                       |                       | 1                     | 1                     | 1                     |                       |                       |                |            |
| <i>b</i> <sub>3</sub> , <i>p</i> <sub>2</sub> |                       |                       | 1                     | 1                     | 1                     |                       |                       |                |            |
| b <sub>3</sub> ,p <sub>3</sub>                |                       |                       |                       |                       | 1                     | 1                     | 1                     |                |            |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>3</sub> |                       |                       |                       |                       | 1                     | 1                     | 1                     |                |            |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>4</sub> |                       |                       |                       |                       |                       |                       | 1                     | 1              | 1          |
| <i>b</i> <sub>5</sub> , <i>p</i> <sub>4</sub> |                       |                       |                       |                       |                       |                       | 1                     | 1              | 1          |

 $p_i$  is a pool  $b_j$  is a BAC  $u_k$  is a probe/gene

Stefano Lonardi, Department of Computer Science and Engineering, CSB 2007

UC RIVERSITY OF CALIFORNIA


### Combining positive & negative

|                                               | <i>u</i> <sub>1</sub> | <i>u</i> <sub>2</sub> | <i>u</i> <sub>3</sub> | <i>u</i> <sub>4</sub> | <i>u</i> <sub>5</sub> | <i>u</i> <sub>6</sub> | <i>u</i> <sub>7</sub> | и <sub>8</sub> | <i>u</i> 9 |
|-----------------------------------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|----------------|------------|
| <i>b</i> <sub>1</sub> , <i>p</i> <sub>1</sub> | ~                     | 1                     |                       |                       |                       |                       |                       |                |            |
| <i>b</i> <sub>2</sub> , <i>p</i> <sub>1</sub> | 1                     | 1                     | 1                     |                       |                       |                       |                       |                |            |
| b <sub>2</sub> ,p <sub>2</sub>                |                       |                       | 1                     | 1                     |                       |                       |                       |                |            |
| b <sub>3</sub> ,p <sub>2</sub>                |                       |                       |                       | 1                     | 1                     |                       |                       |                |            |
| b <sub>3</sub> ,p <sub>3</sub>                |                       |                       |                       |                       | 1                     | 1                     |                       |                |            |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>3</sub> |                       |                       |                       |                       |                       | 1                     | 1                     |                |            |
| <i>b</i> <sub>4</sub> , <i>p</i> <sub>4</sub> |                       |                       |                       |                       |                       |                       | 1                     | 1              | 1          |
| b <sub>5</sub> ,p <sub>4</sub>                |                       |                       |                       |                       |                       |                       |                       | 1              | 1          |

- Each row represents a *constraint* to be satisfied
- If a row contains only one "1", then the relationship between the BAC and probe is resolved exactly

 $p_i$  is a pool  $b_j$  is a BAC  $u_k$  is a probe/gene

### Physical map-assisted deconvolution



- Basic deconvolution is not sufficient
- BACs are assembled into contigs by FPC (a *contig* is a set of BAC clones)
- We assume the probes are unique ⇒ each probe can belong to exactly one contig



# **Optimization problem**

We formulate the following optimization
 problem

MAXIMUM CONSTRAINT SATISFYING PROBE-CONTIG ASSIGNMENT (MCSPCA) Instance: A set of probes  $\mathbb{O}$ , a set of contigs  $\mathbb{C}$  and a list of constraints  $\Omega'$ , where each item of  $\Omega'$  has the form  $(\mathbf{c}, \mathbb{O}_{b,\mathbf{p}})$ ,  $\mathbf{c} \in \mathbb{C}$  and  $\mathbb{O}_{b,\mathbf{p}} \subseteq \mathbb{O}$ . Objective: Assign each probe to at most one contig in  $\mathbb{C}$  such that the number of satisfied constraints in  $\Omega'$  is maximized. A constraint  $(\mathbf{c}, \mathbb{O}_{b,\mathbf{p}})$  is satisfied if one or more of the probes from  $\mathbb{O}_{b,\mathbf{p}}$  is assigned to  $\mathbf{c}$ .

# • The problem is NP-complete (proof in the paper, reduction from 3SAT)



### **Integer Linear Programming**

• The optimization problem can be solved via integer linear programming (ILP)

$$\begin{array}{ll} Maximize \sum_{q \in \Omega'} Y_q\\ Subject \ to \ \sum_{\mathbf{c} \in \mathbb{C}} X_{o,\mathbf{c}} \leq 1 & \forall o \in \mathbb{O} \\\\ & Y_{q=(\mathbf{c},S)} \leq \sum_{o \in S} X_{o,\mathbf{c}} \ \forall q \in \Omega'\\ & X_{o,\mathbf{c}} \in \{0,1\} & \forall o \in \mathbb{O}, \mathbf{c} \in \mathbb{C}\\ & Y_q \in \{0,1\} & \forall q \in \Omega' \end{array}$$



# LP and randomized rounding

- The ILP is relaxed to the corresponding LP, then the LP is solved exactly (via the GLPK package)
- Optimal solution to the LP is mapped to a valid solution to the ILP via randomized rounding
- We prove that our method achieves approximation ratio (1-e<sup>-1</sup>)

### Experimental results on rice genome

- Whole genome sequence for rice is available
- BAC library and fingerprinting data are available from AGI
- BAC-end sequences are also available from Genbank
- Physical map was built using FPC
- Coordinates of the BAC on the genome were determined by BLASTing BAC-end sequences against the genome

### Experimental results on rice genome

- Rice unigenes are available from NCBI
- Unique probes for the unigenes were designed by the Oligospawn software
- Experiments focused on chromosome I
- Probe pools were designed following the shifted transversal design (STD)
- Dataset: 2,002 probes and 2,629 BACs

### **Experimental results**

### 1-decodable pooling design

|               |        |                |              | MCSPCA |           |  |  |
|---------------|--------|----------------|--------------|--------|-----------|--|--|
| pooling       | #pools | # true assigns | basic recall | recall | precision |  |  |
| P = 13, L = 3 | 39     | 14742          | 0.0103       | 0.199  | 0.2647    |  |  |
| P = 47, L = 2 | 94     | 14742          | 0.0173       | 0.4005 | 0.5236    |  |  |
|               |        |                |              |        |           |  |  |



### **Experimental results**

### 2-decodable pooling design

|               |        |                |              | MC     | SPCA      |
|---------------|--------|----------------|--------------|--------|-----------|
| pooling       | #pools | # true assigns | basic recall | recall | precision |
| P = 13, L = 5 | 65     | 14742          | 0.2726       | 0.618  | 0.7668    |
| P = 47, L = 3 | 141    | 14742          | 0.763        | 0.9069 | 0.9446    |

UCRIVERSITY OF CALIFORNIA

### **Experimental results**

|               |        |                |              | MCSPCA |           |  |  |
|---------------|--------|----------------|--------------|--------|-----------|--|--|
| pooling       | #pools | # true assigns | basic recall | recall | precision |  |  |
| P = 13, L = 3 | 39     | 14742          | 0.0103       | 0.199  | 0.2647    |  |  |
| P = 13, L = 5 | 65     | 14742          | 0.2726       | 0.618  | 0.7668    |  |  |
| P = 47, L = 2 | 94     | 14742          | 0.0173       | 0.4005 | 0.5236    |  |  |
| P = 47, L = 3 | 141    | 14742          | 0.763        | 0.9069 | 0.9446    |  |  |



# Findings

- We proposed a new method to solve the BAC-gene deconvolution problem based on integer linear programming
- Experimental results show that our method is accurate and effective

### Thank you

• Funding



• Serdar Bozdag (UC Riverside) for providing the rice data (fingerprinting and hybridization)

