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ABSTRACT

Lonardi, Stefano. Ph.D., Purdue University, August, 2001. Global Detectors of
Unusual Words: Design, Implementation, and Applications to Pattern Discovery in
Biosequences. Major Professor: A. Apostolico.

The enormous growth of biomolecular databases makes it increasingly important
to have fast and automatic methods to process, analyze and understand such massive
amounts of data. In the domain of sequence analysis, a prominent role is played
by a family of methods which are designed to discover unusual patterns. Unusu-
ally frequent or rare words are implicated in various facets of biological function
and structure. With sequence data becoming massively available, tasks akin to an
exhaustive enumeration and testing of word frequencies in a whole genome are becom-
ing increasingly appealing and yet pose significant computational burdens even when
limited to words of bounded maximum length. In addition, the display of the huge
tables possibly resulting from these counts poses significant problems of visualization
and inference.

In this thesis, we show efficient and practical algorithms for the problem of de-
tecting words that are, by some measure, over- or under-represented in the context
of larger sequences. The design is based on subtly interwoven properties of statistics,
pattern matching and combinatorics on words. These properties enable us to limit
drastically and a priori the set of over- or under-represented candidate words of all
lengths in a given sequence, thereby rendering it more feasible both to detect and
to visualize such words in a fast and practically useful way. We also demonstrate
that such anomaly detectors can be used successfully to discover exact patterns in
biological sequences, by reporting results of a software tool, called VERBUMCULUS on
simulated data and test cases of practical interest.
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Introduction

Characterizing and finding regularities in strings are fundamental problems in many
areas of Science: molecular biology, analysis of stochastic processes, data compression,
machine learning, speech recognition, coding, automata, formal language theory, etc.
Among the most commonly studied regularities in texts, the most prominent role is
played by frequent occurrences of the same word. For instance, in the domain of
data compression repetitive words are regarded as redundancies and sought to be
removed. Vice versa, in the context of learning and classification, repeated patterns
are unveiled as carriers of information and structure.

Recently, an unprecedented wealth of data has been generated by genome sequenc-
ing projects and other efforts to determine the structures and functions of biological
molecules. The demands and opportunities for analyzing and interpreting these data
are increasing at the same rate as biological databases are expanding. At the cur-
rent pace at which biological information becomes available in the form of new DNA
sequences, protein 3D structures, gene expression profiles, metabolic pathways, etc.,
the ability to automatically analyze, cluster, classify, and annotate it is becoming an
increasingly critical need.

Unusually frequent or rare words are implicated in various facets of biological
function and structure. With biological data increasingly and massively accumu-
lated, tasks akin to an exhaustive enumeration and testing of word frequencies in
whole genomes become increasingly appealing, and yet pose significant computa-
tional burdens even when limited to words of bounded maximum length. In addition,
the display of the huge tables possibly resulting from these counts poses practical
problems of visualization and inference.

Possibly the most critical issue in the design of algorithms for the analysis of mas-
sive datasets is the effectiveness of the strategy that limit the size of the output. Even
with enough computing power and algorithmic efficiency for handling the processing,
the limited bandwidth of our perception system would become an insurmountable
bottleneck in the analysis pipeline.

In this dissertation we propose efficient and practical algorithms for the problem of
detecting words that are, by some measure, unusually frequent or rare in the context
of larger sequences. We also report results of several experiments in which these
methods are employed as pattern discovery tools on biomolecular data.

We present the thesis in three logical steps, also reflected in the structure of the
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chapters (see Figure 1).

In the first step, we formally define the spectrum of meanings of terms “frequent”
and “rare”. Several type of events and regularities can be observed and counted on
linear discrete structures. While the fundamental event is the occurrence of a word,
several variations coming from a variety of applications have been proposed and stud-
ied. For instance, in the domain of textual data compression it is sometime necessary
to count non-overlapping occurrences, while in the context of molecular biology an
unusual number of adjacent occurrences can be associated to specific genetic diseases.

The scope of this work is extended to five types of events: namely, occurrences,
non-overlapping occurrences, clumps, maximal quasiperiodic substrings, and colors.
For each of these, we prove combinatorial properties and expose relationships between
the structure of strings and the counts. These properties, along with basic notations
and concepts, are covered in Chapter 1.

The second step is concerned with the model of the source from which the data
under study is supposed to be drawn. Modeling complex data sequences is a promi-
nent problem in many research areas. For example, probabilistic models of various
classes are developed in the context of coding and compression as well as learning
and classification. Source modeling is made difficult in practice by the fact that the
source distribution is unknown.

A typical approach to the statistical modeling of sequences relies on Markov mod-
els. For sequences in important families, such as those arising in applications like
natural language processing, speech recognition, molecular sequence analysis, etc.,
the “memory” of the process, which is supposed to have produced the data, decays
exponentially fast with an increase in its length.

A “degenerate” case of Markov models is the memory-less model, which assumes
that each symbol is generated independently. For simplicity of exposition, the dis-
cussion in Chapter 2 is first centered on memory-less models, and extended, when
mathematically feasible, to Markov chains.

Once a suitable model is selected, we are in the condition to measure the degree of
unusual-ness of any given word, called score, as the discrepancy between the observed
count and the model-based prediction. Our main contribution in Chapter 2 is a series
of theorems that show, under some reasonable statistical assumptions, that score
functions usually employed in literature share a strong mathematical property. The
property holds when one assumes the observed count to be constant, and considers
words of increasing lengths. Under these conditions, as the size of the word grows,
the magnitude of its score increases proportionally. In other words, score functions
are generally monotonic with respect to the size of the word.

In the third and last step, we “interweave” the structural properties of words
with the theorems of monotonicity to design the algorithms and the data structures
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(Chapter 3). As said, the primary objective of this work is the asymptotic time
and space complexity, that is, the most efficient solution in terms of computational
resources.

Previously, the detection of unusual words in sequences was carried out by first
enumerating more or less exhaustively all the substrings (up to a certain length) in the
sequence under analysis, and then checking individually the observed and expected
count, variance, and score of discrepancy and significance thereof. This strategy,
however, has the disadvantage of bringing the number of potential surprising words
to a quadratic function in the size of the input. The inevitable consequence is an
algorithm for the detection of unusual words which takes at least quadratic time and
space. When the sequence under study is in the order of millions of bases, as in the
case of small complete genomes, the problem would be overwhelming even for the
fastest computer available today.

We instead take the approach of identifying, among the words of all lengths in
the sequence, a “small” number of pairs of words, which we call candidate pairs. We
choose them such that each candidate pair has the property to uniquely represent a
whole class of words, and such that all the words within a class share the same count.
In particular, the second property satisfies the prerequisite for the monotonicity of
the scores. As explained later, this implies that we are in the conditions to pick a
priori two words in each class which are guaranteed to achieve the highest positive
and negative score within that class.

A fundamental piece of the information in this approach is to determine how many
classes can exists in the worst case. By structural properties of the substrings of a
sequence discussed in Chapter 3, it turns out that there is only a linear number of
candidate pairs.

The last “ingredient” of our algorithm is how to compute efficiently expectation,
variance, and scores for the candidate words within each class. In most cases of
practical interest, the computation takes only constant time per class, hence resulting
in a overall linear time algorithm for the detection of unusual words in a sequence.

These and other algorithms have been implemented and assembled in a suite of
software tools, called VERBUMCULUS, for the efficient discovery of unusual words in
biomolecular data. The properties mentioned above which constitute the inner core
of VERBUMCULUS, not only allow fast detection, but also help in the visualization
of such significant words in a practically useful way. In Chapter 4 we describe the
facility at the outset and demonstrate its visualization features.

When comparing VERBUMCULUS with an enumerative method which operates
under the same probabilistic model and score function, clearly both methods discover
eractly the same set of patterns. However, VERBUMCULUS performs a lot faster,
consuming a lot less resources. While traditional programs are doomed to fail for
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lack of memory when confronted with massive datasets, for example those arising
from the genome projects, VERBUMCULUS has a chance to yield the answer. In this
respect, the experiments in Chapter 5 on simulated data and test cases of practical
interest, are intended to show that the tool is capable of finding patterns which are
biologically significant in an efficient and practical way.

Finally, Chapter 6 covers the final remarks, along with all the problems and ques-
tions for which additional efforts should be planned.

Biology is so digital, and incredibly complicated, but incredibly useful . ..
It is hard for me to say confidently that, after fifty more years of explosive
growth of computer science, there will still be a lot of fascinating unsolved
problems at peoples’ fingertips, that it won’t be pretty much working on
refinements of well-explored things. Maybe all of the simple stuff and the
really great stuff has been discovered. It may not be true, but I can’t predict
an unending growth. I can’t be as confident about computer science as I
can about biology. Biology easily has 500 years of exciting problems to
work omn . ..

Donald Knuth, Excerpt from an interview at Computer Literacy Book-
shops, December 1993.

Some have said that sequencing the human genome will diminish human-
ity by taking the mystery out of life. Poets have argued that genome
sequencing is an example of sterilizing reductionism that will rob them of
their inspiration. Nothing could be further from the truth. The complexi-
ties and wonder of how the inanimate chemicals that are our genetic code
give rise to the imponderables of the human spirit should keep poets and
philosophers inspired for millennia.

Craig Venter, Remarks at the “Human Genome Announcement”, White
House, June 2000.
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1. Notations, Basic Properties and Problem Definition

This chapter introduces most of the notations and concepts that will be used in the
rest of the document. The remaining definitions can be found using the cross reference
tables on pages xii—xiv.

Some fundamental properties related to these concepts are stated with a proof
when necessary.

1.1 Basics

We use ¥ to denote a nonempty alphabet of symbols. A string over X is an ordered
sequence of symbols from the alphabet. The set of all strings on the alphabet X is
denoted by ¥*, and the set of nonempty words is denoted by ¥*. As synonyms to
the word “string” we also use the terms textstring, text or simply sequence.

Given a string z, the number of symbols in x defines the length |x| of z. Henceforth,
we assume |z| = n. The empty string has length zero, and is denoted by e.

The concatenation (or product) of two strings z and y is denoted by xy, and
corresponds to the operation of appending y to the last symbol of z. Clearly, ze =
ex = x. The concatenation is associative, and therefore there is no need to use
brackets. The concatenation of k copies of the word z is denoted by z*.

Let us decompose a text x in uvw, i.e., x = uvw where u, v and w are strings over
Y. Strings u,v and w are called substrings, or words, of x. Moreover, u is called a
prefiz of z, and w is called a suffiz of x. A string that has z as a prefix (resp., suffix)
is called a right extension (resp., a left extension) of x.

We write zj;), 1 < < |z| to indicate the i-th symbol in z. We use z; ;) shorthand
for the substring ;T y1)... 2 where 1 < 4 < j < n, with the convention that
T[4 = T[;). Substrings in the form zp; ;; corresponds to the prefixes of z, and substrings
in the form zj; ;) to the suffixes of .

Throughout this document, variables u, v, y, w usually indicate substrings of the
text . Unless otherwise specified, we assume the generic term m as the length of
any of these words.

1.2 Periodicities

We say that a string = has a period w if = is a nonempty prefix of w* for some
integer £ > 1. In this case we say that x has a period length |w|. Clearly, j 4 w] = Tf,
for all 1 <4 < |z| — |w]; equivalently, given two indices ¢ and j, such that 1 <i,j <n
and ¢ = j (mod |w|), we have z;; = zp;. If w is a period of z, then z can be



decomposed in (uv)*u where w = uv, k > 1 and u possibly empty.

A string is always a period of itself, so that any string has at least one period.
The period x of textstring x is called the trivial period. If x has a period w such that
|z| > 2 |w| then we say that z is periodic.

A string x is primitive if the equation = = w*, w € ¥*, k > 1 is satisfied solely by
the trivial solution £ = 1,w = z. A string x is strongly primitive if every substring
of x is a primitive string.

We define the set P(z) of the period lengths of = as follows

’P(x) = {d € [1, ‘x‘ — 1] such that T[] = Tfitd] forall1 << |x| - d}'

Note that we exclude from P(z) the trivial period, d = |z|. The shortest period of z,
is the period of z.

It follows from the definition that if d € P(x) then any multiple of d smaller
than |z| is also in P(z). This observation can be made more precise and complete.
Formally:

Fact 1.1 Let z be a textstring such that x = (uv)*u where uv is the period of z and
k>1. Then

Px)={jd:1<j<k}U{(k—1)d+q:q€ P(uvu)}
where d = |uv|.

The period (period lengths) which cannot be written as powers (multiples) of the
shortest period are called principal periods (period lengths). We use P’(z) to denote
the set of the principal period lengths of z. Clearly, P'(z) C P(x).

For instance, the periodic string shown in Figure 1.1 has the non-trivial peri-
ods corresponding to the arcs of the drawing. In particular, the shortest period is
abaababaabaab. For this example P(z) = {13, 26,31, 33} and P'(z) = {13, 31, 33}.

A dual concept is that of a border. A border u of x is any nonempty word which
is both a prefix and a suffix of z, i.e., = uw and z = vu for v,w € ¥*. Clearly, a
string is always a border of itself. This peculiar border is called the ¢rivial border.
We define bord(x) to be the length of the longest border of the string z.

Clearly, a string x has a period of length d < n if and only if it has a non-trivial
border of length n — d. For instance, the non-trivial borders of our running example
are the substrings underlined in Figure 1.1.

Periods play an important role in several algorithms on strings, and our context
is no exception. The following lemma due to Fine and Wilf [102] is of fundamental
importance in the study of periodic strings.

Lemma 1.1 (Periodicity Lemma) Let di,dy € P(w), di > dy. If di + dy —
ged(di, d2) < [wl, then ged(dy, do) € P(w).



Figure 1.1. Non-trivial periods (arcs) and non-trivial borders (underlined)

In most applications of string algorithmics it suffices to resort to the weaker version
of the Periodicity Lemma, given here below.

Lemma 1.2 (Weak Periodicity Lemma) [167] Let dy,dy € P(zx), di > do. If
di + dy < |w|, then ged(dy, ds) € P(z).

Proof Assume w..0.g. d; > dy and take 1 < 7 < n. Either (1) i —dy > 1 or
(2) i +dy < n. In case (1) we have o) = Z[i—gy) = Z[i—dy+d,]- 1D case (2) we have
T[i] = Tfitdy] = Tli+di—do]- Pither way, d; —dy is a period. Repeating the argument on
dy and d; — dy yields the claim. O

Next two facts are connected with some of the properties about periods and occur-
rences of words in [212] that will be used later. The proof can be found in Section 1.3
of [164].

Fact 1.2 Let w and w' be two nonempty words. Then ww' = w'w if and only if w
and w' are powers of the same word.

For example the following fact can be proved using Fact 1.2 (see [212]).
Fact 1.3 If uv is the period of x, then d > |u| for all d € P(uvu).

Proof Suppose there exists d € P(uvu), d < |u|. Then we can decompose uv =
ww' = w'w. By Fact 1.2 we get that uv is a power of some other word, and therefore
uv cannot be the shortest period of z. O

Next observation exposes the relation between the periods of a textstring and
those of its right extension.

Fact 1.4 Let w be a word of length n with period set P(w) = {d1,ds,...,ds} and wa
be a unit extension of w. We have

P(wa) C P(w) U {n}



(iii)

Figure 1.2. Two occurrences of w in z: (i) non-overlapping occurrences, (ii)
adjacent occurrences, (iii) overlapping occurrences

where
n € P(wa) iff a=wp

and
P(wa) C P(w) iff a# wig41 for at least one 1 <14 < s.

Proof When we extend w to wa, the new symbol a can match w1 and therefore
the i-th period of w is also extended. If all the periods are extended, then clearly
P(wa) = P(w).

Otherwise, if the new symbols a does not match w1 for some 4, then this
“breaks” the i-th period of w. Any combination of extensions and breakages is pos-
sible. In this case, we can only state that P(wa) C P(w).

Irrespective of the above, if a happens to be equal to wp) then a new period of
length n has to be added to the set. Clearly, appending a cannot create two new
distinct periods, for otherwise the one smaller than n would also belong to P(w). O

A symmetric proposition holds for left extensions.

1.3 Occurrences

We say that a string y has an occurrence at position 7 of a text z if yp) = =z,
Yo] = Z[i41] ---» Ym] = Tli+m—1], Where m = |y|. Two occurrences of y at positions
11 and 49, 11 < 19, are said to be non-overlapping if 11 + m < iy. If 44 +m = iy the
two occurrences are said to be adjacent. If i1 +m > i, they are called overlapping.
Figure 1.2 illustrate these three cases.

The start-set of y in x, denoted by pos,(y), is the ordered set of occurrences of y
in z, i.e., posy(y) = {i : Yy = TTpga] - - - Tl y—1], L < 4 < n— |y| + 1}. Similarly, we
define the end-set of y in x as the ordered set of ending positions of the occurrences
of y in z, i.e., endpos,(y) = {i € [|y|,n] : Tli—|y|+11Tli—|yl+2] - - - 2] = Y}



abaababaabaababaababa

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21

Figure 1.3. Overlapping and non-overlapping occurrences of aba. A set of
non-overlapping occurrences is represented by solid lines

For any substring y of z, we denote by f,(y) the number of occurrences of y
in  and by g¢,(y) the number of non-overlapping occurrences of y in z. Clearly,
9:(y) < fo(y) = |pos.(y)| = |endpos,(y)|. For convenience of notation, and when it is
clear from the context, we will drop the subscript , and we will write f(y) and ¢(y).

For example, y = aba occurs f(y) = 8 times in z = abaababaabaababaababa, with
start-set pos,(y) = {1,4,6,9,12,14,17,19} (see Figure 1.3). However, occurrences
starting at positions 4 and 6, or 12 and 14, etc., overlap with each other. We can
have no more than 5 occurrences of y in z so that no two of them overlap. For
instance, we could take those with starting positions in {1,4,9,12,17} (drawn with
the solid line in Figure 1.3). Thus, g(aba) = 5. Also, we have 5 adjacent occurrence
pairs of aba, at positions 1 & 4,6 & 9,9 & 12, 14 & 17.

We want to characterize the number of occurrences f(y) of each distinct substring
y in the textstring z. Although the number of distinct substring can vary between n
and n(n+1)/2 and the count of any y can range between 1 and n— |y|+ 1 depending
on the structure of the text, the sum of the counts for all distinct words is invariant.

Fact 1.5 Let x be a textstring of size n, then

all distinct words y of «

Proof The number of positioned substrings is n(n + 1)/2. In fact, each choice of
two indices 1 < 7 < j < n results in a substring z[; ), in general non-unique. The
total number of choices is ) | | = n(n + 1)/2. The claim follows from the fact that
each positioned substring contributes to the count precisely once. O

The number of distinct substrings in a text of size n may vary broadly depending
on the structure of the text. At one extreme, where all symbols in z are equal, we
have only n distinct substrings. In this case, each substring y occurs n— |y|+1 times.

We have

" ~ n(n+1 n(n+1
Zf(y):Z(n—l+1):n2—2k+n:n2—g+n:g.
y =1 k=1 2 2

At the other extreme, all symbols are different and we have exactly n(n + 1)/2
distinct substrings, each occurring once: thus each choice of the two indices 1 <7 <

j < n results in a distinct substring but the possible choices are again n(n + 1) /2.



In intermediate case, we accumulate the sum of f(w) over distinct words w, but
the sum has to converge to the total number distinct positioned substrings of x.

As a consequence, the list of positions pos,(y) for all distinct substrings y of z
requires ©(n?) space. One can argue whether the maximum number n(n + 1)/2 of
distinct substrings can be reached for arbitrarily long textstring, given an alphabet of
finite size. In other words, we ask whether the repetition of a substring is unavoidable.

Fact 1.6 Any string of length at least |X| 4+ 1 contains a substring with at least two
occurrences.

Proof We build a string x one symbol at a time, choosing in each position a distinct
symbol from the alphabet. When all |¥| symbols have been used once, we are forced
to reuse one of the symbols. O

Fact 1.7 Any string of length at least 2|X| + 1 contains at least two non-adjacent
occurrences of a same substring.

Proof If z is a string of length 2 |X| 4 1, then one of the symbols in z, say a, occurs
at least three times. Write x = wyawsawsaw, with wy, we, w3, ws € X*, then the
leftmost and the rightmost occurrences of a prove the claim. O

When it comes to the characterization of overlapping occurrences we have to take
into consideration the periodic structure of the word.

Fact 1.8 A string x contains two overlapping occurrences of a nonempty word w if
and only if x contains a word of the form avava with a € ¥ and v € ¥*.

Proof Let us assume that z contains two overlapping occurrences of w. Then we can
decompose z in uwy and u' wy' where the two occurrences of w overlap. Assuming
w.lo.g |u| < |v| < |uw| < |v'w|, we have
! ! ! !
U =Uus, UW=UZ2, UW=uwt
for some nonempty words s, z,t. Hence
w=8z=2z21

and clearly s is a period of w. Let a be the first symbol of s, and therefore also of z.
Set s = awv and z = az’. Then by the same equation w = av a2z’ and

z=uswy =uavavady'.

Conversely if avava is a substring of x, then w = ava clearly has two overlapping
occurrences in z. O

The following fact characterizes consecutive overlapping occurrences inside a pe-
riodic string.



Fact 1.9 Let z be a textstring and w be a substring of x. Let posy(w) = {41, ..., %fw)}
be the ordered list of the occurrences of w in x. If i; — i1 < |w| /2,2 < j < f(w)
then i; — i1, 2 < j < f(w), is exactly equal to |u| where u is the period of w.

Proof If w occurs at i;_1, at ¢; and then again at é,;; where i; — i,y < |w| and
ij+1 — 4; < |w| then i; — i;_y and i;41 — ¢; are clearly the length of periods of w.
Let v and y be the periods of w of length 4; — ¢;_, and %;;; — ¢;. By hypothesis
i — i1 < |w|/2, 2 < j < f(w), and therefore |v| + |y| < |w|. By the Weak
Periodicity Lemma, ged(|ul, |v]) is a period of w. The conclusion follows. O

A simple fact that will be used later regards a property of monotonicity of the
functions f and g with respect to the size of a word. The intuitive idea that longer and
longer substrings are less and less frequent is captured in the following proposition.

Fact 1.10 Let w be any nonempty substring of x and v and v be two other possibly
empty substrings of x. Then

fz(uww)

gz (uwv)

IAIA
Q

SIS

&

Proof Directly from the definition of occurrence and non-overlapping occurrence.
O

The previous fact, sometimes called anti-monotone property, can be rephrased as
follows. If a pattern of length m has no more than f occurrences, then any extension
of length m + 1 can never have more than f occurrences.

Next fact will be useful in the derivation of the expectation of random variable
describing the number of clumps (defined later in Section 1.4).

Fact 1.11 [212] Let x be a text, P'(x) the set of its principal periods and d;,d; €
P'(xz). If w occurs in x at position i, there cannot be an occurrence of wp g at
position i — di and simultaneously an occurrence of wy 4,1 at position i — d;.

Proof Assume the three occurrences as claimed and w.l.o.g. d; > d;. Thus either d;
or d; — d; is less than |w| /2, while both must be periods. The rest is an immediate
consequence of the Periodicity Lemma. O



1.4 Quasiperiods, covers, and clumps

If w occurs in  at position ¢ we say that z;), i < j < i+ |w| — 1, is covered by
w. Vice versa, a string w covers a string z is every symbol in x is covered by an
occurrence of w.

For example, a period w of x such that &k |w| = |z| for some £ > 1 is a peculiar
type of cover of  where the occurrences of w appear in z spaced exactly |w| positions
apart, although other occurrences are also allowed. In Figure 1.3, the word aba covers
the entire textstring, while abaa does not (positions 15, 20 and 21 are not covered).

If x has a cover w # x, x is said to be quasiperiodic, otherwise, x is superprimitive.
Observe that any periodic string if also quasiperiodic, but not every quasiperiodic
string is periodic. Also, while a superprimitive string is always primitive, the converse
is not necessarily true. Clearly, for any string x there is always some superprimitive
string w that covers z. String w is called the quasiperiod for x.

Given a textstring x, we are interested in identifying substrings of x that have the
property of being quasiperiodic. We define the mazimal quasiperiodic substrings of
7, the substrings zj; ;; which satisfy the following requirements:

1. zj;; is quasiperiodic with quasiperiod w

2. if w covers zj ) where ' < i < j < j' then ¢ =7 and j' = j (i.e., 2}y is
maximal)

3. wx[j4q) does not cover xp; ;1) (i-e., the quasiperiod is maximal)

If ;5 is a maximal quasiperiodic substring, or a quasiperiodicity of w, one can be
uniquely encode it by the triple (i, j,w). By definition, the interval [z, j] is the span
of the quasiperiodicity. Clearly, the span of any two maximal quasiperiodicities in
the form (i, 7, w), (¢, 7', w) must be disjoint.

We introduce the notion of run of occurrences of w as follows. Let {ig, i1, - - ., 4, %41}
be a substring of the ordered list pos,(w) of the positions of w in . Then {i,..., 4}
is a run of w if the following conditions are satisfied

1. 2'1—’l'()2|’w‘
2. g1 — 0 2> |w|
3. if I > 1then ¢j4; —i; < |w|forall 1 <j<Il—-1.

The quantity ¢, — i1 + 1 4 |w| is the span of the run {i,...,4}.

Given a run {i,..., 4} of w, we define a clump of w as the substring «p;, s,4/w|-1]
(see, e.g., [247]). In other words, a clump of w is a substring of z solely composed
by overlapping occurrences of w that cannot be extended to the left or to the right
by another overlapping occurrence of w. By definition, these overlapping occurrences
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Figure 1.4. Two clumps of abaaba

form a run of w. For example, Figure 1.4 shows two clumps of the word abaaba, one
of which is composed by a single occurrence of abaaba.

Two more entities are defined in terms of run of occurrences. A necklace is a
maximal subset of a run such that only consecutive occurrences overlap [24, 25]. A
chunk is a substring of a run of w such that i;4; —4; < |w| /2, forall1 < j <[-1. By
Fact 1.9 it is immediate to see that ¢, —; is exactly the length of the shortest period
of w. Note also that a given run may contain more than one chunk, and that two
consecutive chunks may overlap. However, the overlap is bounded by the following
fact which proof can be found in [24, 25].

Fact 1.12 Two consecutive chunks of w may overlap at most for | < dy symbols
where dy < |w| /2 is the shortest period of w.

Facts 1.9 and 1.12 allow Apostolico and Preparata to claim that any chunk is
composed by 1+ (s + |w|)/dy occurrences of w, where s is the span of the chunk and
dy is shortest period of w [24, 25].

In the following we state three properties of quasiperiodic substrings which are
essential to the algorithm to be presented later. The proofs can be found in the paper
[16] by Apostolico and Ehrenfeucht.

Lemma 1.3 FEvery quasiperiodic string x has a unique quasiperiod.

Lemma 1.4 Let w be the quasiperiod of x, and i and j two adjacent occurrences of
w in x. Then xj;;_q) 18 primilive.

Lemma 1.5 If w occurs at position i and j in x, and 1 < j —i < |w| /2 then w is
quasiperiodic.

Consider the problem of detecting and counting all clumps and maximal quasiperi-
odic substrings. Given a text x, we denote by cl,(w) the number of clumps of w in z
for all distinct w. Similarly we indicate by mgs,(w) the number of maximal quasiperi-
odic substrings with quasiperiod w in x for all superprimitive w in x. When w is not
superprimitive, we set mgs;(w) = 0.

First, we state a proposition similar to Fact 1.10 which proof can be obtained
directly from the definition.
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Fact 1.13 Let w be any nonempty substring of x and v and v be two other possibly
empty substrings of x. Then
cly(uwv) < el (w)

and if w s superprimitive

myqs, (vwv) < mgs,(w).

The four types of count we have described so far can be put in a precise relation-
ship.

Fact 1.14 Let x be a textstring, and w a substring of x. Then

mgs;(w) < cly(w) < gz(w) < fo(w).

Proof mgs;(w) < cly(w): a clump of w is always a maximal quasiperiodic substring
with quasiperiod w, unless w is quasiperiodic. Vice versa a maximal quasiperiodic
substring is not necessarily a clump.

cly(w) < gz(w): clumps are composed by one or more occurrences and by defini-
tion clumps do not overlap.

gz(w) < fr(w): immediate from the definition of occurrences and non-overlapping
occurrences U

Almost all combinations are possible (see Figure 1.5 for some examples).

1.5 Multisequences and colors

We call a set of strings {z1,z9,..., 2%}, k > 1, a multisequence. Throughout this
document, variable & indicates the cardinality of the set, and n; the length of the i-th
sequence, 1 < i < k. Clearly, we set n = Ele n;. The substring from position % to
position j, included, of z, is denoted by ()} ;-

The color-set of y in such a multisequence is a subset col(y) = {i1,42,...,4} of
{1,2,...,k} such that if i; € col(y) then y occurs at least once in z;;. We also say
that y has colors iy,1s,...,4. The number of colors [ for y is denoted by c(w).

Some counting problems on multisequences can be reduced to a corresponding
problem on a single sequence. The following fact is an easy exercise and its proof is
left to the reader.

Fact 1.15 Let X = {z1,29,..., 21} be a multisequence, and w a substring of x;, for
at least one i € [1,k]. Let x = 1183228 . .. Sz, be the concatenation of the strings in X
separated by the symbol $, where $ & . Then

1. fX(w) = fw(w)

2. gx(w) = go(w)

3. mgsx(w) = mgsy(w)

4. cx(w) = cly(w).



mgs(w) =1<cl(w)=2<gw)=3< f(w)=4

Figure 1.5. Examples on several configurations that give rise to distinct count
mgs(w) of maximal quasiperiodic substrings, clumps ¢l(w), non-overlapping
occurrences g(w), occurrences f(w)

11
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1.6 Sliding windows

In order to analyze local regularities in a long textstring it is sometimes useful
to observe portions of the text under a sliding window. We formalize the notion of
sliding window as follows. First, we decompose = into uw,wewsv with u,v € ¥* and
wi, we, w3 € LT such that |wiwe| = |wows|. A move of the sliding window of size
|lwiwsy| and overlap |wsl, is the transition from the left window wiwsy to the right
window wyws.

With a sliding window the count must be updated so as to reflect the deletion of
the substrings that have a starting position in w;, and the insertion of the substrings
that have an ending position in ws. The framework can also be extended into a
more general dynamic setting. In this scenario the text undergoes periodic changes,
insertions and deletions caused by an external agent. The problem is to maintain
the count(s) consistent during these dynamic changes. The general case is, however,
outside the scopes of this work.

The sliding window formulation also translates a notion of extension of a string.
In fact, the left window and the right window correspond respectively to a left and a
right extension of ws.

We study some basic properties of string extension. The following facts captures
how counts in the extension are correlated with counts in the string itself.

Fact 1.16 Let x be a textstring, and y a substring of x. Given a € ¥ we have

| faly)+1 ifyis a prefic of ax
Joa(y) = { fz(y) otherwise

A symmetric fact holds for right extensions. We can use Fact 1.16 to characterize
the counts when the sliding window moves by one symbol.

Fact 1.17 Let x be a textstring, and y a substring of x. Given a,b € ¥ we have

faz(y) =1 if y is a prefix of ax and not a suffix of xb

foo(y) =% fae(y) +1 if y is not a prefix of ax and a suffiz of xb
faz(y) otherwise

Another relation of the count f(w) with respect to the count of the left and right
extensions of w is expressed in the following.

Fact 1.18 Let w,u and v be any nonempty substrings of x. Then

fo(w) + fo(uwv) = fo(wo) + fo(uw).
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Proof Let o = f(uw) — f(uwv) be the number of occurrences of uw which are not
contained in vwv, 8 = f(wv) — f(uwv) the number of occurrences of wv which are
not contained in uwv and v = f(w) — a — f — f(uwv) the number of occurrences
of w which are not contained in either uw, or wv, or uwv. Substituting we have
v = f(w) — f(wv) — f(uw) + f(uwv). The conclusion follows from v > 0. O

1.7 Word counts

Our emphasis is on the design of efficient algorithms for counting, estimating, and
comparing several types of word occurrences in longer textstrings. In principle, any
algorithm that solves a decision problem, i.e., a problem that only requires a binary
answer, can be adapted to solve the related counting problem. For example, any
string matching algorithm can be used iteratively to count the number of occurrences
of a set of patterns. Depending on the structure and cardinality of the set, however,
this may not be the best solution in terms of time- and space-complexity.

Figure 1.6 depicts a graph representing some of the problems related to counting
occurrences of various kinds of patterns in texts and text aggregates. This may be
regarded as the basic layout and user interface of a comprehensive facility for carrying
out various kind of counting. On the first level, the user chooses what event he is
interested in: occurrences, maximal quasiperiodic substrings, clumps, colors, etc. In
the second, he decides where to count: the entire text, the text under a sliding window,
a family of textstrings. In the last, he sets constraints on the events, like the property
of the patterns to be non-overlapping or to be at some maximum distance, etc.

The following counting problems will be addressed in detail in the rest of the
document.

e Counting occurrences: this is the problem to count the number of occur-
rences f,(y) for each distinct substring y in . Variations:
— in a sliding window
— in a multisequence

e Counting non-overlapping occurrence: this is the problem to count the
non-overlapping occurrences g, (y) for each distinct substring y in z. Variations:

e Counting maximal quasiperiodic substrings: this is the problem to count
mqs;(w), the number of maximal quasiperiodic substrings with quasiperiod w,
for each distinct substring w in z.

e Counting clumps: the problem to count cl;(w), the number of clumps of w,
for each distinct substring w in z.
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)
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Figure 1.6. A representation of some problems on counting various kind of patterns

on sequences and multisequences (not all the combinations are meaningful)

e Counting colors in a multisequence: the problem to count the number
of colors cx(y) for each distinct substring y that occurs in the multisequence

X ={z1,29, ..., Tk}

Next chapter introduces probabilistic models and random variables connected with
the five types of counts above. Several problems associated with the computation of
expectation, variance, and score for these random variables will be also addressed

later.
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2. Probabilistic and Statistical Models

In this chapter we review probabilistic and statistical models for random texts from
a finite alphabet generated either by a memory-less source or by a Markovian source.
In the first case, the so-called Bernoulli model, symbols are generated independently
but the probabilities of the symbols are not necessarily the same. If they are, the
model is called symmetric Bernoulli model. In the Markov model, the probability of
a symbol depends on a (finite) number of previous symbols.

For both models we study the random variables associated with some of the counts
introduced in the previous chapter. We define the notion of score function and we
expose some of its properties. These properties constitute the framework within which
the algorithms presented in the next chapter are built.

2.1 Probabilistic models

Probabilistic modeling of pattern occurrences in random strings is a classic prob-
lem (see, e.g., the book by Feller [94]) and has applications in many areas such as
communication, reliability, games, cryptography, and molecular biology. The parame-
ters of interest are the length of the longest run, distance between occurrences, waiting
times for the first occurrence, and number of occurrences, among others. The proba-
bilistic study of these quantities is not mathematically simple. It usually involves an
apparatus of generating functions and the theory of functions of complex variables.
One difficulty is that the probability characterizing the occurrences of a word in a
text depends not only on the length of the word, but also on the periodicities that
define the so-called auto-correlation polynomial.

Throughout the rest of this section we highlight some of the relevant studies in
the field we came across during our research, without pretending to be exhaustive. A
recent paper [203] by Reinert, Schbath and Waterman is an good introduction to the
probabilistic and statistical properties of words.

The length of the longest run is studied under asymptotic hypotheses by Erdos
and Rényi[91], Guibas and Odlyzko [128], Samarova [211]|, Nemetz and Kusolitsch
[180], Kusolitsch [155], Arratia and Waterman [31, 30], Deheuvels et al. [86], and
Novak [184, 185].

The asymptotic behavior of the distance between occurrences using Poisson ap-
proximations is studied by Dembo and Karlin [87]. Robin and Daudin [205] give the
corresponding exact distribution.

As far as the waiting times for the first occurrence is concerned, their distributions
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are usually obtained using generating functions as in Feller [94], Li [163], Guibas and
Odlyzko [130], Blom and Thorburn [43, 44, 235], Breen et al. [55] for Bernoulli model,
and Rajarshi [197], Gerber and Li [117], Schwager [218], Benevento [37], Banjevic [34],
Rudander [209], Stefanov and Pakes [222] under Markovian hypothesis.

The distribution of the number of occurrences of words in random sequences has
been studied in two settings, either assuming that the probabilistic model is known
or that the model is unknown.

In the first case, one assumes to know the parameters of the model under which
the random sequence has been generated and asks how many occurrences of a given
word should be expected. Exact distributions have been derived in most of the cases
of interest. An analysis of the number of occurrences for the symmetric Bernoulli
model by Guibas and Odlyzko can be found in [129, 130]. Recently, Fudos et al. [109]
extended the results to the asymmetric case (see also [70]). The Markovian case was
tackled by Li [163], Chryssaphinou and Papastavridis [69], Stlickle et al. [224] and
Kleffe and Borodovsky [150], among others. Characterizations of the frequency of
pattern occurrences in both models have been given independently by Régnier and
Szpankowski [201] and Robin and Daudin [205].

In the second, the model is unknown and the parameters of the model have to
be estimated according to the observations. One has to fit a model based on the
observed sequences and he asks whether the given word is significantly over- or under-
represented. In this case, the results on exact distributions are generally not applica-
ble. Once we replace the expectation with an estimator of the expected count then
the variance of the discrepancy between observed count and the estimator does not
coincide with the variance of the random variable describing the count. Some authors
overlooked this problem, as noted by Waterman in Chapter 12 of his book [247] and
by Prum et al. [196]. Pevzner et al. [192] and Stiickle et al. [224] did not take
into account the fact that using an estimator for the expected count would require a
different variance. Prum et al. [196] gave recently an expression for the conditional
variance for the first-order Markov model. Schbath et al. [215, 213, 214] generalized
the result for any Markov chain.

A special probabilistic treatment should be used when y is a rare word, meaning
that the expected frequency of y is very small. Rare words are usually words longer
than logs n symbols. For these words the expected count tends to a constant instead
of growing to infinity when n goes to infinity. In this case the count has to be ap-
proximated by a Poisson or compound Poisson distribution. The Chen-Stein method
is the most appropriate tool to tackle this probabilistic problem since it allows one
to control the quality of the approximation (see, e.g.,[223, 66, 28, 29, 35]). Using
this method, several Poisson approximations for the count of rare words have been
obtained [146, 122, 123, 118, 212, 202].
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The probabilistic analysis of non-overlapping occurrences was initiated by Feller
[94] in the context of renewal theory. For non-rare words, Breen at al. [55] and
Biggins and Cannings [39] studied the recurrence time between competing renewals,
respectively under Bernoulli and Markov models. For rare words, several Poisson
approximations have been proposed. Under the Bernoulli assumption we mention
studies by Chryssaphinou and Papastavridis [68], Godbole et al. [122, 123], and Fu
[105]. Rajarshi [197], Godbole et al. [122, 123], and Reinert et al. [203], studied
the Markovian case. A generalization to the case of competing renewals for several
patterns has been given by Tanushev and Arratia [230].

2.2 Probabilistic settings

We consider a string { X; X5 ... X,,} produced by a stationary process with each X;
being a discrete random variable taking values in a finite alphabet ¥. For convenience,
we extend the notation used for substrings to the random process by writing XJ; ;i
to denote the finite sequence of random variables {X;X;;...X;}. For example, for
an observed string y = ypjypy - - - Ypm) We write P(X[ 41 = ypj,41) meaning P(X; =
Yi) Xitr = y[j+1])-

In the following we define the discrete random variables associated with the five
types of count introduced in Section 1.7, namely, occurrences, non-overlapping occur-
rences, maximal quasiperiodic substrings, clumps, and colors.

Suppose we are given a realization x = xyx[y . . . T of the above random process
and an arbitrary but fixed pattern y = yujype . . . Ypm) over X with m < n. We define
Zi

41 <1 <n—m+1tobelifyoccurs in z starting at position ¢, 0 otherwise. Let

n—m-+1

Zy = Z Ziy
i=1

so that Z, is the random variable for the total number of occurrences f(y). As long as
it is clear from the context we will use Z and Z; instead of the more precise notation
Zy and Z; .

Similarly, we denote with G the random variable for the number of non-overlapping
occurrences ¢(y). In probability theory, non-overlapping occurrences are studied in
the context of renewal theory. A word y has a renewal at position ¢ if y occurs at
position i and either this is the first occurrence or it does not overlap a previous
renewal of y. Note that this terminology differs from the standard definition of the
position of a renewal in that the latter is usually defined as the ending position of the
occurrence. Let GG; be the associated random indicator

i—1
j=t—m+1
with the convention that G; = 0, if 5 < 1. Thus, when 7 < m, a renewal of y at
position ¢ is simply an occurrence of y. If we ignore such boundary problem, and we
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focus on the case 1 > m we can decompose the event “there is an occurrence of y at
position 7”7, in the disjoint events “there is a renewal of y at position ¢” and “there
is a renewal of y at position j directly followed by an occurrence Y, (;—j)+1,m) and
i—j € P(y)’, fori—m+1 < j <i—1. This observation is expressed by the following
equation

Zi,y = Gi,y + Z G’i—d,y Zi—d—f—m,y[m,d_,_l’m]- (21)
deP(y)
See, e.g., [203] or Chapter 12 of [247] for more details.
We define L;,;1 <17 < n—m+1 to be 1 if there is a clump of y starting at position
1, 0 otherwise. Observe that by definition of clump, the following relation holds

j=i—m+1

If we expand the above expression we obtain 2™~! terms that are products of the
type Z;iZi—j, ... Z;i—j,. These products are zero unless all the indices j; . .. j; correspond
to a subset of the periods of y. It is immediate that an occurrence of y at position ¢
overlaps a previous occurrence of y if and only if it is preceded by an occurrence of
Y4, d € P'(y), meaning that yp 4 occurs at position 7 — d. As a consequence the
only non-zero products are of the form Z;Z; , where d is a principal period of y (see
Section 1.2 for the definition of principal period).

Furthermore, by Fact 1.11 we know that the set of random variables {Z; 4, ,|d €
P'(y)} are mutually independent. Directly from equation (2.2) we get

Liy=Ziy— Z Zifd,yp,d]y' (2.3)
deP'(y)

We define the random variable L describing the total number of clumps cl(y) of y as

n—m-+1

L,= Z L;,.
=1

We set V; to be 1 if there is a maximal quasiperiodic substring with quasiperiod
y starting at position %, 0 otherwise. In particular when y is not superprimitive, we
set V; = 0. Similarly to equation (2.2) we can express a relation between V; and the
Z; as follows

Vi= 2, ﬁ (1= 7). (2.4)

The only difference is that we do not allow occurrences at position : —m. If that was
the case, it would extend the quasiperiodicity to the left, contradicting the hypothesis
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of maximality. Using (2.2) we get
i—1
Jj=t—m+1

and by (2.3)

V; = (1 — Zi_m) (Zi - Z Zi—d,y[l,d] y)

deP!(y)
= Zi—ZiZi—ym — Z Zi—d,y[l,d]y + Ziem Z Zi—d,y[l,d]y'
deP!(y) deP’(y)

The variables Z;,Z;_,, are clearly independent.
We define V' to be the random variable for the number of maximal quasiperiodic
substrings mqs(y). When y is not superprimitive, we set V' = 0 by definition.
Clearly, these four random variables are related and they match under certain
conditions.

Fact 2.1 Let y be a substring of x and |l any positive integer. Then

P(V, <1) < P(L, <1) < P(G, < 1) < P(Z, <.

Fact 2.2 If y is primitive, then Z, = G, = L,.

If now we are given a family of random texts X', X?2,..., X* and a pattern y we
define W, for all j € [1...k], to be 1 is y occurs at least once in X7, 0 otherwise. We
set

k
W=3W,
7j=1

so that W is a random variable for the total number ¢(y) of sequences that contain
at least one occurrence of y.

2.3 Model selection and parameters estimation

The general problem of model selection is a complex subject of study in Statistics.
Usually, it is defined as an optimization problem, in which an objective function
accounts for the ability of the model to approximate the observations as well as for
the number of parameters of the model. The latter is appropriately weighted to avoid
the phenomenon of overfitting. This takes place when one chooses a model which
is extremely faithful in the reproduction of a particular set of observations and yet
cannot capture the general characteristics of the source. Additionally, the larger the



20

Markov order, the higher the number of parameters, the longer has to be the sequence
in order to get statistically meaningful estimates. The problem of model selection is
not addressed in this work.

Once the model is chosen, one has to determine a strategy to estimate the pa-
rameters of the model, e.g., transition and stationary probabilities of the symbols. In
connection with this, there are at least three alternative assumptions on the source

e the unknown distribution of the source is uniform, i.e., all symbols have equal
probability (symmetric model)

e the unknown distribution can be estimated from a given class of external se-
quences (external model)

e the unknown distribution can be estimated from the observation itself (internal
model).

In the analysis of genetic sequences the first assumption corresponds to the idea
that the sequence under study evolved from a “primordial soup” containing equal
quantities of each nucleotide. We know, however, that this assumption is too simplis-
tic. For example, the GC-content vs. the AT-content can vary dramatically in specific
domains of the genome. In the second, one assumes that the sequence is drawn from a
pool comprised of the nucleotide distribution typical of the species under analysis. In
the third, the nucleotide pool for the class of sequences examined is well represented
by the total distribution of nucleotides in the sequences themselves.

For the case of a multisequence we have also have the option to learn separately
from each text x; a local probabilistic model M;. Alternatively, we can estimate the
parameters of the global model M for the whole multisequence {x1, zs, ..., zx}-

2.4 Bernoulli model

Under the Bernoulli model the variables X; are assumed mutually independent
and identically distributed. The unknown probabilities P(X; = a) = p,, for alla € ¥
can be estimated on the basis of the assumption on the source (see Section 2.3). If
we assume a symmetric model we simply set p, = 1/ |X|,Va € X. Otherwise, if we
assume an internal model we compute the count f(a) of each symbol a € ¥ in the
text x and we assign

pa:@-

Similarly, if the model is external the probabilities are given by the frequencies of the
symbols in the class of external sequences.

Let us study the expectation and the variance of the discrete random variables
Z,G,L,V, and W under the i.i.d. model.
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As soon as y is longer than one symbol the random variables Z; becomes depen-
dent. For example, a word y such that P(y) = () cannot appear simultaneously at
position 7 and at the following m — 1 positions. On the other hand, a word y which
has a nonempty set of period lengths can occur simultaneously at position 7 and 7+ d
for any d € P(y).

The expectation of Z; is given by

E(Z;) = P(X[i,i+m—1] =y) = pr[i] =p
i=1

and therefore
E(Z) =(n—m+1)p.

Since Z; is an indicator function, its variance can be expressed as
Var(Z;) = p(1 — p).

The variance of the random variable Z is more complex since it takes into account
the dependency of the Z;’s. Expressions for the variance have been given by several
authors (see, e.g., [192, 224, 150, 116, 201]). We summarize here the approach by
Apostolico et al. [15, 14]. When m < (n + 1)/2 the variance is

Var(Z) = (1 — p)E(Z) — p*(2n — 3m + 2)(m — 1) + 25B(y)
and if m > (n + 1)/2 the variance is
Var(Z) = (1 = p)E(Z) — p*(n — m + 1)(n — m) + 2pB(y)

where .
B(y) = Z (n—m+1 _d)pr[;’]
deP(y) j=m—d+1
is the auto-correlation factor of y.

We now turn our attention to the probabilistic characterization of non-overlapping
occurrences. We first observe that under Bernoulli model, the distribution of the Z;’s
does not depend on 7. This is also true for the G;’s, when 7 > m. Taking expectations
on both sides of equation (2.1) we get

E(G)=E(Z)/ (1 + > I pym)
deP(y) j=m—d+1
and substituting for E(Z) we obtain

(n—m+1)p

EG) = - .
L+ aery) Hjtm—ar1 Py
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Fact 2.3 For any word y and for any d € P(y)

m d
I1 Py = H1 Py
s

j=m—d+1

Proof Let us decompose y = (uv)*u where |u| = d. Then clearly y starts with
uv and ends with vu, which have the same product of probabilities under Bernoulli
model. O

In conclusion, we can write

(n=m+1)p
L+ Yderw) H?zl Pyyjy

E(G) =

We can derive the exact expression of the expectation of the random variable L
describing the number of clumps from our discussion of expression (2.3) as follows

E(L;) = (1—2 prb)

deP!(y)

and
B(L) = (n—m+ 1)B(L) = (n—m+1)p ( -y )pru)
deP(

Usually L can be approximated well by a Poisson variable because clumps do not
overlap each other (see, e.g., [148, 29, 212]).

As we expect, we have that E(L) < E(G) < E(Z) and the identity E(Z) =
E(G) = E(L) when P(y) = P'(y) = 0.

For the case of a multisequence we can assume either a single model for the
entire family M or a distinct model M; for each sequence (i.e., random variables
Z1,G7, L7, V7 are distinct for all j € [1...k]). In any case, the expectation of the
random variable W for the number of colors can be computed by assuming a Poisson

distribution as follows
k

W)=k—3 e )
7j=1

where E(Z7) is the expected number of occurrences of the word y in the j-th sequence
[224, 191]. As is well known, the variance of a Poisson random variable is equal to
the mean.
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2.5 Markov models
We consider now a stationary Markov chain of order M > 1 on the finite alphabet
Y. A stationary Markov chain is completely determined by its transition matrix

IT= (ﬂ-(y[l:M]’ C))y[l]a---ay[M];CEE where
7r(y[l,M]a C) = P(Xi+1 =cC |X[i—M+1,i] = y[1,M])

are called transition probabilities, with ypui,...,ym),c € X and M < i < n — 1. The
vector of the stationary probabilities p of a stationary Markov chain with transition
matrix II is defined as the solution of y = pll. In other words, the above Markov
chain has a unique stationary distribution p defined by the equation
M(y[l,M]) = P(X[i—M—l—l,i] = y[l,M}) = Z M(ay[l,M—u)W(ay[l,M—l], y[M])
acy
where M < i < n—1. In the stationary M-th order Markovian model the expectation
of Z;, that represents the probability that y occurs at a given position i, is given by

E(Z) = P(Xjiitm-1) = y)
= p(yp,an) ™Y, Y1) T (Y2, m41]s Yvr+2)) - T Ypme Mom—1)s Yim))

m—M

= M(y[l,M]) H 7T(?/[z’,i+M—1], y[H-M])
i=1

w(y).

The expected count of the occurrences y under the Markov model is therefore

E(Z)=Mm-m+1)u(u)=n—-m+ 1)#(9[1,M])m1:[ T(Yiirm—1], Yiivmp)  (2.5)

i=1
because the distribution of the Z;’s does not depend on 1.

As for the variance Var(Z), Lundstrom [166], Kleffe et al. [151, 150], Regnier
and Szpankowski [201] give the exact expression when the true model is known. The
derivation by Regnier and Szpankowski when m < (n + 1)/2 (Theorem 2.2 in [201])
gives

Var(Z) = E(Z2)(1 - u(y)) — uly)’(2n — 3m + 2)(m — 1)
+ 2,u(y)2 (Cn—2m+1)+ D)+ 2u(y)B(y)

where (we use A, ; to indicate the (i, j)-th element of the matrix A)

Z = I-M-M)™"
M = p-[L,1,...,1]
1
¢ = 1(ym) = M)Zly
1 2 2
b= 1(yp) o _M)Z]ytml’ym'
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When the true model is unknown, the transition and stationary probabilities have
to be estimated from the observed sequence z. In this case, the results on the exact
distribution are no longer useful (see, e.g.,[214, 203]).

Let y be a substring of z, where m = |y| > M + 2. In the internal model, the
transition probability can be estimated by the mazimum likelihood estimator

N f (y[l M]C)
m(yp,m), €) = " 2.6
( Ml ) f(y[1,M]) (2:6)
and the stationary probability by the maximum likelihood estimator
N f (y[l M})
= 2Tl 2.7
M(y[l,M]) n— M=+ 1 (2.7)

where f(y) is the total number of occurrences of y in z. Similarly, if the model is
external, we compute the estimators on the class of external sequences.

Substituting in equation (2.5) for the estimators (2.6) and (2.7) we obtain an
estimator of the expected count of y

m—M

2 i1 Ypiiean)
E(Zy) = mflll/f [ +M] .
[1iZ2 f(y[i,H—M—l])

A frequently used choice for the order of the chain is M = m — 2, called mazimal
model. When M = m — 2, the estimator of the expected counts becomes simply

7 _ fw(y[l,m—l])f;c(y[g,m])
B2 = fr(Ym-1) '

A~

The asymptotic variance of F(Z) — E(Z) has been given first by Lundstrom [166],
and it turns out to be different from the asymptotic variance of E(Z) (see [247] for
a detailed exposition). Prum et al. [196] and Schbath et al. [213] give an easier way

to calculate the asymptotic variance. In that derivation, the asymptotic variance of
(E(Z) — E(Z))/\/n in a Markov model of order M is given by

V(Z,) = ply) + 2 3 (YY)

deP(w), d<m—M—1
+ uy)? Z (ECEE fy(wi,n0) _ fy(w)2>
wenM+1 p(wir,n) p(w)
0l =23 cex fy(y[l,M}C)
1(yp,a)

w(y)

where f,(w) is the number of occurrences of w inside y.
If one chooses the maximal model, the above expression simplifies to (see, e.g.,[203])
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With respect to the non-overlapping occurrences, an extension of the renewal
theory to Markov chains has been first proposed by Hirano and Aki [134] and recently
by Regnier [198, 199]. Along the same lines of the Bernoulli case, we get from (2.1)

(n —m+1u(y)

E(G) = ]
@) L+ Y aer@) B(Ym—di1,m)

For the case M = 1, Regnier [199] provides the mean for G that takes into account
the boundary problem mentioned in Section 2.2.

E(Z)  p)Q()

BO=20 " e

where J
Q)= > I~ vy
deP'(y)u{o} j=1
is the auto-correlation polynomial associated with y for a first order Markov chain.
As far as we know, the exact distribution of the number clumps for Markov chains

is unknown. The Poisson approximation described in the previous section can be
extended only for M =1 [148, 29, 212|. In that case

E(L;) = p(y) — Z( )u(yu,d]y)

and
E(L)=(n—m+1)E(L;).

More powerful models based on Markov chains can be developed to meet specific
needs. For example to take into account the phase in coding DNA sequences, one
may use Markov chains with 3-periodic transition probabilities, meaning that we
have three different transition matrices, one for the position i mod 3 = 0 (phase 1),
one for position 7 + 1 mod 3 = 0 (phase 2) and one for position i + 2 mod 3 = 0
(phase 3). Studies on periodic Markov chains can be found in, e.g., [150, 215]. These
models will not be considered here.

2.6 Score functions

When it comes to comparing observations with expectations, we need to define
some distance between these two quantities. We call score function any function that
measures the discrepancy between observed and expected parameter values. There is
no general agreement on the properties of a score function.

Ideally, a score function should be independent of the structure and size of the
word. That would allow one to make meaningful comparisons among substrings of
various compositions and lengths based on the value of the score. For example,
Pevzner et al. [192] note that the effect of the self-overlapping structure of words on
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their frequencies cannot be adequately reflected by scores based solely on expecta-
tions. Such types of score functions can be dangerously biased, e.g., against periodic
words. These are some of the reasons to introduce, in the expressions of the score,
the variance of the random variables modeling the counts. Similar kinds of statistical
considerations can be made when assigning scores to words in the “Gaussian regime”,
i.e., lw| < logs n, versus words in the “Poisson regime”, i.e., [w| > log s n.

The quest for the “perfect” score has generated a substantial amount of literature,
often in connection with the analysis of patterns in genetic sequences. A review
and a concordance study of several scores has been given recently by Leung et al.
[161], showing that different score functions may give very different results and even
contradict each other. These and other problems are discussed later in Section 2.8.

There is, however, a general consensus that z-scores may be preferred over the
others [196, 215, 161, 213]. For any word w, a standardized frequency called z-score,
can be defined by

Var(Z,,)

If E(Z) and Var(Z) are known, then under rather general conditions, the statis-
tics z(w) is asymptotically normally distributed with zero mean and unit variance
as n tends to infinity. In practice F(Z) and Var(Z) are seldom known, but are esti-
mated from the sequence under study. When we replace these quantities by estimates
E(Z) and V(Z), the quantity (f(w) - E’(Z)) /\/V(Z) will be, in general, no longer
asymptotically distributed as a standard normal.

For the estimators such as the ones introduced in the previous section, the central
limit theorem for Markov chains ensures the asymptotic normality of f(w)—E(w)//n,
so that the associated z-score

fw) = E(Zy)
V(Zy)

z(w) =

is asymptotically distributed as a standard Gaussian.

2.7 Monotonicity of expectations and variances

The statistical and probabilistic framework described so far represents a condensed
overview of several studies appeared in the scientific literature over the last decades.
These works, usually quite involved mathematically, lay the foundation of the prob-
abilistic and statistical characterization of words in sequences. Comparatively, very
little has been done to address the issues related to efficient and practical implemen-
tation of the various models.

There are at least two factors one should consider when implementing the com-
putations described above, namely, the time- and space-complexity of the algorithms
and the numerical stability inherent to each method.
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Table 2.1
Summary of some mathematical properties of the random variables associated with
the counts
Result Condition Model
E(Zy) < E(Zy) none Bernoulli
Var(Zy) < Var(Zy) Prae < 1/ ¥/4m Bernoulli
E(Zuw) E(Zw) Prmaz < V2 — 1 Bernoulli
Var(Zys) Var(Z,)
E(Zw) < E(Zy) none Markov
E(Guw) < E(Gy) Prmaz < 1/2 Bernoulli
E(Lyb) < E(Ly) pp < 1 — D(w) Bernoulli
EWy) < E(Wy) none Bernoulli/Markov

Our interest here is mainly motivated by the computational challenge of counting
and estimating expectations and variances. The objective is to develop time- and
space-efficient algorithms suitable for the analysis of very large datasets such as those
emerging, e.g., at the genomic scale.

As will be apparent later, one key ingredient in our approach is the property of
the score function of being monotonic with the size of the words. As a preliminary
step toward this goal, we investigate next the monotonicity property for expectations
and variances. Table 2.1 summarizes the results that are proved in the rest of this

chapter.
2.7.1 The expected number of occurrences under Bernoulli
Recall that in the i.i.d. model, p, is the probability of symbol ¢ € ¥. We define
|w|

p = 1"} Puy, and § = e, Puy- Note that 0 < pyi < p < p¥l, < 1, where

Pmin = mincEZ Dy and Pmaz = MaXeeyx: Pp-

Fact 2.4 Let w and v be two nonempty substrings of a text generated by a Bernoulli
process. Then E(Zy,) < E(Z,).

Proof

§<qg<l1

E(Zy) _ (n—|w[—=|v[+1)pq _ (. ]
E(Z,)  (n—|w/+1)p _<1 n—|w|+1>

[v]
because el 0. O
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To study the monotonicity of the score with the complete variance we first must
prove some facts about the auto-correlation function

|w|

Bw)= ¥ (n—lwl+1-d) [[ puy,

deP(w) j=|w|—d+1

where P(w) is the set of the period lengths of w. Note that by Fact 2.3 that we can
also write

Blw)= % (2wl +1~d)Lu,

deP(w)
Throughout this section, unless otherwise noted, a is any of the symbols in ¥ such
that Pa = Pmaz-

Fact 2.5 Let n be the size of a text generated by a Bernoulli process and 2 < m <
(n+1)/2. If p, < (v/5—1)/2 then p™B(a™) is monotonically decreasing with m.

Proof Words a™ have period set {1,2,...,m — 1} and therefore

m—1 m—2
B@™) =Y (n—-m+1-0p,=> (n—m—k)pt*!
k=0

=1

m2_
= (n— mpaZpa—paka

. <(n_m)1— A (m—2)p2”—(m—1)p2”‘1+pa>

1_pa (l_pa)2
- (1—13#)2((n_m)(l_pa)(l_p?_l)—(m—2)p2”+( — )Py = pa)
- (1_13#)2((”—m)(l—pa—pzn_lntp,ﬁ")—(m_z)pgt+( —1)pm pa)
- ﬂiji(;)?(n_m_(n_mH)pa_("—2m+1)p2”‘1+(n—2m+2)pg"),

We now consider the function b(m) = p7* B(a™) in the interval n > 0,m € [2, (n+
1)/2],pq € (0,1). Since function b(m) is defined for integer values of m, we study the
differences between consecutive values of m. We define the function

A(m) b(m —1) — b(m)

pm

and after some algebraic manipulations we get

A(m) = % — B(a™) = —p(n — 2m) — " (n — 2m + 1) + (n — m).
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We first aim our efforts toward small values of m. Specifically, we look for values
of p, and n such that b(2) — b(3) > 0. We have

b(2) — b(3
2@ ="M -4y~ —3)+ (0 -2)
The inequality b(2)—b(3) > 0 is satisfied when p, € (O, 3_”“32:30”41). The interval

shrinks as n grows. Taking the limit n — oo we get 0 < p, < (v/5 —1)/2 ~ 0.618.

Repeating the analysis on b(3) — b(4), we get
b(3) — b(4)

P
that has two imaginary roots and one positive real root. The function is positive in
the interval (0, (C? — 2C +4)/(6C)) where C = 100 + 12v/69. The upper extreme of
the interval is about 0.7548784213, that is bigger than (/5 — 1)/2.

As we increase m, the difference b(m) — b(m + 1) remains positive for larger and
larger intervals. Finally, when m = (n — 1)/2 we get

n—1 b((n—1)/2) = b((n+1)/2 n+1
3 () - MM D)

a

AB3) = = —Pa(n —6) —pa(n—5) + (n - 3)

The latter function is always positive for any choice of p, and n > 5. In fact, if n > 5
A (n 5 1) e PSPt P Py}
2 2 2
We can conclude that the most restrictive case is m = 2. If we choose p, <
(v/5 —1)/2, then b(m) is monotonically decreasing when 2 < m < (n 4+ 1)/2, for any
choice of n > 0. O

Fact 2.6 Let n be the size of a text generated by a Bernoulli process and 2 < m <
(n+1)/2. For all words w € ¥™ we have

21_ m—1
Pa (n_m)_pa( Py )

0< B(w) < B(a™) < 1 - (1~ pa)?

Proof We have

Bw) = Y (n—m+1-4d) ﬁ Puy,

deP(w) j=m—d+1

IN
(]
E)
I
3
+
—_
I
S
SN

IA
£}
|
3
+
—_
|
=
3
[SH
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since (1) all terms in the sum are positive (1 < d <m —1and m < (n+1)/2), (2)
a™ has at least all the periods of w (i.e., P(w) C P(a™) = {1,2,...,m—1}), and (3)
H‘;n:m—d-}-l pw[j] S pg = pgnaz'

From the derivation of B(a™) in Fact 2.5 we have

m p )
B(a™) = (1_;%)2 (n—m—(n—m+1)pa—(n—2m+1)p£” 14—(7’L—2777,+2)p;§”)
— pia _ _ _ m m—1 _ _
= T=p) (n m—(n—m+1p,+pl +p0 (pa—1)(n 2m+1))
Da
< _— pu— J— —_ 1 m
= (1= pa)? (n—m—(n—m+1)p,+pg)
Pa el Z)
= n—m— P
1_pa< z:zl ¢
21_ m—1
S I N A b )
1_pa (1_pa)

because n —2m+1>0and p, —1 < 0. O

We can now get a simple bound on the maximum value achieved by pB(w) for
any word w € T,

Corollary 2.1 Let w be any substring of a text generated by a Bernoulli process,
m = |w| > 2, and a be the symbol in ¥ such that po = Pmaz < (V5 —1)/2. Then

0 < ﬁB(’U)) < (TL - 2)p§naz

Proof We already know that p < p™, and therefore pB(w) < p”B(w). Fact 2.6
says that B(a™) is an upper bound for B(w) for any word w of the same length,
and that p"B(a™) reaches the maximum for m = 2. Specifically, the maximum is

pgnawB(OZ?) = pgnaw(n - m)pmaw- a

We are now ready to study the monotonicity of the score with the “exact” variance.
We will warm-up studying the family of words a™.

Fact 2.7 Let 2 < m < (n+1)/2. If p, < 0.6 then Var(Z,m) is monotonically
decreasing with m.

Proof We study the function

Var(Zym) = (n —m + 1)pf"(1 — pI") — p2™(2n — 3m + 2)(m — 1) + 2p;* B(a™)
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defined on integer values of m. We study the differences between consecutive values
of m. We define the function

A(m) = Var(Zym) — Var(Zamﬂ).
g’
After some algebraic manipulations we get

A(m) = p™?(2nm +n — 3m® — 2m) — p"t(2n — 4m) —
pr2nm+n—3m* +1) +p(n—m)+n—m+1.
The function A(m) has a root for p, = 1.
We first focus our attention to the case m = 2, and study the condition Var(Z,2)—
Var(Z,s) > 0. We get
Var(Z,2) — Var(Z,s)
p;
= pa(5n —16) — p2(2n — 8) — P2 (5n — 11) + pa(n — 2) +n — 1
= (pa — 1) (p3(5n — 16) + p2(3n — 8) — pa(2n +3) —n+ 1) .

A@2) =

The four roots of this function have been computed with MAPLE: two roots are
negative, one is p, = 1, and one is positive p, = p*, where p* is defined below.
The closed form of p* is too long to be reported here. We observe that function
A(2) is positive in the interval (0,p*), which shrinks as n grows. For n — oo,
p* = 0.6056592526.

Repeating the analysis for m = 3, we obtain

Var(Z,s) — Var(Z,s)
P
= p2(Tn —33) — pi(2n — 12) — p3(7Tn — 26) +n — 2
= (pa — 1) (pa(7n — 33) + pi(5n — 21) — p(2n — 5) — pa(2n — 5) —n + 2) .

A@3) =

It turns out that the interval for p, in which A(3) > 0 is larger than (0, p*). In fact,
as m increases the difference Var(Z,m) — Var(Z,~+1) becomes positive for larger and
larger values of p,.

Finally, when m = (n — 1)/2 we get

n—1 n—3

-1 3 o [ L n—1 n=3
A(nQ )Zn;— +%<pa2 (n—i—1)2—8pa2 —Pa’ (1+6n+n2)+2n+2>

and we can choose any p, in the interval (0,1). To summarize, p < 0.6 assures the
monotonicity for all n and 2 <m < (n+1)/2. O

To attack the problem for general words we must first characterize the behavior of
the auto-correlation factor B in the general case. While B can exhibit a very complex
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behavior, we can reason “incrementally”. Fact 1.4 says that when we extend a word
by adding a new symbol at the end, the set of periods cannot increase dramatically.
Clearly a new symbol can disrupt all the periods, but how much can the period set
grow? Fact 1.4 shows that only one new period of length m can be added to the set,
and this occurs precisely when the new symbol matches the first symbol of the word.

Fact 2.8 Let w be a word of length m, such that 2 < m < (n+ 1)/2, with period set
P(w) = {d1,ds, ... ,ds} and let wb be a unit extension of w, b € ¥. If b = wig, 11, for
all1 <3< s then

B(wb) _ deP(w
-y H Puy, + (n—2m)p if b= wpy,

deP(w) j=

otherwise

Z H pwm ’Lf b 75 w[l]

B(wb) < deP( w)] 1

Z H Puy; + —2m)p if b= wp.

deP(w) j=1

Proof Let us prove the case b = wyg,4q) for all 1 <7 < s and b = wy). The other
cases are simpler and can be proved along the same lines. We can rewrite B(w) using
Fact 1.4 as follows

m+1
B(wb) = Z (n—m—d) H Pugy
deP (wb) j=m—d+2
d
deP (wb) j=1
d m
= > (n—=m—d) ][] puy + (n—2m) [] pu,
deP(w) j=1 j=1
d
= Bw)-> ]I Puy; + (0 — 2m)p.

deP(w) j=1

Fact 2.8 also says that B(w) decreases with the length of w, that is B(w) > B(wb),
if either b differs from the first symbol, or b is equal to the first symbol, and obeys
the condition

Z H pw[]] - 2m)ﬁ

deP(w) j=1
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In any case

B(wb) — B(w) < (n—2m)p— > pru (n—2m)p
deP(w) j=

i.e., at each extension the function B can increase at most by (n — 2m)p. This term
is a decreasing function of m. Its maximum is achieved for m = 2, for words of the
type w =ab and b =a. In this case, B(w) = 0, B(wb) = (n — 4)p.ps.

Fact 2.8 can be also used to derive a recurrence expressing B(a.,) in terms of
B(aym—1).

Fact 2.9 Let 2 <m < (n+1)/2. We have

1 p
B(a™) = B(a™* —2m+2 el R
(a™) (a )-I—(n m + +1_pa>pa T
Proof Directly from Fact 2.8 we get
m—2
B(a™) = B(a™™") = Y pu+ (n—2m+2) pp~!

=1

Simple algebraic manipulations prove the claim. O

Fact 2.10 Let w be a nonempty substring of a text generated by a Bernoulli process,
and wb a unit extension of w, b € L. If ppax < 1/ V/4m then Var(Zy,) < Var(Zy).

Proof We first study (Var(Z,) — Var(Z,))/p. By expanding the variances with
their exact expression we get

Var(Zw) ;V“T(Zw”) = (n—m+1)(1 —p) — p(2n — 3m + 2)(m — 1) + 2B(w)

—py ((n —m)(1 — ppy) — Pps(2n — 3m — 1)m + 2B(wb))

=n—m+1+2Bw)—p(n—m+1+ (m—1)(2n — 3m + 2))
—pp (n — m + 2B(wb) — ppy(n — m + m(2n — 3m — 1)))

=n—m+1+2Bw)—p2nm —3m> +4m —n — 1)
—Db (n —m + 2B(wb) — ppy(2nm — 3m* +n — Qm))

= (n=m)(1 = py) + 1+ 2(B(w) — pyB(wb))
—ﬁ(?nm—3m2+4m—n—1—p§(2nm—3m2+n—2m)).
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At this point we need a lower bound for the difference B(w) — p,B(wb). Fact 2.8
says that B(wb) < B(w) + (n — 2m)p and therefore
B(w) = pyB(wb) = B(w) = py (B(w) + (n = 2m)p) = (1 — py) B(w) — pps(n — 2m)
> —ppy(n — 2m).
If we plug this bound in the expression for difference of the variances we get

Var(Zy) — Var(Zys)
P

> (n—m)(1—ps) +1— 2ppp(n — 2m)
—p(2nm — 3m?> 4+ 4m — n — 1) + pp; (2nm — 3m* + n — 2m).
We are now ready to ask for which values of n, m,p and p, the function

5(m: naﬁa pb) = (TL - m)(1 - pb) +1- Qﬁpb(n - 2m)
—p(2nm — 3m* + 4m — n — 1) + pp; (2nm — 3m® + n — 2m)

is positive.

A study of the function for several choices of the parameters has been carried out
with MAPLE. We observed that as n becomes larger and larger the intervals for m,
p and p, in which the function is positive becomes smaller and smaller. We therefore
study the function in the asymptotic regime, for n — oo. This assumption is also of
practical interest.

In this case, all that matters is the coefficient of n, that we call C(m,p,p,). In
fact, we can write

(m,n, p,py) = nC(m,p, py) + D(m, p, ps)
where we defined
C(m,p,ps) = (1 —po)(1 — 2mp(1 + ps) + (1 — ps))
D(m,p,ps) = mpy —m + 1+ p(dmpy + 3m* + 1 — dm — 3pim?* — 2pim).
Let us study C(m,p, ps)
C(m,p,py) > 1 —p2m(1+py) + (1 — ps))

> 1- pZaz(Qm(l +pb) + (1 - pb))
>1—4mpp .

because pp, < 1, p < p. and 2m(1+py) + (1 — pp) < 4m. The function C(m, p, pp) is
positive when 4mp? < 1. The latter is equivalent to ppe, < 1/ V4m. The function
1/ ¥/4m is monotonically increasing with m > 2 and asymptotically goes to 1 when
m — oo. Table 2.2 shows the value of the function for some choices of m.
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Table 2.2
The value of p* for several choices of m. Function C(m, p,py) is positive for
Pmaz € (0,p*) for any choice of p, and p

*

p
0.3535533906

m
2
3 0.4367902323
4
)

0.5000000000

0.5492802715
10 0.6915028923
20 0.8032403203
30 0.8524991575
50  0.8994549165
100 0.9418449210

To summarize, given a word of size m, if pp. < 1/ %/4m then the variance is
monotonically decreasing for any choice of n and p,. O

Remark: A slightly better bound can be found by noticing that p, < p.. and
therefore

2m(1+py) + (1 —pp) < (2m + 1) + Ppnaz(2m — 1)

then
C(m,p,py) > 1—p" (2m +1) — prH(2m —1).
Let us call A(pmaz, m) the right hand side of the above inequality. Table 2.3 shows

some values of the function A(pmqez, m) for some choices of m. It is positive for
Pmaz € (0,p%). Roots p* were computed numerically with MAPLE.

Fact 2.11 Let w be a nonempty substring of a text generated by a Bernoulli process,

E(Z E(Z
and wb a right extension of w, b € 3. If praz < V2—1 then (Zws) < (Zw) )
\/Var(Zwb) \/Var(Zw)

Proof We define A(w,b) = Var(Z,)E(Zwy)? — Var(Zy) E(Z,)%. We have to prove
A(w, b) < 0. We have

A(w, b)
P2

= Var(Zu)p}(n — m)? — Var(Zuy) (n — m + 1)

= (n—m)2(piVar(Zy,) — Var(Zys)) — (2n — 2m + 1)Var(Zy).
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Table 2.3
Function A(ppaz, m) is positive for pyq. € (0,p*)

A(Pmaz, M) P
1—-5p2,, —3p3,, 04014671834
1—7p3 .. — 5pt  0.4743105808
1—9pt .. — 0.  0.5296449608
1—11p5,. — 98 . 0.5732148842

1—21pl0 —19pll ~ 0.7021328743

1—41p% —39p2.  0.8072140036

30 1-61p%, —59p3  0.8546093525
50 1—101p%° —99p5L ~ 0.9003652105

100 1 —201pl%° —199p!0 = 0.9421201488

max max

RS o w oS

First we evaluate Var(Z,) and we set N = n — m for convenience.
Var(Zy,) = p(N+1)(1 —p) —2(m —1)p(N +1—m/2) + 2B(w))

: A omm-1p 2 l
< p(N+1)|1—-p—2(m—1 N+1-—
< 1) (19 20m - it P 2 S v -

= p(N+1) (1—ﬁ<2m—1+m](V+1 >+22 (11N11+1>pé>

implies that

N \?pVar(Z,) m(m — = l :
< _ A
<N+1) % ol am =L+ N—I—l +2l:1 TN P

Next we evaluate Var(Zys)

Var(Zyp)
PPo

_ (N(l — i) — 25ps (N _ TH) m+ 2B(wb))

m-+1
> A g ~om+1 '
z N (1 by = 20Ps (1 2N )m)

Note that since we are interested in the worst case for the difference Var(Z,) —
Var(Zy,) we set B(wb) = 0 and B(w) maximal. This happens when w is a word
of the form a™ where a is the symbol with the highest probability p,..; and ¢ # a.
Recall that Fact 2.6 says that 0 < B(w) < B(a™). Then

2
A(w,b) (NLH) piVar(Zy) — Var(Zy)
ppp(N +1)? Py
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. m(m — 1) ml ! p
< N{p—pps(2m—1-" ) 42, 3 (1 - ——
< (pb ppb<m N1 >+ pbl_1< N+1>pb

m+1
—14+p 2p 1— ——
PPt ppb( 2N )m)
. [(m(m—-=1) m(m+1)
=N -1 — 2
(p” “’p”( N1 N °

m—1 l
+2pp > (1 - m) pé)

=1

m+ 1 2
= N(p,—1+pp, [2—
(p” +pp”< m(N(N+1)+N+1>)

m—1 l
o (157

=1

IN

m—1
N (pb — 1+ 2ppy+ 25 Y pi)
=1

IN

m—1
N (pmaw — 14 2P0+ 2Py D plmaw>
=1

m
=N ( mar 1+ 2pmam Zplma,z>

=1

m
=N <_(pmax + 1) + 2pmzm Zpinaa;)
=0

1—p2

max

_ pm—l—l
= N(l + pmam) <_]— + 2pmazﬂ) .

We used the fact that py < pmaz, D < pjr,. and that % + NL—H > 0. A sufficient

condition for the function A(w, b) to be negative is

2(1 — Pt Pmaz < 1= Py

Table 2.4 shows the roots of 2(1—p™Np,0. —1+p2, .. = 0 when ppq. € [0,

1]. For
large m it suffices to show that 2p,,., < 1—p2,,, which corresponds t0 pa; < V2-1.
O

2.7.2 The expected number of occurrences under Markov models

Fact 2.12 Let w and v be two nonempty substrings of a text generated by a Markov
process of order M > 0. Then E(Zy,) < E(Zy).

Proof Let us first prove the case M = 1 for simplicity. Recall that an estimator of
the expected count when M =1 is given by

Fwpa)f (W) - - f(Wwl-1)w)

B(Z0) = = ) flwrg) - F(wpwr)
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Table 2.4
The value of p* for several choices of m. Function A(wb) is negative for
Prmaz € (0,p*). p* converges to v2 — 1
p*
0.4406197005

m
2
3 0.4238537991
4
3

0.4179791697

0.4157303841
10 0.4142316092
20 0.4142135651
30 0.4142135624
50 0.4142135624
100 0.4142135624

Let us evaluate

~ Flwp,2) F(wia,a)--f (W] =1, 1w F @) w1v1) f (11,21) - F (o] =1, ]0]])
E(Zwv) _ F(wiay) f(wig)) - (Wijw| —17) Fww)]) F(opa1) - f (Vp10]=17)

/, F(wia,27) f(wiz,37) - F (W] 1,]w]])

E(Zw) J(wpa) fwig)) - f (Wi =17)

_ J@pupop) f(vp) - - F (@ -1jo))
T flwgen) flom) - fOge—n)
Note that numerator and denominator have the same number of factors and that
fwgwpvny) < flwgep), flopg) < flop)s -5 FOpo-1p)) < f(V)e-1)). Therefore
E(Zwv)
E(Z,)

Suppose now we have a Markov chain of order M > 1. Using a standard procedure
we can transform it into a Markov model of order one. The alphabet of the latter is

<1

composed by symbols in one-to-one correspondence with all the possible substrings
of length M — 1.

Since the argument above is independent from the size of the alphabet, the con-
clusion holds for any Markov chain. O

2.7.3 The expected number of non-overlapping occurrences under Bernoulli
Recall that the expectation for the random variable G is
(n—|w/+1)p
14+ C(w)

where we set C(w) = Y qep(y) H;-lzl Dyy;- First, we prove some properties of C(w).

E(G) =
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Fact 2.13 Let a be the symbol in X such that p, = pmaz- For all words w € ¥™ we
have

0 < Cw) < Ca™) = 1’;_77’“.
— Pa

Proof Words a™ have P(a™) = {1,2,...,m — 1} and therefore

The function C'(w) is clearly positive, since it is a sum of positive terms. C'(w) is
zero only when P(w) is empty. If P(w) is nonempty we can write

Clw) = Y 1 puy

deP(w) j=1

3 P

deP(w)

> pl

deP(a™)
m—1
d
< Y pl
d=1

= (C(a™)

IN

IA

since (1) all terms in the summation are positive, (2) a™ has at least all the periods
of w (i.e., P(w) C P(a™) = {1,2,...,m —1}), and (3) [I_, Puyy < P = Pl O

Fact 2.14 Let w be a nonempty substring of a text generated by a Bernoulli process,
and wb a unit extension of w, b € X. If ppar < 1/2, then E(Gyp) < E(Gy).

Proof We study E(Gys)/E(Gy). We have

E(Guw) n—m 1+ C(w)
EGo) — Pn—m+11+C(wd)
14+ C(w)
Poyy C(wbd)
pe(1+ C(w))
Dimax (1 + Pmaz — pmaz)
1- Pmaz
m—+1

Pmaxr — Pmaz

1-— Pmaz
Pmax <1

1- Pmaz

IN

IN
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2.7.4 The expected number of clumps under Bernoulli
Recall that
E(Ly) = (n— |w|+1)p (1 = D(w))
where D(w) = ¥ sepiw) [11= Puy;- Since E(L,) cannot be negative we get that
0< D(w) <1.

Fact 2.15 Let w be a nonempty substring of a text generated by a Bernoulli process,
and wb a unit extension of w, b € . If py <1 — D(w) then E(Lyy) < E(Ly,).

Proof We study (E(L,) — E(Lw))/p- By expanding the expectations with their
exact expression we get

E(Ly,) — E(Lyy)
p

n—m+1)(1— D(w)) — (n —m)py(1 — D(we))

(

> (n—m+1)—(n—m+1)D(w) — (n — m)py

= (n-m+1+p)—(n—m+1)(Dw)+py)
> (n=m+1)(1—(D(w) +p))-

The claim follows then from the assumption that 1 — (D(w) + py) > 0. O

2.7.5 The expected number of colors under Bernoulli and Markov models

Fact 2.16 Let w and v be two nonempty substrings of a text generated by a Bernoulli
or Markov process. Then E(Wy,) < E(Wy,).

Proof Recall that i

E(W,) =3 (1- e @)

j=1
where E(ZJ) is the expected number of occurrences of the word w in the j-th se-
quence. Let us evaluate

) k )
_ —EZL)) _ _ -~ E(Z))
(1Bt -5 (1 o0

(67E<Z$;,) _ efE(Zf;w)) _

M= 5 M=

I
-

J
We now concentrate our the attention on e~#(Z) — ¢=E(%) We already know that

E(Zyy) — E(Zy) < 0 as this follows by Fact 2.4 for the Bernoulli model, by Fact 2.12
for Markov models. Therefore

e_E(ZZJ)

= <1

e_E(Zij;m)
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and whence E(W,,) — E(W,) <0. O

2.8 Limitations of the methods

We conclude this chapter with some considerations about the limitations of some
of these scores to warn the reader against the dangers of taking the results of an
analysis without a critical perspective.

As mentioned before, there is no general rule to favor one particular type of score
over another. Furthermore, very few studies have critically analyzed the properties of
the scores commonly used in the scientific literature. Although the merits of specific
scores function are not the focus of this dissertation, we collected here a few examples
to illustrate this point.

As a first example, consider the following simple fact.

Fact 2.17 Let w be substring of a text generated by a Bernoulli process. If pl <
1/(n—|w|+1), then

fw) = E(w) _ f(w) = (n—|w[+1)p

Nw) N(w) >0

Proof By hypothesis p©, < 1/(n — |w|+ 1). We have

maxr

. 1 f(w)
< |w] < <
P'= Prmac n—|wl+1 " n—|w +1

from which we get f(w) — (n — |w| + 1)p > 0. Since N(w) > 0 by definition, the
conclusion follows. O

The latter observation poses conditions on the chances to ever observe some word
that is under-represented. If the condition p/*! < 1/(n — |w|+ 1) holds for all sizes
of interest, we will never observe a under-represented word. In the case of uniform
probabilities for the symbols, Fact 2.17 says that if the size of the text is smaller than
|X|™ + m — 1 then all words of size m have a positive score. In particular for large
alphabets this limitation can be a concern.

Now we show a much serious limitation of the scores based on maximal model
M = m — 2. These scores are widely used in literature, but the problem, initially
pointed out by Gelfand and Koonin [113], has been so far largely ignored. The proof

sketched in [113] is given below with full details.

Fact 2.18 Let w be a substring of a text z, m = |w|, and

f(w[l,mfl])f(wp,m])
f (w[2,m—1])

+(w) = () - ) v
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be the function used to evaluate the score of w. Let u1 = cwpm], ¢ # wpy and
Uy = Wi m—1]d, d # Wi, be two substrings of x.
Let z, = w"z,h > 0 and z.(w) the score of w computed on x.. Then

N,(w) zo(w) > N(w)z(w)
Ni(uq) zo(u1) < N(up) z(u)
N, (ug) zi(u2) < N(ug) z(us).

Proof Although we should expect that the score of w computed on z, would be

higher than its score on x, we first want to prove it. To simplify the notation we set
(_

WS = W1, W= Wy and TwT = wy g1
Nl 2(0) = Nw)s(0) = fo () = Um0 g ) BOEIBLR)

o f(wT) +R][f(Cw) +h]  flw)f(Tw)

fCws) +h f(Cwe)
_ hfCwT) = fwT) = fCw)] = fw) f(Cw)
fCwe)+h
fw) f(Cw)
T Pwe)

p fCw)fCw) = fw) — fFCw)] + fw) f(Cw)
fFOwE)[f(Cwe) + A
_ W CwT) = FCw)]If Cw) = f(w®)]
W) f (Fwe) + A '
Since f(Tw*) > f(Tw) and f(Tw*) > f(w*) we have N, (w) z.(w)— N(w) z
The latter expression becomes zero only if either f(7w*) = f(Tw) or f(Tw*)
fw®).
Let us evaluate the difference of the two scores for us,.
N (ug) 2 (ug) — N(uz) 2(ug) = fo.(u2) — Ja. (U}x )(Jix)w((_;ﬂ 2
Jo(wT) fo(Cw*d)
" ) < G
Jo(wT) + hlfe(Cwd
IR ACTO R
fo(w) fo(Cwd)
fz(—>w(—)
(f(wT) +h) fCwTd)  flwT)f(Cwd)
(f (Cwe) + h) f(owe)
_ pfCuTd)[f(w) - fCwT)]
SCOw)[f(Cwe) + A

- fz(UZ)

+

- fa:(uQ)

+
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Since f(w*) < f(Tw*) we have that N, (us) z.(us) — N(uz) z(uz) < 0. The score of
uy can be computed similarly. O

An interpretation is in order. Suppose that initially z(w) = 0, z(u;) = 0, and
z(ug) = 0. Appending h occurrences of w to = has two consequences. First, the new
score of w indicates that w is now over-represented, i.e., z,(w) > 0. Second, the new
score for u; and us indicates that they are under-represented, i.e., z,(u;) < 0 and
ze(ug) < 0.

Since the deletion of h occurrences can be thought as an “addition” of —h occur-
rences, one can also prove that

N, (w) z,(w)

Z
§
=
~— ~—
N
*
—~
2
=
IV IV IA
=
£
Z
I
—_~
2
=
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3. Algorithms and Data Structures

Algorithms can be ranked according to several figures of merit, e.g., running time,
memory requirements, simplicity of description and implementation, “parallelizabil-
ity”, etc.

Our main interest here regards the time-complexity, that is the asymptotic be-
havior of the running time with respect to the size of the input. While there are
few algorithms for which one can determine exactly the running time, the extra pre-
cision is not usually worth the effort of computing it. Usually, it suffices to bound
the running time as a function of the size of the input, in terms of a more or less
tight representative function. Although the average case analysis would be a more
appropriate indicator of the efficiency of an algorithm, it is easier to base the analysis
on the worst case, which refers to the type of input that makes the algorithm slower
in the limit.

We will mainly use two notations to capture the law of growth of the running
time. For a given function g(n) with domain on the natural numbers, we denote by
©(g(n)) the set of functions

O(g(n)) ={f(n): 3 ¢>0,d > 0,n9 > 0 such that
0 <cg(n) < f(n) <dg(n) for all n > ny}

and by O(g(n)) the set of functions
O(g(n)) ={f(n) : 3 ¢ > 0,n9 > 0 such that 0 < f(n) < cg(n) for all n > ngy}.

When we write that the time-complexity of an algorithm is O(f(n)), we mean that
the worst-case running time can be bounded in the limit by c¢f(n), for an appropriate
choice of the constant c.

Data structures have similar measures of merit. They can be ranked based on the
time-complexity of the algorithm that builds and maintains their consistency under
several conditions. The space required for storing and handling a data structure in
primary and secondary memory is another measure of merit or complexity.

In the first part of this chapter we show how to count efficiently occurrences, non-
overlapping occurrences, etc., of words in textstrings. In the central part, we study
techniques that enable us to limit the number of candidates that should be considered
when searching for unusual words in sequences. These strategies make crucial use of
the monotonicy properties exposed in Chapter 2. In the last part, we propose efficient
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algorithms to compute expectations, variances, and scores. Most of the algorithms
we describe are based on an index of all words in the sequences, called suffiz tree.
The suffix tree is a tree-shaped index with many virtues that allows many efficient,
and often surprisingly simple and elegant solutions to problems on strings (see, e.g.,
[131]).

3.1 Counting occurrences

A naive and simple method to count the number of occurrences of each substring
in a sequence is to create a look-up table. The table has an entry for each word.
Given a pattern y, a one-to-one hash function can be used to compute the index in
the table as follows

h(y) = hym) + h(ye) [Z] + Aye) (S + - -+ Ay |2

where & is a one-to-one map from symbols in ¥ to the range [0...|S| — 1]. Filling
the entries of the table takes O(nm), where m is the length of the longest string
we want to consider. However, the space needed is O(|X|™) and it requires at least
O(|Z|™) to be initialized. Note that |X|™ can be huge compared to nm. Indeed, when
m > logy n the large majority of the strings in ™ do not appear at all in z. A
query in the table takes only constant time.

A more space-efficient data structure to organize a dictionary of words is the trie.
A trie is a type of digital search tree that represents a set of strings over a finite
alphabet 3. Edges of the trie represent symbols from ¥ and siblings edges represent
distinct symbols. Therefore, the maximum degree of any node is |X|.

To collect and represent all the substrings of text x we build the trie from the
dictionary of the suffixes of x. If instead we are interested in the collection of all the
substrings of = of length up to m, we simply build the trie from the prefixes of size
m of all the suffixes of z.

For example, the trie for the suffixes of the string abaababa$ is shown in Figure 3.1.
The end-marker $ ¢ 3 ensures that no suffix of z$ can be a prefix of another suffix,
and hence there is a one-to-one correspondence between the leaves and the nonempty
suffixes of z. Indeed, the i-th suffix of x, which is the suffix that starts at position 1,
1 <i<n+1, may be read on the tree by concatenating symbols on the edges of the
path from the root to the leaf labeled by 7. In general, any substring can be obtained
by spelling out the symbols from the root to some internal node. The time and space
needed for building and storing the suffix trie is O(n?) (or O(nm)). A query takes
©(m) time, where m is the size of the query.

We can obtain an even more compact tree by “path-compression”, that is, by
deleting internal nodes with only one child and coalescing consecutive edges in a
single edge labeled by the concatenation of the symbols. The resulting tree is called
suffiz tree (see, e.g., [248, 172, 10]). It has again n + 1 leaves, numbered 1 to n + 1,
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a b b a $
O EI
$
a $
{3]
b a a $
2]
$

1 2 3 45 6 7 8 9
abaababas$

Figure 3.1. The trie for the suffixes of the string abaababa$

where leaf n + 1 correspond to the terminal suffix §. Each internal node, other than
the root, has at least two children and each edge is labeled with a nonempty substring
of x. No two edges outgoing from a node can have labels beginning with the same
character. Clearly, the tree still has the property that for any leaf ¢, the concatenation
of the labels on the path from the root the the leaf i spells out exactly the suffix of z
that starts at position 7, that is x[; ;). The substrings of 2 can be obtained by spelling
out the words from the root to any internal node of the tree or to any position in the
middle of an edge.

In order to achieve overall linear-space allocation, the labels on the edges are
described implicitly: for each word, it suffices to save an ordered pair of integers
indexing one of the occurrences of the label in the text. Each edge label requires thus
constant space, which, in conjunction with the fact that total number of nodes and
edges is bounded by O(n), results in the overall linear space for the tree.

Several algorithms exist for the construction of suffix trees. A “brute force” al-
gorithm, for instance, would work by inserting the suffixes of = one at a time (see
Figure 3.3). In the worst case this requires quadratic time, while the average time
complexity is O(nlogn) [26, 65].

Several clever O(nlog|X|) constructions are available. The algorithm by Mc-
Creight [172] and the one by Chen and Seiferas [67] are variation of the Weiner’s
algorithm [248]. Note that these algorithms take only linear time for finite alphabets.
All these constructions are off-line because they process the text right to left. A
more recent on-line algorithm by Ukkonen [238] achieves also linear time. Even more
recently, Farach [92] proposed an optimal construction for large alphabets.

There is a rich repertoire of variations, ancestors, or related data structures like po-
sition trees [168, 149], PATRICIA tree [177, 124], suffix array [169], blind trie [95], LC



Figure 3.2. The suffix tree T, for x = abaababaabaababaababa$, with internal
nodes storing the number of occurrences

aba

Figure 3.3. Brute force construction of the suffix tree for abaab$
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ANNOTATE_f(w) (suffix_tree T))
for each leaf u of T do
let f(L(u)) =1
visit 7" in depth-first traversal, for each internal node u do
let f(L(u)) equal to the sum of f(-) of the children of u

Figure 3.4. Algorithm for counting the number of occurrences of each substring

tries [7, 8, 9], suffix cactus [142, 143], directed acyclic word graphs [45, 46, 47|, com-
pact directed acyclic word graphs [83, 84], patrie [219] and suffix binary search trees
[139]. Each one addresses some specific problem, like space consumption, secondary
memory allocation, etc., sometimes paying for it by introducing other inefficiencies.

Having built the tree, some additional processing make it possible to count and
locate all the distinct instances of any pattern in O(m) time, where m is the length
of the pattern. In fact, the computation of the statistics of all substrings of a string
is a direct application of suffix trees. We first need some definitions. We define the
leaf-list LL(u) of a node u as the ordered set of indices stored in the leaves of the
subtree rooted at u. Note that pos,(L(u)) = LL(u). We refer to the unique string on
the path from the root to a node u of the tree as the path-label L(u) of u. Vertex u is
also called the proper locus of L(u). Some strings do not have a proper locus because
their paths end in the middle of an arc.

Given a word w, we denote by <w> its proper locus, if it exists. If instead w ends
in the middle of an arc then <w> denotes the node corresponding to the shortest
extension of w that has a proper locus. Clearly, L(<w>) = w.

By the structure of a suffix tree, the number of occurrences f(w) of any string
w is given by the number of leaves in the subtree rooted at <w>, that is, f(w) =
|LL(<w>)|. In Figure 3.2, the number of occurrences are presented in the internal
nodes. The algorithm for annotating the tree with the value of f(w) is given in
Figure 3.4. The time and the space complexity is linear in the size of z.

One particular alternative construction has some interest for the problems ad-
dressed in this dissertation. This is the top-down O(n?) (O(nlogn) on average)
suffix tree construction by Giegerich and Kurtz [120, 121], that can be used to build
directly a suffix tree with only the substrings that occur at least K times, or that
occur in at least K different sequences (K colors). This problem could be solved in
overall linear time by building a suffix tree, computing the occurrences or the colors,
and building another tree with only the substrings that match the constraint. How-
ever, in this case we are interested in building directly the final tree, so as to avoid
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the need to allocate large quantities of memory for “uninteresting” words.

The algorithm based on the construction by Giegerich and Kurtz works as follows.
We build the tree in a breadth-first order, level by level. A node u exists if and only if
f(L(uw)) > K. We maintain in each internal node u the list of positions LL(u) where
L(u) occurs. When we create the next level, we check if the new extended words have
enough occurrences. Where they do, we keep expanding the tree to the next level
from that nodes, otherwise the nodes become leaves of the tree.

3.1.1 Counting occurrences in a sliding window

We first discuss the simpler problem when the overlap is the size of the window
minus one (recall definitions in Section 1.6). In this case, the window slides exactly
one symbol at each move.

The problem of dynamically maintaining the tree under sliding window updates
has been deeply studied by Fiala and Green in the context of text compression [100].
While their work offer many insights in the problem, their algorithm is superlinear.
The problem has been considered previously by Rodeh, Pratt and Even [208]. Their
strategy is to avoid the problem of deletions by maintaining three suffix trees simul-
taneously. The time complexity of the algorithm is linear but the method is not
space-efficient.

The construction algorithm by Ukkonen [238] is on-line and processes the text left
to right. This is the reason why Larsson [158] chooses it as a framework in which
his sliding window implementation is built. Ukkonen’s algorithm solves immediately
the problem of moving the right end of the window to the right. However, moving
the left end of the window one symbol to the right implies the removal of the longest
suffix from the tree. This in turn, creates other complications: (1) path-compression
property must be maintained, that is if the removal of one node leaves its parent with
only one child, the parent must also be removed; (2) only the longest suffix must be
removed from the tree — it may be not trivial because of the lack of the end-marked
$; (3) the edge labels must not “slide” outside the window.

In particular, the solution to (3) is tricky, because the updates could propagate to
several nodes of the suffix tree. A Lemma by Fiala and Green [100] ensures that the
overall number of label updates is linear in the size of the input. As a consequence,
the algorithm by Larsson [158] solves all these issues in amortized linear time in the
size of the input.

Once the structural maintenance of the tree under sliding window updates is
solved, we still have the problem of maintaining the consistency of the counts. Lars-
son’s algorithm does not answer this question. In his thesis, he speculates that one
could design a “slightly relaxed updating strategy requiring only amortized constant
time per iteration”, without giving any detail.

To summarize Larsson’s algorithm still requires to run ANNOTATE_f(w) at each
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move of the sliding window, and it would result in a O(nK) where K is the size of
the window. It is still an open question whether a more efficient solution exists.

Other more general studies on dynamic maintenance of the index have been carried
out by Ferragina et al. [96, 98] and by Alstrup et al. [5].

3.1.2 Counting occurrences in a multisequence

The suffix tree for a single string can be easily extended to represent the suf-
fixes of a multisequence {z1, zs,...,2;}. These suffixes are collected in a tree called
generalized suffix tree in [131].

An algorithm to build a generalized suffix tree consists of creating the standard
suffix tree for the string x1$,2985 . .. $xz;, where each $; is a distinct end-marker not
in the alphabet. Now the leaves must have two indices, the index of the suffix and
the index of the sequence (i.e., the color). One problem is that the tree contains
substrings that span more than one of the original strings.

However, since each end-marker is distinct and does not belong to the alphabet,
the label of any path from the root to an internal node must be a substring of one of
the original strings. These “spurious” suffixes are represented only at the leaf edges.
A traversal of the tree can easily remove them.

Another option is to insert the strings one at a time in the tree. There are two
minor subtleties with this second approach. One is that the indices on the edges
must be augmented with an additional index that identifies the sequence which that
substring belongs to. The second subtlety is that suffixes from two strings may be
identical. In this case, a leaf must indicate all of the strings and starting positions of
the associated suffix.

Once the suffix tree for the multisequence is available, we can use Fact 1.15 to get
the counts.

3.2 Counting colors

An algorithm for the computation of the number of colors, ¢(w), has been proposed
by Hui [137]. We recall that given a multisequence {z,zs,..., 2} and a substring
w, c¢(w) is defined as the number of distinct sequences that contain at least one
occurrence of w.

Hui’s algorithm computes the number of repetitions of the same color in the leaves
of each subtree. The number of different colors is given by the difference of f(w) and
the number of duplicate colors. A sketch of the algorithm is shown in Figure 3.5. The
complexity of the algorithm relies on the fact that the lowest common ancestor of an
arbitrary pair of leaves can be found in constant time, once a linear-time preprocessing
phase has been performed [216]. As a consequence, the algorithm ANNOTATE_c(w)
takes O(n) time and space.

Recently, another algorithm with the same time complexity has been given by
Matias et al. [171].
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ANNOTATE_c(w) (generalized suffix_tree T')

ANNOTATE_f (w)(T') (ref. Figure 3.4)

for each leaf v do
set LastLeaf(v) equal to the last leaf encountered
in the traversal with the same color of v

for each internal vertex u do
set [(u) equal to the number of leaves in the subtree rooted
at u for which v = lca(LastLeaf (v),v)

for each internal vertex u do
set duplicate(u) equal to the sum of [(v) for all nodes
v in the subtree rooted at u

for each internal vertex u do
set ¢(L(u)) = f(u) — duplicate(u)

Figure 3.5. Algorithm for the number of colors of each substring

3.3 Counting non-overlapping occurrences and clumps

If we want to annotate the suffix tree with the statistics without overlap then
the problem becomes more complicated. A comparison of Figures 3.2 and 3.6 shows
that this transition induces a twofold change in the tree: the number of occurrences in
each internal node no longer necessarily coincide with the number of leaves; moreover,
extra nodes must now be introduced to account for changes in the statistics which
occur in the middle of the arcs.

The efficient construction of the augmented index in minimal form (i.e., with the
minimum possible number of unary nodes) is quite elaborate. The resulting structure
is called minimal augmented suffix tree. The algorithm by Apostolico and Preparata
[24, 25| requires a post processing to augment the tree with the extra unary nodes
(at most O(nlogn)) that results in a worst-case complexity of O(nlog®n).

As an alternative, the brute-force construction can be adapted to produce the
minimal augmented suffix tree directly in O(nlogn) time on average, and O(n?) time
in the worst case (see Figure 3.7).

The periodic structures of some segments of text = are responsible for the existence
of the extra (unary) nodes, as explained by the following fact (proof in [24]).

Fact 3.1 If u is an auziliary node of the minimal augmented augmented suffix tree
for z, then

e there are two substrings y and w of x and an integer k > 1 such that L(u) =
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Figure 3.6. The augmented suffix tree for abaababaabaababaababa$ with internal
nodes (original & auxiliary) storing the number of non-overlapping occurrences

suffix_tree INSERT _SUFFIX(string s, suffix_tree T')
for each node u encountered in the traversal of T" on the path of s do
if the position of the last occurrence of L(u) do not overlap
with the prefix of s used so far then set g(L(u)) = g(L(u)) + 1
update the pair of indices with the position of the current prefix of s
add a new leaf v for the suffix of s not used in the traversal, set g(v) =1
return T’

min_augm suffix_tree ANNOTATE _g(w) (string z)
T=90
for i =1 to |z| do
T = INSERT_SUFFIX(suffiz;(x),T)
return T’

Figure 3.7. Brute-force algorithm for the construction of the minimal augmented
suffix tree
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ANNOTATE_cl(w) (generalized suffix_tree T')
for each leaf u of T do
let cl(L(u)) =1
visit 7" in depth-first traversal, for each internal node u do
let LL(u) equal to the sorted merge of LL(-) of the children of u
letc=1
if |[LL(u)| > 1 then
fori=2,...,|LL(u)| do
if LL(U,)[,'] — LL(U)[i_l] > |w| thenlet c=c+1
let cl(L(u)) =¢

Figure 3.8. Algorithm for the number of clumps of each substring

y=uwk

o there is a substring of = in the form v'v' with v' prefiz of v and | > 2k.

Based on the above fact and the O(nlogn) bound on the number of distinct
repetitions in x given in [81] the number of auxiliary nodes was initially bounded by
O(nlogn). A tighter bound was claimed recently by Fraenkel and Simpson [104].
They proved that the number of distinct repetitions can be at most 2n, that would
possibly bring the total number of nodes of the minimal augmented suffix tree to be
at most 4n. However, distinct nodes of the augmented suffix tree may correspond to
squares belonging to the same maximal repetition [153]. The problem of determining
whether the augmented suffix tree requires linear space is still open.

Clumps can be computed directly on the augmented suffix tree. Since clumps are
composed solely by overlapping occurrences, by Fact 3.1 the nodes of the augmented
suffix tree correspond to the only positions where a change of the count cl(-) can
occur. The annotation of the tree can proceed bottom up by collecting at each node
the corresponding leaf list. A scan of the sorted leaf list can identify the runs of
occurrences, and hence the count of clumps as shown in Figure 3.8. Unless one
employs some suitable balanced data structure for the leaf list, the running time is

O(n?).
3.4 Counting maximal quasiperiodic substrings

Apostolico and Ehrenfeucht [16] proposed the problem of finding maximal quasi-
periodic substring of a text and gave a O(nlog®n) time algorithm. Later, Apostolico,
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Farach and Iliopoulos [17] introduced the notion of covers and described a linear-time
algorithm to test whether a string is superprimitive (see also [57]). Moore and Smyth
[175, 176] gave linear-time algorithms for finding all covers of a string.

Recently, Iliopoulos and Mouchard [138] and Brodal and Pedersen [59] claimed
two different O(nlogn) time algorithms for finding maximal quasiperiodic substrings.
These algorithms are based on two important facts which link the maximal quasiperi-
odic substrings to properties of the suffix tree (proofs in [16, 59]).

Fact 3.2 Let (i, 4, |w|) a mazimal quasiperiodicity in x. Then there is a proper locus
u in the suffix tree of x such that L(u) = w.

Given any node u, we partition the leaf least LL(u) in a sequence of disjoint
subsequences Ry, Ro, ..., R, such that each R; is a maximal subsequence that has the
difference between consecutive leaf indices bounded by |L(u)|. Each R; corresponds
to a run at u (see Section 1.4 for the definition) and represents a maximal substring
of x that can be covered by L(u). A run is said to coalesce at u if the run contains
indices from at least two children of w.

Fact 3.3 A triple (i, 7, |w|) describes a mazimal quasiperiodic substring of x if and
only if the following conditions are met

1. there is a non-leaf node v in the suffix tree such that L(v) = w,
2. the path-label w s superprimitive,

3. there is a coalescing run R in the leaf list LL(v) from i to j.

A sketch of the algorithm for computing mgs(w) is shown in Figure 3.9. We
remark that the leaf-list LL(u) cannot be stored explicitly in each internal node u,
because otherwise the overall space require be quadratic. By employing a suitable
balanced structure for the leaf lists, the amortized analysis results in a time complexity
of O(nlogn) (details in [59]).

3.5 Detecting unusual words

For a given type of count and probabilistic model one would like ideally to compute
exhaustive tables reporting scores for all substrings of a sequence, or perhaps at least
for the most surprising among them. However, a table for all words of any size would
require quadratic space in the size of the input, not to mention that such a table
would take at least quadratic time to be filled.

We will see that in several cases of practical interest, it is possible to limit the
size of the population of potential unusual words by partitioning the set of all words
into [ classes {C1,Cy,...,Ci}, in such a way that only a constant number of words
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ANNOTATE_mgs(w) (suffix_tree T)
for each internal node u do
collect the leaf-list LL(u)
mark the nodes that have a superprimitive path-label
for all marked node u do
set mqs(L(u)) equal to the number of coalescing runs

Figure 3.9. Sketch of an algorithm for the number of maximal quasiperiodic
substrings with quasiperiod w

in each class must be regarded as candidates for “unusual-ness”, while the others can
be disregarded. Once such a dramatic reduction of the size of the output is achieved,
we can also address the issue of finding better and faster algorithms to compute the
statistical parameters, i.e., expectation, variance, and z-score.

Let us introduce some notation. Given a score function z and a set of words C,
and a real positive constant 7', we say that a word w € C'is extremal over-represented
in C (resp., extremal under-represented) if z(w) > T (resp., z(w) < —T') and for all
words y € C we have z(w) > z(y) (resp., z(w) < z(y)). We say that a word is extremal
significant if either it is extremal over-represented or it is extremal under-represented.
We also call max(C) and min(C) respectively the longest and the shortest word in
C, when max(C') and min(C) are unique.

Let now z be a textstring and {C1,Cy,...,C;} a partition of all its substrings,
where max(C;) and min(C;) are uniquely determined for all 1 < ¢ < [. For a given
score z and a real positive constant 7', we call O the set of extremal over-represented
words of C;, 1 < i < [, with respect to that score function. Similarly, we call U1
the set of extremal under-represented words of C;, and S the set of all extremal
significant words, 1 <7 < [.

Given two strings u and v with u a substring of v, we define a (u, v)-path as a set
of words {wg = u, w1, ws, ..., w; = v}, [ >0, such that (1) w; is an extension of w;_,
and (2) |w;| = |w;—1|+ 1 for all 1 < i < j. Note that given such u and v there may be
multiple (u,v)-paths. If all w € C belong to some (min(C;), max(C;))-path, we say
that class C' is closed.

We define a score function z to be (u,v)-monotonically increasing (resp., non-
decreasing) if given any two words wi, ws belonging to a (u,v)-path, the condition
lwi| < |ws| implies z(wy) < z(wq) (resp., z(wy) < z(wsy)). We say that a z-score is
(u, v)-monotonically decreasing (resp., non-increasing) if given any two words wy, we
belonging to the (u,v)-path, the condition |wq| < |wsy| implies z(w) > z(ws) (resp.,
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z(wy) > z(ws)). Clearly, a monotonic function z(w) in the size of w is also (u,v)-
monotonic.
The following facts are immediate.

Fact 3.4 If the z-score under the chosen model is (min(C;), max(C;))-monotonically
increasing, and C; s closed, 1 <1 <[, then

I I
O] C |J max(C;) and U] C |J min(C)).

i=1 i=1

Fact 3.5 If the z-score under the chosen model is (min(C;), max(C;))-monotonically
decreasing, and C; is closed, 1 <1 <, then

l
min(C;) and U, C |J max(C;).

1 i=1

0] C

l
=

Some scores are defined in terms of the absolute value (or any even power) of
a function of expectation and count. In those case, we cannot distinguish anymore
over-represented from under-represented words. This restriction is compensated by
the fact that we can now relax the property asked to the score function, as explained
next.

We recall that a real-valued function F'is concave in a set S of real numbers if for
all z1,2 € S and all A € (0,1) we have F((1 —\)xy 4+ Axg) > (1 = A)F(z1) + A\F(z2).
If F' is concave on real numbers, then the set of points below its graph is a concave
set. Also, given two functions F' and G such that F' is concave and G is concave and
monotonically decreasing, we have that G(F(x)) is concave.

Similarly, a real-valued function F' is convex in a set S of real numbers if for all
z1,29 € S and all A € (0,1) we have F((1 — N)xy + Axe) < (1 — A\)F(x1) + AF(z2).
If F' is convex on real numbers, then the set of points above its graph is a convex
set. Also, given two functions F' and G such that F' is convex and G is convex and
monotonically increasing, we have that G(F'(z)) is convex.

Fact 3.6 If the z-score under the chosen model is a convexr function of a (min(C;),
max(C;))-monotonic score Z', that is

2((1 = N)2"(u) + A2'(v)) < (1= N)z(2'(v) + Az(2' (v))

for all u,v € C;, and C; is closed, 1 <1 < I, then

i=1
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Fact above has two useful Corollaries.

Corollary 3.1 If the z-score under the chosen model is the absolute value of a score
2" which is (min(C;), max(C;))-monotonic, and C; is closed, 1 < i <1, then

L_J max(C;) U min(C;)}.

Corollary 3.2 If the z-score under the chosen model is a conver and increasing
function of a score z', which is in turn a conver function of a score z" which is
(min(C;), max(C;))-monotonic, and C; is closed, 1 < i <, then

Sl C U {max(C;) Umin(C;)}.

=1

For example, we can choose z = (2/)? and 2’ = [2"].
Sometimes we are interested in finding words which minimize the value of a pos-
itive score instead of maximizing it. One instance, is score zp defined after Fact 3.11

on the value of tail probabilities. A fact symmetric to Fact 3.6 also holds.

Fact 3.7 If the z-score under the chosen model is a concave function of a (min(C;),
max(C;))-monotonic score z', that is

2((1 = N)2"(u) + A2/ (v)) > (1 = N)z(2'(u)) + Az(Z'(v))

for all u,v € C;, and C; is closed, 1 < 1 < [, then the set of words for which the
z-score s minimized is contained in

Q {max(C;) Umin(C;)}.

To summarize the discussion, if one can prove some suitable property of the score
function and has a compatible partition {C,Cy, ..., C;} of the substrings, then the
number of extremal significant words in z is bounded by O(1).

In the next section we derive monotonicy properties for some of the scores function
commonly used in the literature, and in Section 3.7 we show how to build the partition
of the substrings.
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3.6 Monotonicity of score functions

Recall that we consider score functions of the following type

where f(w) > 0, E(w) > 0 and N(w) > 0. We define, for convenience of notation,
p(w) = E(w)/N(w). First, we state a simple fact on the monotonicity of F(w) given
the monotonicity of p(w) and N(w).

Throughout this section w is a nonempty substring of text x and wv is an extension
of w which is also a substring of z.

Fact 3.8 If p(w) > p(wv), and if N(w) > N(wv), then E(w) > E(wv).

Proof From p(w) > p(wv) we get that E(w)/E(wv) > N(w)/N(wv). By hypothesis
N(w)/N(wv) > 1, whence the claim. O

Under some general conditions on N(w) and p(w) we can prove the monotonicity
of any score functions of the form described above.

Theorem 3.1 If f(w) = f(wv), N(wv) < N(w), and p(wv) < p(w), then

flwv) — E(wv) _ f(w) — E(w)
N(wv) N(w)

Proof The inequality of the theorem is equivalent to

f(w) N(wv) p(w)
B(w) (1 " N@w) ) 71 oy

The left hand side is always positive because 0 < N(wv)/N(w) < 1 and the right
hand size is always negative (or zero if p(w) = p(wv)). O

The statement of Theorem 3.1 also holds by exchanging the condition p(wv) <
p(w) with f(w) > E(w) > E(wv). Let us now apply the Theorem to some common
choices for N(w).

Fact 3.9 If f(w) = f(wv), and E(wv) < E(w) then
1. f(wv) — E(wv) > f(w) — E(w)

fwo)  fw)

“ Bwv) ~ B(w)
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9 flwv) — E(wv) _ f(w) — E(w)
’ E(wv) E(w)
/ f(wv) — E(wv) S f(w) — E(w)
E(wv) E(w)
Proof

1. the choice N(w) = 1, p(w) = E(w) satisfies the conditions of Theorem 3.1
because E(wv) < E(w);

2. by hypothesis 0 < 1/E(w) < 1/E(wv) and we have that f(w) = f(wv);

3. the choice N(w) = E(w),p(w) = 1 satisfies the conditions of Theorem 3.1
because E(wv) < E(w);

4. the choice N(w E(w),p = y/E(w) satisfies the conditions of Theo-
rem 3.1 because E(wv) < E(w

Other types of score use absolute values or powers of the difference f — E.
Theorem 3.2 If f(w) = f(wv) = f, N(wv) < N(w), and p(wv) < p(w), then

‘f (w)‘ yN(w) + N(wv)
N(w) 4+ N(wv)

iff  f> E(w)

‘f wv) — E(wv)

where v = E(wv)/E(w).

Proof Note first that 0 < v < 1 by Fact 3.8 and that

yN(w) + N(wv)
(we) = Blw)y < Bw) g et < pw)
3 * N(w)+N(wv
We set, for convenience, E* = E(w)%

We first prove that if f > E* then |z(wv)| > |z(w)|. We consider two cases, one
of which is trivial. When f > E(w) then both f(wv) — E(wv) and f(w) — E(w) are
positive and the claim follows directly from Fact 3.9. If instead E* < f < E(w) we
evaluate the difference of the scores

Nwo)N(w) (j2(wo)] - [2(@)) = N(wo)N(w) (f J_VZZ()M '+ J_vfu(;] )>

= (f=7EW))N(w) + (f = E(w))N(wv)
= f(N(w) + N(wv)) = E(w)(yN(w) + N(wv))
= (N(w) + N(wv))(f - EY)
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which is positive by hypothesis.

The converse can be proved by showing that if f < E* we have |z(wv)| < |z(w).
Again, there are two cases, one of which is trivial. When 0 < f(w) < E(wv), both
f(wv) — E(wv) and f(w) — E(w) are negative and the claim follows directly from
Fact 3.9. If instead F(wv) < f < E* we use the relation obtained above, i.e.,

N(w) + N(wv)
N(wv)N(w)

(f — E%)

|2(wv)| = [2(w)] =

to get the claim. O

Theorem 3.2 say that these scores are monotonically decreasing when f < E* and
monotonically increasing when f > E*. We can picture the dynamics of the score as
follow. Initially, we can assume E* > f, in which case the score is decreasing. As we
extend the word, keeping the count f constant, E* decreases (recall that E* is always
in the interval [E(wv), E(w)]). At some point, E* = f, in which case the score stays
constant. By extending the word even more, E* becomes smaller than f, and the
score starts to grow.

Fact 3.10 If f(w) = f(wv) and if E(w) > E(wv) = v E(w), then

flwv) = BE(wv)| | f(w) = E(w)
E(wv) \/ E(w)

(f(wv) = E(wv))* _ (f(w) — E(w))
E(wv) E(w)

1.

if  flwv) > E(w)/7y

> ‘

2.

i flwo) > B(w)y7.

Proof Relation (1) follows directly from Theorem 3.2 by setting N(w) = +/E(w).
Relation (2) follows from relation (1) by squaring both sides. O

Certain types of scores require to be minimized rather than maximized. For
example, the scores based on the probability that P(f,(w) < T) or P(f,(w) > T) for
a given threshold 7" on the number of occurrences.

Fact 3.11 Given a threshold T > 0 on the number of occurrences, then

P(f,(w) < T) < P(f,(wv) < T).

Proof By Fact 1.10 we know that if f,(w) < T then also f,(wv) < T. Therefore
P(fa(w) <T) <P(fa(wv) <T). O
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Let us consider the score

zp(w,T) = min{P(f;(w)
= min{P(fs(w)

): P(fo(w) >T)}

T),
T)’ 1- P(fx(w) < T)}

<
<

evaluated on the strings in a class C'. By Fact 3.11, one can compute the score only
for the shortest and the longest string in C', as follows

min{P(f,(min(C)) < T),P(f,(max(C)) > T)}.

Also note that score zp(w,T) satisfies the conditions of Fact 3.7. In fact, 2/ =
P(f;(w) < T) is (min(C), max(C))-monotonic by Fact 3.11 and the transformation
z =min{z’,1 — 2} is a concave function in 2'.

We are now in a position to state the monotonicity property for scores under the
Bernoulli model.

Fact 3.12 Let = be a text generated by a Bernoulli process.
If f(w) = f(wv), then

1. f(wv) — E(Zyy) > f(w) — E(Zy)
fwo)  f(w)

“ B )~ EZ)
P fwv) — E(Zy,) _ f(w) — E(Zy)
‘ E(Zy) E(Zy)
. fwv) = E(Zyy) _ f(w) — E(Zy)
E(Zu) E(Zy)

Proof Directly from Theorem 3.1 and Fact 2.4. O

Fact 3.13 Let x be a text generated by a Bernoulli process.
If f(w) = f(wv) = [, then

fwv) — E(Zyy) f(w) — E(Z,) .

1. ‘ () > 5, iff  f>E(Zw)VvY
(f(wv) B E(Zwv))2 (f(w) — E(Zw))2 .

? Bley | JE(Z) 1> By
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Proof Directly from Fact 3.10 and Fact 2.4. O

A score that is not captured in Fact 3.9 uses the square root of the first order
approximation of the variance as the normalizing factor.

Fact 3.14 Let x be a text generated by a Bernoulli process.
If f(w) = f(wv) and p < 1/2 then

fwv) — E(Zuw) _ J(w) ~ BE(Zs)
VE(Zuw)(1 =58  /E(Zu)(1 - p)

Proof To have monotonicity, the functions N(w) = /E(Z,)(1 —p) and p(w) =
E(Z,)/N(w) should satisfy the conditions of Theorem 3.1. First we study the ratio
N?(wv) _ ( _ Kl ) pg(1 —pg) _ pq(1 — pq)

N2 (w) n—lw+1) p(L=p) ~ p(l—p)

The concave product p(1 — p) reaches its maximum for p = 1/2. Since we assume
p < 1/2, the rightmost term is smaller than one. The monotonicity of N(w) is
satisfied.
Then, we need to prove that also p(w) is monotonic, i.e., p(wv) < p(w), which is

equivalent to

E(Zy) 1-p <1

E(Zw) 1—pi
but E(Z,,)/E(Z,) < 1 by hypothesis and (1 — p)/(1 — p§) < 1 for any choice of
p,q€10,1]. O

Of particular importance is the score which has N(w) = /Var(Z,).

Theorem 3.3 Let x be a text generated by a Bernoulli process.

If f(w) = f(wv) and ppee < min{l/ ¥/4m,/2 — 1} then
fwv) = E(Zw) _ f(w) — E(Zy)

\/ Var(Z.,) g \/ Var(Z,,) '

Proof The choice N(w) = +/Var(Zy), p(w) = E(w)/\/Var(Z,) satisfies the condi-

tions of Theorem 3.1 because the bound on p,,,, satisfies the hypothesis of Facts 2.10
and 2.11. O

An interesting observation by Tompa and Sinha, is that the score in Theorem 3.3
obeys the following relation

f(w) = B(Zy)
z(w) <
VE(Zu) — B(Z,)?

when FE(Z,) — E(Z,)? >0
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since Var(Z,) > E(Z,) — E(Z,)?* (see [220] for details). It is therefore sufficient to
know E(Z,) to have an upper bound of the score. If the bound happens to be smaller
than than the threshold, then the algorithm can disregard that word, avoiding the
computation of the exact variance.

Theorem 3.4 Let x be a text generated by a Bernoulli process.

If f(w) = f(wv) = f and Ppae < min{1//4m,/2 — 1} then

7\/Var +\/Var (Zuww)
\/Var +\/Va7“ )

iff f>FE

Var(Zyy)

flwv) — E(Zyy)
Var(Zy)

) ‘f(w) ~ B(Zy)

where v = E(Zyy) [ E(Zy).

Proof The choice N(w) = +/Var(Zy), p(w) = E(w)/\/Var(Z,) satisfies the condi-
tions of Theorem 3.2 because the bound on p,,,; satisfies the hypothesis of Facts 2.10
and 2.11. O

Similar properties can be stated for estimators of the expected number of occur-
rences for Markov models.

Fact 3.15 Let x be text generated by a Markov process of order M > 0.
If f(w) = f(wv) then

1. f(wv) = E(Zu) > f(w) — E(Zy)

f(wv) S f(w)
" E(Zy)  E(Zy)
g f(wv) — (Zm) fw) — E(Z,)
' E(Zu) E(Z,)
fwv) — E(Zy,) _ f(w) — E(Zy,)

Proof Directly from Theorem 3.1 and Fact 2.12. O

Fact 3.16 Let x be text generated by a Markov process of order M > 0.
If f(w) = f(wv) = f then

f(wv) = B(Zun)| ‘f(w) ~ B(2,)

" ‘ > B(Zo)A
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(f(wv) = BE(Zw))? _ (f(w) — B(Zy,))?
E(Zy) E(Z,)

2.

where v = E(Zyy) [ E(Zy).

Proof Directly from Fact 3.10 and Fact 2.12. O

Simple scores for the number of non-overlapping occurrence and clumps can be
also proved to be monotonic.

Fact 3.17 Let = be a text generated by a Bernoulli process.
If g(w) = g(wv), and pmaz < 1/2 then

1. g(wv) — B(Guy) > g(w) — B(Gy)

g(wv) g(w)
E(Guy) ~ E(Gy)

g(wv) — E(Guwy) _ g(w) — E(
E(Guyv) E(Gy)
(

_ g(wv) — E(Gy) - g(w)—FE

2.

Proof Directly from Theorem 3.1 and Fact 2.14. O

Fact 3.18 Let = be a text generated by a Bernoulli process.
If cl(w) = cl(wd), and p, < 1 — D(w) then

1. cl(wb) — E(Lyp) > cl(w) — E(Ly)

cl(wb) cl(w)
" E(Lwy) ~ E(Ly)

Lus) _ cl(w) = B(Ly)

g cl(wb) — F

Proof Directly from Theorem 3.1 and Fact 2.15. O

Finally, scores based on the number of colors either assuming Bernoulli or Markov
models are monotonic.
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Fact 3.19 Let x be a text generated by a Bernoulli or a Markov process.
If c(w) = c(wv) then

1. c(wv) — E(Wyy) > c(w) — E(Wy,)

p c(wv) c(w)
P c(wv) = EWy) _ c(w) — E(Wy)
" E(Wy) E(Wy)
. c(wv) — E(Wyy) S c(w) — E(Wy) _

E(Wwv) E(WTU)

Proof Directly from Theorem 3.1 and Fact 2.16. O

Fact 3.20 Let x be a text generated by a Bernoulli or a Markov process.
If c(w) = c(wv) = ¢ then

c(wv) — EWyy) | _ |c(w) = E(Wy)| .
1, BT A iff > EWu)Vy
g (ewv) = EWw))* _ (c(w) = E(W))* il ¢ > E(Wy)A

where v = E(Wy)/E(W,y,).
Proof Directly from Fact 3.10 and Fact 2.16. O

3.7 Building equivalence classes

Let us first recall the properties of the partition {C,Cy, ..., C;} which enable us
to restrict the computation of the scores to a constant number of candidates in each
class. Namely, we require, for all 1 <17 </,

1. max(C;) and min(C;) to be unique;
2. C; to be closed, i.e., all w in C; belong to some (min(C;), max(C;))-path;
3. all w in C; have the same count.

Of course, the partition of all substrings of x into singleton classes fulfills those prop-
erties. In practice, we also want the number of classes [ to be as small as possible.
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The partition clearly depends on the type of count. First, we focus on the counts
for occurrences and colors, which have a common partition. At the end of this sec-
tion we show the equivalence classes for the maximal quasiperiod substrings, non-
overlapping occurrences and clumps. Nevertheless, this strategy can be applied also
to other types of count.

The classes for counts of occurrences and colors that satify the three conditions
above can be directly identified on the suffix tree T, as explained below. We first
observe that the counts associated with a node of T, report the correct number of
occurrences and colors also for the strings that end in the middle of the preceding
arc. This property can be fully exposed by instituting an equivalence relation on the
substrings of text x.

We say that two strings y and w are left-equivalent on z if pos,(y) = pos,(w). We
denote this equivalence relation by =y. It follows from the definition that if y =7 w,
then either y is a prefix of w, or vice versa. Therefore, each left-equivalent has a
unique shortest and a unique longest member. Also by definition, if y =7 w then
fo(y) = fo(w) and ¢, (y) = co(w).

Left-equivalent classes correspond one-to-one to the nodes of the suffix tree. Thus,
the number of left-equivalent classes is at most 2n — 1. A class corresponding to node
u comprises all the strings w such that u =<w>. By the structure of the tree, all the
words in such a class share the same position set as required.

For instance, in the string abaababaabaababaababa$ of Figure 3.2, the set {abaa,
abaab, abaaba} is a left-equivalent class (with position set {1,6,9,14}) and so are
{baa, baab, baaba} and {aa, aab, aaba}. Since there are 39 nodes in the suffix
tree, we have 39 left-equivalent classes. Compare this with the number of possible
substrings 22 x 23/2 = 253, or the number of distinct substrings that turns out to be
61.

By symmetry, we say that y and w are right-equivalent on x if endpos,(y) =
endpos,(w). We denote this equivalence relation by =g. As for left-equivalent classes,
the condition y =;, w implies then either y is a suffix of w, or vice versa. Hence, each
right-equivalent has a unique shortest and a unique longest member. Again, if y =g w,
then they have the same number of occurrences and colors.

We say that two subtrees of a suffix trees are isomorphic if their topology is
identical, i.e., if they can be juxtaposed up to a rotation of siblings at each internal
node. It is immediate to see that y = w if and only if the subtrees rooted at <y>
and <w> are isomorphic.

The number of right-equivalent classes can be easily proved to be at most 2n — 1.
We denote by w? the reversed string composed by W] W[m—1] - * - W], Where m = |w|.

The claim follows directly from the following observation. Given any y and w, we
have that endpos,(y) = endpos,(w) if and only if pos,z(y®) = pos,z(w?)
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Figure 3.10. The suffix tree 7T, for z = abaababaabaababaababa$, with suffix links.
The suffix links for the leaves are omitted for clarity (the path is
1—-2—...—> 22— root)

In order to identify right-equivalent classes on the suffix tree, we have to discuss
an additional type of edge among the nodes of the tree, called suffix link. They are
based on the following fundamental fact.

Fact 3.21 If w = ay,a € ¥ has a proper locus in T, then so does y.

Accordingly, suffix links are maintained in the tree from the locus of each string
ay to the locus of its suffix y, for all @ € ¥. They are introduced during the con-
struction of the suffix tree, as a key element of the linear-time algorithms mentioned
in Section 3.1. Figure 3.10 illustrates the suffix tree for our running example, where
the suffix links for the leaves are omitted for clarity. Note that suffix links induce
another tree on 7T,, that we call S,. Figure 3.11 shows the tree S,, where each node
is identified by its path-label in the original 7.

With the help of suffix links one can find right-equivalent classes. For this, we
traverse bottom-up the tree formed by the suffix links while accumulating in a single
group strings whose loci are the roots of isomorphic subtrees. When a subtree that
violates the isomorphism condition is encountered, we are at the end of one right-
equivalent class and we start with a new one. We point out that this treatment has
to be done also for subtrees rooted at improper loci of the suffix tree. Equivalently,
one can apply the procedure to the nodes of the suffix trie.
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a ba aba baba ababa aababa baababa

abaababa

aaba baaba abaaba babaaba aababaaba abaababaaba
ababaaba baababaaba
ba$ aba$ baba$ ababa$ aababa$ abaababa$ aba...$
20 {19} {18} {17} {16} {15} {14} @B—...—@
baababa$ babaababa$

Figure 3.11. The tree S, induced on T, by the suffix links of Fig. 3.10. Round nodes
are the internal nodes of the original suffix tree while squared nodes correspond to
the leaves of the suffix tree

For example, the three subtrees rooted at the black nodes in the Figure 3.12 are
isomorphic and therefore the ending sets of abaaba, baaba and aaba are the same,
that is {6,11,14,19}. These three words define the right-equivalent class {abaaba,
baaba, aaba}. In fact, this class cannot be made larger because the two subtrees
rooted at <aba> and <babaaba> are not isomorphic to the subtrees in the class. It
turns out that there are 24 right-equivalent classes in this example.

The isomorphism of subtrees can be checked using a classical linear-time algorithm
by Aho et al. [3]. In fact, on suffix trees the isomorphism can be easily detected once
that the f counts are available [23].

Fact 3.22 Let T, and Ty be two subtrees of the suffix tree T,. Ty and Ty are isomor-
phic if and only if they have the same number of leaves and their roots are connected
by a chain of suffix links.

Proof If 77 and 75 are isomorphic then clearly they have same number of leaves.
Also, if they were not linked by a chain of suffix links, strings w; and ws corresponding
to the path-labels of the roots of 77 and 75 could not be one the suffix of the other.
Hence their end-set would be different, contrary to the hypothesis of the isomorphism
of the subtrees 17 and T5.

Let us assume, w.l.o.g., that there is a chain composed by [ suffix links from
the root of T; to the root of T3, I > 1. Let uw be the path-label for the root of
Ti, and w the path-label for the root of T, whence | = |u|. In general, we have
that endpos(uw) C endpos(w). Since we know that f,(uw) = f,(w) then the only
possibility is that endpos(uw) = endpos(w), hence the subtrees are isomorphic. O

We finally discuss the third equivalence relation =, defined in terms of the impli-
cation of a substring of x [46]. Given a substring w of z we define the implication of
w in z, denoted by imp,(w), as the string uwv such that (1) every time w occurs in
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a ba aba ba aba aba. . $

ba aba

Figure 3.12. The suffix tree 7, for z = abaababaabaababaababa$: subtrees rooted
at the black nodes are isomorphic

x, it is preceded by u and followed by v, and (2) v and v are maximal. We say that
y = w iff imp, (y) = imp,(w).

The three equivalence relations described so far obey to a precise relationship (see
[46]).

Lemma 3.1 The equivalence relation =, is the transitive closure of =p U =p.

While all three equivalence relations partition the elements of the set of all sub-
strings of = into equivalence classes, =, give the smallest number of classes.

To identify the =, -equivalent classes, one can traverse bottom-up the tree formed
by the suffix links and put in the same equivalence classes strings whose loci (proper
and improper) have the same frequency counts f,.

The =,-equivalent classes for our running example are shown in Figures 3.13 and
3.14. For instance, starting from the right-equivalent class C' = {abaaba, baaba,
aaba}, one can augment it with of all words which are left-equivalent to the elements
of C. The result is one =,-class composed by {abaa, abaab, abaaba, baa, baab, baaba,
aa, aab, aaba}. Their respective starting sets are {1,6,9,14}, {1,6,9,14}, {1,6,9,14},
{2,7,10,15}, {2,7,10,15}, {2,7,10,15}, {3,8,11,16}, {3,8,11,16}, {3,8,11,16}, while the
ending sets are {4,9,12,17}, {5,10,13,18}, {6,11,14,19}, {4,9,12,17}, {5,10,13,18},
{6,11,14,19}, {4,9,12,17}, {5,10,13,18}, {6,11,14,19}. Because of Lemma 3.1, given
two words y and w in the class, either they share the start set, or they share the end
set, or they share the start set by transitivity with a third word in the class, or they
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aba baba ababa aababa baababa
3 3 3) 3 ®
abaababa
aaba baaba abaabMabaaba aababaaba abaababaaba
@ @ @ @ @ @ @
J\ ababaaba baababaaba
ba$ aba$ baba$ ababa$ aababa$ abaababa$ aba. ..
baababa$ babaababa$

Figure 3.13. The seven =,-equivalent classes for z = abaababaabaababaababa$ on
Sz (one class contains only the empty string €). Round nodes (internal) are
annotated with the number of occurrences while squared nodes (leaves) are

annotated with the starting position of the suffix in the string. Strings
corresponding to the leaves have only one occurrence and therefore they belong to
the same =, -equivalent class

share the end set by transitivity with a third word in the class. It turns out that
there are only seven =,-equivalent classes in our example.

Note that the longest string in this =,-equivalent class is unique (abaaba) and
that it contains all the others as substrings. The shortest string is unique as well
(aa). As said, the number of occurrences for all the words in the same class is the
same (4 in the example). Figure 3.14 illustrates the seven equivalence classes for our
running example. The words in each class have been organized in a lattice, where
edges correspond to extensions (or contraptions) of a single symbol. In particular,
horizontal edges correspond to right extensions and vertical edges to left extensions.

However, in general, the shortest word in a =,-equivalent class is not always
uniquely defined. Consider for example the text z =a*b* with £ > 0. One of its
=,-equivalent classes is shown in Figure 3.15. Choosing k£ = 2 results in a class which
has three words of length two as minimal elements, namely, aa, bb, and ab. In fact,
imp,(aa) = imp,(bb) = imp,(ab) = aabb. When instead k£ = 1, all three substrings
of x = ab coalesce into a single class which has two shortest words.

We recall that by Lemma 3.1 each =, -equivalent class C' can be expressed as the
union of one or more left-equivalent classes. Alternatively, C' can be also expressed
as the union of one or more right-equivalent classes. The example above shows that
there are cases in which we cannot merge left- or right-equivalent classes without
violating the uniqueness of the shortest word. Only if we were interested in detecting
over-represented words, we would be allowed to use directly the =,-equivalent classes.
In all other cases, the algorithm that merges the nodes of the suffix tree should take
care of ensuring that the minimum is always unique.
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baabab baababa

aabab

aababa

abab ababa

bap a2

baababaa

baababaaba

aababaa
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666 3% babaab\o 'A“’&Ab
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Figure 3.14. An alternative representation of the seven =,-equivalent classes for
r = abaababaabaababaababa$. The words in each class can be organized in a
lattice. Numbers refer to the number of occurrences

Kk
ab Jab

Figure 3.15. One =,-equivalent class for the string z = a*b*
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We use the following strategy. Let p(u) the parent of a node u in the suffix tree
T,. While we traverse the tree S, induced by suffix links, we merge two nodes u
and v if and only if two conditions are met (1) v and v are connected by a suffix
link and f(L(u)) = f(L(v)), and (2) p(u) and p(v) are connected by a suffix link
and f(L(p(u))) = f(L(p(v))). These conditions make sure that the subtrees rooted
at p(u) and p(v) are isomorphic and that p(u) and p(v) are distinct. Figure 3.16
illustrates the structure of such class on the suffix tree, and Figure 3.17 shows the
corresponding lattice of words.

The following fact follows directly from our discussion.

Fact 3.23 Let {C1,C,,...,Ci} be the set of equivalence classes built on the equiva-
lence relation =, on the substrings of text x. Then, for all 1 <1 <1,

1. max(C;) and min(C;) are unique
2. all w € C; are on some (min(C;), max(C;))-path
3. all w € C; have the same number of occurrences fy(w)

4. all w € C; have the same number of colors c;(w).

Proof The element max(C;) corresponds to the implication of all the words in the
class. By definition of implication, there cannot be more than one such words of the
same length. Hence, max(C;) is unique.

Regarding the uniqueness of min(C;), we give a constructive argument. Recall
that words in the same equivalence class C; are found in a chain of loci connected by
suffix links. These chains can start at the leaves of the tree S,, or in an internal node
if a previous chain is terminated. A chain is terminated when the f-count changes.
Each node of the chain contributes to the class C; with a set of substrings that are
in the same left-equivalent class. min(C;) corresponds to the shortest word in the set
of the left-equivalent words of the last node in chain. It is unique because we enforce
that the parents are connected by suffix links and they have the same f-count which
implies that there will be no proper loci “inside” the lattice.

Points 2, 3 and 4 are immediate. O

Finally, one can wonder how many =, -equivalent classes can be built from a string
of size n. The following theorem answers the question.

Theorem 3.5 [46] The number of =,-equivalent classes is at most n + 1.

To summarize, the algorithm that builds the partition {C1,Cy, ..., C;} of all the
substrings of z works by (1) finding subsets of the nodes of the suffix tree which have
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() proper loci — edges

() impr oper loci < suffix links

Figure 3.16. The structure of a =,-equivalent class on the suffix tree. Subtrees

11,75, ...,T), are isomorphic
C3CoCWa C3CrCiWaqas C3CrCiWaqas. .. q
M
Czcl\/\/al Czc%laz Czcl\/\/alaz. .. a|

o

A

Wwaiao Waiao. .. q|

Figure 3.17. The corresponding =,-equivalent class



74

partition BUILDEQUIVCLASSES (suffix_tree T')

fori=0,...,n do
Ci=0

visit 7" in depth-first traversal of suffix links, for each internal node u do
let w= L(u)
if f(aw) = f(w) then let C; = C; U {w}

elseleti=7+1
return {C1,C,,...,C;}

Figure 3.18. Sketch of an algorithm to build the =,-equivalent classes

the same endpos using suffix links and f-counts, and (2) grouping in the same class
C; all the words whose loci (proper and improper) belong to those subsets.

In each class, the count of occurrences and colors is constant by construction,
and by the properties of the score proved in Section 3.6, we know that max(C;) and
min(C;) are the only candidates that have to be tested for unusual-ness. In fact, all
others words in the same class are substrings of max(C;), which achieves always the
highest score, and simultaneously they contain min(C;) which achieves always the
smallest score. Theorem 3.5 ensures that the number of classes [ is at most n + 1.

When we turn to maximal quasiperiod substrings, Fact 3.2 suggests to consider
left-equivalent classes. In fact, the set of all maximal quasiperiodicities of = corre-
sponds to a subset of the nodes of the suffix tree for z such that each node in the
subset has a superprimitive path label. By the bound on the number of nodes of the
suffix tree, the number of such classes is at most 2n — 1.

From our considerations in Section 3.3 we can also identify the equivalence classes
for non-overlapping occurrences and clumps. It is easy to realize that they correspond
to the nodes of the minimal augmented suffix tree. Given two nonempty substrings
y and w of x, we say that y =p w if <y>=<w> on the augmented suffix tree for
x. It is immediate to see that the relation =p partitions all the substrings of x into
equivalence classes that have the properties required. By the discussion in Section 3.3
we know that the number of =p-equivalent classes is O(nlogn).

3.8 Computing expectations, variances and scores

Once we have restricted the candidates to a constant number of words in each
class, we still have to show how to compute efficiently the statistics of interest for the
candidates. This is the purpose of this last section.
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integer_vector MAXBORDER(string v)
set bord[0] = —1
setr = -1
form=1,...,|y| do
while r > 0 and y;, ;1) # ypy) do
set r = bord[r]

setr=r+1
set bord|m| =r
return bord

Figure 3.19. Computing the longest borders for all prefixes of y

3.8.1 Computing periods and borders

Periods and principal periods appear almost everywhere in the expressions for
the expectations and variances derived in the previous chapter. It is therefore of
fundamental importance to be able to compute periods in the most efficient way. We
first recall the duality between periods and borders of a string. As seen in Section 1.2
computing borders is equivalent to computing periods.

To compute borders we can build the failure function of the pattern as done, e.g.,
in the preprocessing step of classical linear string searching algorithms [3, 152]. The
algorithm takes O(m) time and uses at most linear auxiliary space.

The algorithm for computing the longest borders for all prefixes of y is shown in
Figure 3.19. Details and examples can be found in [3, 2, 152] or [79, 82].

The algorithm as reported works on arrays but it easy to adapt it to work on the
representation of a word as a list, or even on the trie representing a set of words.

3.8.2 The number of occurrences under Bernoulli

The expected value E(Z) and variance Var(Z) for the number of occurrences
under Bernoulli model of all prefixes of a given sequence can be computed and stored
using the linear-time algorithm given by Apostolico et al. [15, 12, 14].
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We begin with the expectation E(Z). It is easy to realize that it can be computed
in constant time per substring once the prefix products

(i) 1 iti=0
1) = .
PP ;’:1 pZ[j] lf 1 S Z S n

have been computed in advance. If the products pp(i) are available, then E(Z,) =
(n — |y| + 1)pp(e)/pp(b — 1), where (b, e) are the beginning and the ending position
of any of the occurrences of y in x. We remark that the vector pp should be stored
in logarithmic form to avoid numerical annihilation.

The computation of the variance is more challenging. The auto-correlation factor
B(y) = Yaepw)(n —m + 1 —d)II}L,, 411Dy, that appears in the formula for the
variance (see Section 2.4) depends on the structure of all periods of y. What seems
worse, the term involves a summation on the set of period lengths, and the cardinality
of this set is in general not bounded by a constant. Still, the value of B(y) can
be updated efficiently following a unit-symbol extensions of the string itself. This
possibility rests on the computation of the length of the longest border bord(-) of all
prefixes of y in overall linear time and space (see Section 3.8.1). Specifically, the
expression for B(y) can be rewritten as follows

Viy) = V(y[l,bovd(y)]) H Py + H Dy
j=bord(y)+1 j=bord(bord(y))+1
B(y) = (n—2m+14bord(y) + B(Wpporty))) LI Py + 2(bord(y) — m)V (y)
j=bord(y)+1

with V(y) = 0 if bord(y) < 0 or bord(bord(y)) < 0, and B(y) = 0 if bord(y) < 0. Full
details of the derivation can be found in [15, 12, 14].

Note that to be able to compute V(y) in constant time it suffices to know the
value V(Y1 bond(y)]) and the prefix products. Similarly, to compute B(y) one needs
B(yp pora(y))) and V(y). This suggest to adapt procedure MAXBORDER to compute
V(y) and B(y), whence also our variance.

Table 3.1 compares the costs of computing B(y) with both methods (naive and
recursive) for all prefixes of some initial Fibonacci words. Fibonacci words are defined
by a recurrence in the form: F;.; = F;F;_; for ¢+ > 1, with Fy, = b and F; = a, and
exhibit a rich repetitive structure. In fairness to the “naive” method, which adds up
explicitly all terms in the B(y) summation, both computations are granted resort to
the procedure MAXBORDER (see Figure 3.19) when it comes to the computation of
borders.

The recursive algorithm can be used to compute the expectation and variance for
max(C;) and min(C;) in each equivalence class. Recall that =,-equivalent classes are
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Table 3.1
Number of seconds (averaged over 100 runs) for computing the table of B(F;)
i =8,10,...,26) for some initial Fibonacci words on a 300Mhz Solaris machine
) |F;| Naivey,ees) | Recursiveysecs]

F; 99 0.0004 0.0002

Fio 144 0.0014 0.0007

iy 377 0.0051 0.0021

Fiy 987 0.0165 0.0056

Fig | 2584 0.0515 0.0146

Fig | 6765 0.1573 0.0385

Fy | 17711 0.4687 0.1046

Fy | 46369 1.3904 0.2787

Fyy | 121394 4.0469 0.7444

Fy | 317812 | 11.7528 1.9778

in one-to-one correspondence with subsets of the nodes of the suffix tree. Nevertheless,
we assume the worst case in which we are forced to compute the score at each internal
node of the tree. The construction of the vectors V(y) and B(y) may be applied to
each suffix of a string = while that suffix is being handled by the procedure that builds
the tree.

While the expectation could be easily computed in constant time on each branch-
ing node in a simple traversal the original arcs of the suffix tree, the incremental
computation of the MAXBORDER would be more problematic. We recall that the
procedure MAXBORDER works symbol by symbol and it would bring the complexity
to O(n?) if applied on the top-down traversal of the tree. If instead we perform the
incremental computation of expectations and variances along the reversed suffix links
of the tree the overall complexity for the weighting of the entire tree remains linear.
The resulting algorithm is sketched in Figure 3.20. This procedure can be easily
generalized to the case of a multisequence. The only difference is that we have to
precompute a distinct array of prefix products for each sequence. As far as the num-
ber of colors and related expectation and variance is concerned, we refer the reader
to the Markov case discussed in the next section.

The following Theorem summarizes the findings of our discussion in terms of the
entities defined in Section 3.5.

Theorem 3.6 Under the Bernoulli model, the sets O and U} of extremal significant
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words of a string x for any of the following scores

) = )
E(Zy)

) = W= Bz

E(Zy)
2(w) = f(w) — E(Zy)

VE(Zy)
2(w — f(w) - E(Zw) when b
(w) N ( p<1/2)
2(w) = f(w) = E(Zy) when min{1/ ¥/4m _
(w) oz (when pmge < min{1/ ¥/4m, 2 - 1})

can be computed in linear time and space.

Theorem 3.7 Under the Bernoulli model, the set ST of extremal significant words
of a string x for any of the following scores

) = ‘f(w) ~ B(Z,)
E(Zy)
z(w) (f(w) B E(Zw))2
E(Zy)
f(w) = E(Z)

(when Prae < min{l/ Vam, V2 — 1}

z(w) = ‘

Var(Z,)
can be computed in linear time and space.

One may legitimately wonder whether the computation of all the terms of the
variance justifies the complexity of the implementation. Here we compare values of the
variance obtained with and without consideration of overlaps. The data in Table 3.2
refer to all substrings of some Fibonacci words and some DNA sequences. The table
reports maxima and averages of absolute and relative errors incurred when overlaps
and other terms are neglected and the computation of the variance is restricted to
the term Var(Z,) = (n — |y| + 1)p(1 — p). As it turns out in the background of our
computations, absolute errors attain their maxima for relatively modest values (circa
10) of |y|. Additional experiments also show that approximating the variance to the
first two terms (i.e., neglecting only the term carrying B(y)) does not necessarily lead
to lower error figures for some of the biological sequences tested, with absolute errors
actually doubling in some cases.
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suffix_tree PREPROCESS (string )
estimate p, from z, for all a € ¥
let T = SUFFIX_TREE(z)
ANNOTATE_f (w)(T') (ref. Figure 3.4)
let pp(0) = 1.0
fori=1,....ndo

let pp(i) = pp(i — 1)%[1}) (Bernoulli prefix products)

return (7', pp)

ANNOTATE Var(Z) (suffix_tree T')
visit 7" in depth-first traversal of reversed suffix links, for each internal node u do

let w= L(u), m = |w|

let b any leaf of the subtree rooted at u

compute bord(m) given bord(i),1 < i < m using

one iteration of “linked variant” of MAXBORDER
Ietﬁ:pp(b+m_1)
pp(b—1)

let £(Z,)=(n—m+1)p

let V(m) = V(bord(m)) pp(m) pp(m)

pp(bord(m)) pp(bord(bord(m))())
let B(m) = (n —2m+ 1+ bord(m) + B(bord(m)))%
+2(bord(m) — m)V (
if m < (n+1)/2 then
let Var(Z,) = E(Z,)(1 — p) — p*(2n — 3m + 2)(m — 1) + 2pB(m)
else
let Var(Z,) = E(Zy)(1 — p) — p*(n — m +1)(n — m) + 2pB(m)

m)

Figure 3.20. Sketch of the algorithm for the computation of F(Z) and Var(Z) for

Bernoulli model in the case of a single sequence (but it can be easily generalized to

the case of multisequence). Note that to achieve overall linear time the annotation
has to follow the reversed suffix links
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Maximum and average values for the absolute error A(y) = |Var(Z]y) — Var(Z|y)|

and the relative error A(y)/Var(Z|y) on some initial Fibonacci strings, and on
some initial prefixes of the mitochondrial DNA of the yeast and Herpes Virus 1

Sequence | Size | max,{A(y)} | max,{ Vﬁg?‘y) bl avg,{A(y)} | avg,{ v(ﬁg%y) }
Fy 8 0.659 1.1040 0.1026 0.28760
Fy 21 2.113 1.4180 0.1102 0.09724
Fy 55 5.905 1.5410 0.1094 0.03868
Fiy 144 15.83 1.5890 0.1091 0.01480
Fiy 377 41.80 1.6070 0.1090 0.005648
Fiy 987 109.8 1.6140 0.1090 0.002157
Fig 2584 287.8 1.6160 0.1090 0.000824
Fig 6765 753.8 1.6170 0.1090 0.000315
Fy 17711 1974 1.6180 0.1090 0.000120

mito 500 41.51 0.6499 0.3789 0.02117
mito 1000 88.10 0.7478 0.4673 0.01927
mito 2000 183.9 0.8406 0.5220 0.01356
mito 4000 370.9 0.8126 0.5084 0.00824
mito 8000 733 0.7967 0.4966 0.00496
mito 16000 1410 0.7486 0.4772 0.00296
HSV1 500 80.83 0.6705 0.4917 0.02178
HSV1 1000 89.04 0.6378 0.4034 0.01545
HSV1 2000 145.9 0.5541 0.3390 0.00895
HSV1 4000 263.5 0.5441 0.3078 0.00555
HSV1 8000 527.2 0.5452 0.2991 0.00346
HSV1 16000 952.2 0.5288 0.2681 0.002193
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3.8.3 The number of occurrences under Markov models

The computation of F(Z) in the case of Markov models is slightly more diffi-
cult than the Bernoulli case. Recall from Section 2.5 that the maximum likelihood
estimator for the expectation is

M _
- o1 f WY

M (?J[j,j+M—1]) ( Ylj,j+M— 1)

where M is the order of the Markov chain. Again, if we compute the (Markov) prefix
product pp(i) as follows

0 { 1 ifi=0
pp(t) = i f(@y40) - .
i1 7}0(%;11\471]) f1<i<n

then we can rewrite E(Z,) as follows

o pple — M)
E(Zy) - f(y[l,M-i-l]) pp(b)

where (b, e) are the beginning and the ending position of any of the occurrences of y
in . Hence, if f(yp,m41)) and the vector pp(i) are available, we can compute E’(Zy)
in constant time.

The prefix product pp(i) can be computed on the suffix tree in linear time as
follows. Find the locus of the word xj; p41] to get pp(1). By induction, assuming to
know the locus of x[; ;1.2) we can get the locus of z|; 11 ;4 in constant time by simply
following the suffix link and traversing the edge labeled by x4 as41)-

A sketch of the algorithm for the case of a multisequence is shown in Figure 3.21.
Note that we have to build a vector of prefix products for each sequence using the
global statistics of occurrences of each word of size M and M + 1. We also build the
Bernoulli prefix products to compute F(Z) for words smaller than M + 2 because the
the estimator of E(Z ) cannot be used for these words. The overall complexity of the
algorithm for weighting the nodes of the suffix tree is linear in the total size of the
multisequence.

The following Theorem summarizes the discussion.

Theorem 3.8 Under Markov models, the sets OF and U] of extremal significant
words of a string x for any of the following scores

2(w) = f(w) - E(Zy)
z(w) = Lf(w)
E(Z,)
f(w) — E(Zy)
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suffix_tree PREPROCESS (string {z1,...,z}, int M)
let 7 = GENERALIZED_SUFFIX_TREE({z1,...,2x})
ANNOTATE_f(w)(T') (ref. Figure 3.4)
let n =" |z
fors=1,...,k do
let ppB(s,0) = 1,ppM(s,0) =1
fori=1,...,|z,| do

let ppB(s,i) = ppB(s,i — 1)@

(Bernoulli prefix products)
let u; = < (x4)[1,a417> on suffix tree T
let uy = < (x4)p,m1> on suffix tree T
fori=1,...,|zs] — M +1do

let ppM (s, 1) = ppM(s,i — 1)fT(u1)

fT(UQ)

let u; = SUFFIXLINK(T, u;) and
follow the edge labeled by ()4 ar1]
let uy = SUFFIXLINK(T, u) and

(Markov prefix products)

follow the edge labeled by ()i
return (T, ppB, ppM)

ANNOTATE_E(Z) (suffix_tree T)
let n =" |z
visit 7" in depth-first traversal, for each internal node u do
let w = L(u), m = |w|
let s be a sequence in which w occurs at least once
let b be the beginning position of any occurrence of w in x;
if m < M + 2 then
ppB(s,b+m — 1)
let E(Z)=(n—m+1) opBls.b—1)

else
ppM(s,b+m —1— M)

ppM (s, b)

let E(Z) = fr(wp )

Figure 3.21. Sketch of the algorithm for the computation of F(Z) for Markov
models of order M > 0 for the case of k£ sequences
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can be computed in linear time and space.

Theorem 3.9 Under Markov models, the set ST of extremal significant words of a
string x for any of the following scores

sy = [f) =B
E(Zy)
E(Zy)

can be computed in linear time and space.

3.8.4 The number of colors

We now turn to multisequences and number of colors. The computation of E (W)
and Var(W) can be accomplished once each node <y> of the suffix tree is annotated
with the array {E(Z]) : j € [1...k]}, that is, the expected number of occurrences
of y in each sequence. E(Z;) has to be evaluated on the local model estimated only
from the j-th sequence. Once that all E(Z]) are available

E(W,) = Var(W,) =k — 3 e P,

Jj=1

Having k different sets of parameters to handle makes the usage of the prefix
products slightly more involved. For any word y in the generalized suffix tree for
{x1,%9,..., 2}, we have to estimate its expected number of occurrences in each
sequence, even in sequences in which y does not appear at all. Therefore, we cannot
compute only one prefix product for each sequence. We need to compute k vectors
of prefix products for each sequence at an overall O(kn) time- and space complexity
for the preprocessing phase, where we assume n = Zle |z;|. The products can be
computed by means of suffix links as described in the previous section. Also, the
nodes of the generalized suffix tree have to store an additional vector in which we
record the starting position of any of the occurrences of y in each sequence. The
algorithms is sketched in Figure 3.22. Its overall time complexity is O(kn).

The following Theorem summarizes this discussion.

Theorem 3.10 Under Bernoulli or Markov models, the sets OF and U] of extremal

significant words of a multisequence {x1,xs,...,z¢} for any of the following scores
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suffix_tree PREPROCESS (string {z,,...,z}, int M)
let T = GENERALIZED_SUFFIX_TREE({z1,...,%x})
(nodes have to be augmented with an additional vector, see text)
ANNOTATE_f (w)(T') (see Figure 3.4)
fort=1,...,k do
let 7, = SUFFIX_TREE(x;) (pruned at height M + 1)
ANNOTATE_f (w)(T3)

for each sequence s =1,...,k and each model t =1,...,k do
let ppB(s,t,0) = 1,ppM(s,t,0) =1
fori=1,... |z do
let ppB(s,t,i) = ppB(s,t,i — 1)% (Bernoulli prefix products)
Ts

let u; = <(x,)p,m411> on suffix tree T;

let uy = < (x,)p,m> on suffix tree T;
fori=1,...,|zs] — M +1do

th(U1
th(Uz

~—

let ppM(s,t,i) = ppM(s,t,i—1) (Markov prefix products)

~—

let u; = SUFFIXLINK(7}, u) and
follow the edge labeled by ()[i+ar41]
let uy = SUFFIXLINK(T}, uy) and
follow the edge labeled by ()it
return (T, ppB,ppM)

ANNOTATE_E(W) (suffix_tree T')
visit 7" in depth-first traversal, for each internal node u do
let w= L(u),m = |w|
let ¢ the first sequence in which w occurs (use the vector)
let b be the beginning position of any occurrence of w in x;
fors=1,...,k do
if m < M + 2 then
ppB(t,s,b+m —1)
let E(Z]) = (|zs| —m+1) Bt s.b—1)

else

, M(t,s,b+m—-1-M
let E(Z;) = fs(wp,m+1)) ppM( )

ppM(t,s,b)

k
let E(W,,) = Var(W,,) = k — > e )
s=1

Figure 3.22. Sketch of the algorithm for the computation of E(WW) and Var (W) for
Markov chains of order M > 0 for the case of a multisequence
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z(w) = E(W,)

) = )= EOV.)
E(Wy)

) = 0= EOT.)
E(W,)

can be computed in O(k XX, |z;|) time and space.

Theorem 3.11 Under Bernoulli or Markov models, the set ST of extremal signifi-

cant words of a multisequence {x1,Zs, ..., xx} for any of the following scores
- F
o) | = EOV)
E(W,)
_ 2
sy Le) = EOV)
E(W,)

can be computed in O(kX¥ | |z;|) time and space.

3.9 Alternative methods for computing scores

We close the chapter with two methods of detecting unusual words which do not
make use of expectations and variances.
3.9.1 Computing scores by comparing trees

If an external model is available, we can also resort to scores computed by com-
paring trees. Let r be our reference sequence, and = the sequence under analysis. We
first build the trees T, and 7,. Then, for each node v in T, corresponding to string
w = L(u) we want to find the node <w> in T, if it exists. In the case it exists,
|z —m+1
Ir| —m+1
number of occurrences of w in the reference string. For example, if r is two times

we can compute directly the score, assuming fr(w) to be the expected

longer than x we have to multiply the number of occurrence observed in r by roughly
1/2. The value of f,(w) can be retrieved in constant time if we keep pointers from
the nodes of T}, to nodes of T, which spell out the same words.

Otherwise, if the substring w does not occur in 7, then we look the largest [ in the
interval [1, ..., |w|—1] such that all the strings wy; ;15 occur in T;,, for j = 1,.. ., |w|—L.
In other words, we look for the longest set of strings from 7, that cover w as it is
done for the estimator of the expectation for Markov chains (see Section 2.5). If every
possible choice does not meet the requirements, we use the probability of the symbols
from T, to compute the estimate.

The algorithm is sketched in Figure 3.23. The issue of determining the worst case
time-complexity remains an open question.



suffix_tree PREPROCESS (string r, string 1)
let 7, = SUFFIX_TREE(7)
let 7, = SUFFIX_TREE(Z)
ANNOTATE_f(w)(7})
ANNOTATE_f(w)(T})
return (7,,7,)

ANNOTATE_TT (suffix_tree T, suffix_tree T,)
visit 7T}, in depth-first traversal, for each internal node u do
let w= L(u),m = |w)|
if w occurs in T, then

lz| —m+1
let £, mﬂ(w)
else
find the largest 1 </ < m — 1 such that [T]"7 f, (wyjj4y) > 0
using the suffix tree 7,
if such [ exists then
|x\ m+1 H;n_ll fr(w JJM)

let £,
|‘_l+1 H fr( ],j+l1)

else
let B, = (|z| —m+1)p

Figure 3.23. Sketch of the algorithm for the computation of the score obtained
comparing the trees of a reference string r versus the string under analysis z
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3.9.2 Computing scores by shuffling sequences

Recently Kandel et al. [144] proposed a method for shuffling sequences that main-
tains the count of substrings up to length K (K-let). The generation algorithm is
based on Euler tours and it is proven to produce precisely uniform instances in time
“not much more than linear in the sequence length” [144]. The algorithm opens the
possibility of using a Monte Carlo approach to the computation of the scores.

Let us assume that we want to assign a score to a word w. We could compute the
expectation of w by shuffling randomly thousands of times the sequence under study
and then counting how many times the pattern w shows up. This is precisely what
we will do in our experiments at the end of Section 5.4.1.

The number of possible permutations that conserve the K-let is connected with
the number of possible reconstructions from a given set of strings. This problem is of
interest in a technique for sequencing the DNA called sequencing by hybridization. A
formula for the number of permutations, that correspond to the number of Eulerian
circuits in a particular graph, is given in [27].

As far as we know, this approach has never been pursued for purposes of pattern
discovery. Recently, Coward [80] reported of an implementation in the public domain,
and suggested its use for evaluating the statistical significance of alignments. We used
his implementation in some of the experiments reported later in this document.

Moreover, this approach could easily be extended to larger classes of patterns,
without worrying about the analytic complexity of the underlying probabilistic model
(see, e.g., references [200, 183] for a glimpse of the mathematical complexity involved
in such studies). For example, it would be easier to account for don’t care symbols
or multi-valued patterns.
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4. Verbumeculus

The deoxyribonucleic acid (DNA) constitutes the physical medium in which all prop-
erties of living organisms are encoded. The knowledge of its sequence is fundamental
in molecular biology. Sequence data have been accumulating at exponential rate un-
der continuous improvement of sequencing technology and steady increase of funding
[132, 76]. Molecular sequence databases (e.g., EMBL, Genbank, DDJB, Entrez, Swis-
sProt, etc.) currently collect hundreds of thousand of sequences of nucleotides and
amino acids from biological laboratories all over the world, reaching into the hundreds
of gigabytes. Over fifty whole genome sequences are currently available for prokary-
otic and eukaryotic organisms, such as Escherichia coli, Saccharomyces cerevisiae,
Caenorhabditis elegans, Drosophila melanogaster (see, e.g.,[42, 32, 89, 174, 233, 1]),
Arabidopsis thaliana [232], and Homo sapiens [242, 234].

The enormous growth of DNA databases makes it increasingly important to have
fast and automatic methods to process, analyze and understand such a massive
amount of data. Explorations of these and other computational problems arising
in contemporary molecular biology has only begun. A coarse selection would include
sequence homology and alignment, physical and genetic mapping, protein folding
and structure prediction, gene expression analysis, evolutionary trees, gene finding,
assembly for shotgun sequencing, gene rearrangements and pattern discovery. The
last one is the problem of interest here.

“Pattern discovery” refers to the automatic identification of biologically significant
patterns (or motifs) by statistical methods. The underlying assumption is that bio-
logically significant words show distinctive distribution patterns within the genomes
of various organisms, and therefore they can be distinguished from the others. Luck-
ily, the reality is not too far from this hypothesis (see for example [187, 195, 246,
245, 193, 60, 145, 101, 64]). During the evolutionary process, living organisms have
accumulated certain biases toward or against some specific motifs in their genomes.
For instance, highly recurring oligonucleotides are often found in correspondence to
regulatory regions or protein binding sites of genes (see, e.g.,[239, 52, 114, 241]). Vice
versa, rare oligonucleotide motifs may be discriminated against due to structural

constraints of genomes or specific reservations for global transcription controls (see,
e.g.,[245, 113]).
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4.1 Pattern discovery tools

In general, the task of detecting, enumerating and testing word frequencies in
large genomes, which are typical cases for eukaryotic organisms, requires significant
computational resources even when limited to the words up to some maximum length.

Several tools have been developed in the past years to address these and other
related problems. Among the tools available, we list WORDUP [191], YEAST-TOOLS
[239], and R’MEs [215, 213].

Conceived primarily as an aid in intercepting conserved segments in related se-
quences in a family, WORDUP is based on a first order Markov model. It detects
statistically significant sequence motifs of 6-10 nucleotides in a family of sequences
by comparing the expected and the observed number of colors.

The facilities under YEAST-TOOLS comprise tables of frequencies for oligonu-
cleotides of up to 10 bases as observed in all coding and non-coding regions of the
yeast genome. The related analyses of frequencies and expectations invest the entire
target genome, with the objective of identifying relatively simple statistically devious
patterns represented by short motifs with a highly conserved core.

R’MES is a general-purpose set of programs to detect words that appear in a
given DNA sequence with unexpected frequency. Two classes of models are used
to model the sequence: stationary Markov chains and 3-periodic stationary Markov
chains. Under either probabilistic model, the number of occurrences of a word in
a sequence is considered to be statistically devious if it differs significantly from an
estimator of its expected value. Estimators of the expected counts are obtained using
a Gaussian or (for long words) a compound Poisson approximation. In either case,
R’MES provides a score indicating whether the word is under- or over-represented.

The search for unexpectedly frequent or infrequent substrings is only one com-
ponent of the broader quest for interesting patterns of more general kinds. Along
these lines, patterns and families thereof have been variously characterized, and cri-
teria, algorithms and software developed in correspondence. Without pretending to
be exhaustive, we mention SPEXS and the related generalization attempts such as in
[50, 52], MEME [33], designed originally to solve the generalized approximate common
substring problem, PRATT [141, 140], YEBIS [251] or “Yet another Environment for
the analysis of Blopolymer Sequences”, SPLASH [63], or “Structural Pattern Local-
ization Analysis by Sequential Histograming”, TEIRESIAS [204], CONSENSUS [133],
GIBBS SAMPLER [160, 181], WINNOWER [194], PROJECTION [237], among others.

4.2 Verbumculus

VERBUMCULUS is a suite of software tools for the detection of extremal significant
words in nucleotide and amino acid sequences that directly implements the strategies
established in Sections 2.6 and 3.5. This approach enable us to limit a priori to
O(n) the number of extremal over- and under-represented words in a sequence of n
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symbols.

VERBUMCULUS first builds a pruned suffix tree from the all the words present in
the sequence, as shown in Section 3.1. Then, it annotates the tree with counts, ex-
pectations, variances and scores. As we saw earlier in this document, the expressions
and computations of the expected values, moments and related scores of significance
depend substantially on the particular notion at hand. We discuss first those based on
a single sequence, where VERBUMCULUS supports the following six different scores.

(y)

e z1(y) = f(y) — E(2)
e 2(y) = ﬁ (the so-called representation ratio)

" FE
. 2y = SO - EZ)
W= B @ -5
s 1) = B(Z)
+v) Var(Z)

iy S0 =€)
max{,/€(Z), 1}

frequency of y based on a Markov model of order m — 1 (see [56] for details)

as defined by Brendel et al., where £(y) is the expected

e 25(y) is computed by comparing the number of occurrences of the words of two
suffix trees as described in Section 3.9.1.

In a typical, on-line application, parameters such as the probabilities of the in-
dividual symbols are estimated from the corresponding frequencies in the input se-
quence. Alternatively, the off-line version of VERBUMCULUS allows the submission
of a separate model sequence from which probabilities are estimated. An external
model is always required for the score z.

Likewise, the analysis of the target sequence may proceed considering the sequence
as a whole as well as by performing computations independently within a number of
consecutive segments in a suitable covering of the input, and analyzing one such
“window” at a time.

We now turn to the scores associated with frequencies defined on multisequences.
In this class, the following four additional scores are supported.

o z7(y) = cly) — E(W)

o 2(y) =
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e 210(y) is computed by comparing the number of colors of the words of two suffix
trees as described in Section 3.9.1.

where the probability E(Z") in the expression for (W) (see Section 2.4) is calculated
by assuming an M-th order stationary Markov chain.

4.2.1 Software

The general strategy behind the design of our software prototype has been to
maximize reuse and adaptation of software already available and to develop the crit-
ical /original components by ourselves. We carried out an extensive search regarding
software for graph drawing, CGI programming, hyperbolic geometry, etc. Many al-
ternatives were evaluated and the solution described here is a compromise between
complexity of implementation and overall efficiency.

VERBUMCULUS is composed by three modules: the tree builder VERBUM, the
graph drawing program DoOT, and the graphic interface TREEV1Z. The entire package
consists of more than ten thousand lines of code.

VERBUM is written in C++ using the Standard Template Library (STL) [179]
which should allow us easy portability under different platforms. The development of
the software has been facilitated by the use of debuggers and a version control system
(Cvs). We have compiled the code, without any change, under Solaris and Linux.

VERBUM reads the input sequence(s) and the various parameters supplied by the
user, and creates a (possibly pruned) suffix tree annotated with the score selected at
the beginning by the user. The output is a text file representing the tree in the dot
format (see below). VERBUM is particularly fast: although the time taken for the
analysis depends on the score and the other parameters, it is usually in the order of
a few seconds for the most common choices.

Dor is a graph drawing program developed by AT&T Labs as part of a visualiza-
tion package called GRAPHV1Z [110, 111]. It reads graphs in the dot representation
and outputs drawings in a dozen of formats, among which Postscript and GIF. The
source code and binary executables for common platforms are freely available from
the GRAPHV1Z site.

Finally, TREEV1Z is the graphical user interface that runs on the client size, and
more specifically on the browser of the user. It is entirely written in Java, and uses
the GRAPPA libraries by AT&T Labs [111].

A couple of thousands lines of PERL code glue everything together. PERL scripts
generate the HTML for the input forms and control the execution of the various stages,
handling exceptions and errors.
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4.2.2 Command line usage

Users can download the binary executables VERBUM and Dot for Solaris (Intel
and Sparc architecture) from VERBUMCULUS’ site. The most common usage involves
running VERBUM on the file containing the sequences to produce the dot file, and
then using DOT to create a graphical representation (PostScript, GIF, FrameMaker,
etc.) of the tree.

Figure 4.1 shows the command line options of VERBUM. Options -1 and -L define
respectively the minimum and the maximum length of the motifs. Flag -X sets the
threshold on the score: words which score is lower than the threshold (in absolute
value) are filtered out. Flag -x is used to mask words that have expectation lower than
a given value. Flag -D tells VERBUM to reject words that contain a specified pattern.
-w and -W are used to analyze a specific window, and they control the position and
the size of the window respectively. -B allows the user to add a text label to the
tree. Flag —S can be used to submit an external model. Finally, -z controls the type
of score we want to use to annotate the tree (see Section 4.2 for the list of available
scores).

The flag -M sets the order M of the Markov chain. The default is 0, which
corresponds to the Bernoulli model. We remark that words smaller than M + 2 are
not displayed at all, because the model would “predict” their statistics exactly and
therefore they will never result surprising. Choosing higher Markov orders does not
necessarily mean that you will get better results. As the size of the model grows its
ability of prediction grows as well. Therefore there are less and less significant words.

VERBUM is also capable of counting non-overlapping occurrences and clumps.
By specifing the option -a, the tool builds the minimal augmented suffix tree for the
string under study, and annotates it with the number of non-overlapping occurrences.
Flag -c asks the program to count clumps of occurrences.

Option -A is used to tell VERBUM that the input is in FASTA format. If -A is
not specified, VERBUM will assume that the file contains only the sequences with no
annotations. We strongly recommend, however, to use the FASTA format. An example
of sequence in FASTA format is shown in Figure 4.2. Any line that begins with > or ;
is considered to be an annotation and disregarded. VERBUM internally converts the
sequences to upper case, and resolves the ITUPAC-IUB symbols by generating random
substitutions (see Table 4.1). For example, if VERBUM encounters the character R it
randomly substitutes the symbol with A or G with equal probability. Any symbol in
the sequence that does not belong to the alphabet of Table 4.1 is discarded.

Finally, option -N tells VERBUM that the input is a set of proteins, instead of
DnNA. The alphabet follows the standard naming convention for the amino acids
(see Table 4.2). In the current version, VERBUM internally converts the sequences
to upper case, and reduce the alphabet to three symbols H, P, C which represent
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A

N

I

M <order>
B <label>
S <file>

z

<type>

1 <length> :
L <length> :
x (value)
X (value)
D
f

w <window> :
W <size>

H <size>
G <size>

F <order>

General

: read the files in FASTA format

: data is protein

consider both strands (DNA input)
set the Markov order (default 0)
add a label to the .dot graph

Filters

filter
filter

: filter
: filter
: filter

: do not

: z-score (1)

(2)
(3)
(4)
(5
)
(7
(8
€))
(10)

out
out
out
out

out

counting
counting
counting
counting
counting
counting
counting
counting
counting

counting

: use the statistics of <file> instead of [file]

occurrences: obs - exp

occurrences: obs / exp

occurrences: (obs - exp) / approx_var
occurrences: (obs - exp) / var_complete
occurrences: Trifonov

occurrences: Tree2Tree (need ext model)
sequences: Obs - Exp

sequences: Obs / Exp

sequences: (Obs - Exp)~2 / Exp

sequences: Tree2Tree (need ext model)

words shorter than <length> (default 2)
words longer than <length> (default 10)

words having exp. # of occurrences < <value>

words having score < <value> (default 0)

words having "word" as substring

exclude strings with symbols not in {a,t,c,g,u,A,G,T,C,U}

Sliding window

examines the specified window (1,2,...)

sets the window size

Misc

consider both strands

: randomly shuffle the sequence (keeping constant the count

of substrings of size up to <size>)

: generate a random file of a given size reading

the statistics from [filel

analyze a Fibonacci strings of specified order

Figure 4.1. Command-line options of VERBUM
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>RTS2  RTS2 upstream sequence, from -200 to -1
TCTGTTATAGTACATATTATAGTACACCAATGTAAATCTGGTCCGGGTTACACAACACTT
TGTCCTGTACTTTGAAAACTGGAAAAACTCCGCTAGTTGAAATTAATATCAAATGGAAAA
GTCAGTATCATCATTCTTTTCTTGACAAGTCCTAAAAAGAGCGAAAACACAGGGTTGTTT
GATTGTAGAAAATCACAGCG

>MEK1  MEK1 upstream sequence, from -200 to -1
TTCCAATCATAAAGCATACCGTGGTAATTTAGCCGGGGAAAAGAAGAATGATGGCGGCTA
AATTTCGGCGGCTATTTCATTCATTCAAGTATAAAAGGGAGAGGTTTGACTAATTTTTTA
CTTGAGCTCCTTCTGGAGTGCTCTTGTACGTTTCAAATTTTATTAAGGACCAAATATACA
ACAGAAAGAAGAAGAGCGGA

>NDJ1  NDJ1 upstream sequence, from -200 to -1
ATAAAATCACTAAGACTAGCAACCACGTTTTGTTTTGTAGTTGAGAGTAATAGTTACAAA
TGGAAGATATATATCCGTTTCGTACTCAGTGACGTACCGGGCGTAGAAGTTGGGCGGCTA
TTTTGACAGATATATCAAAAATATTGTCATGAACTATACCATATACAACTTAGGATAAAA
ATACAGGTAGAAAAACTATA

Figure 4.2. The initial portion of a sample multisequence in FASTA format

respectively hydrophobic, polar and charged amino acids or to four symbols #, 0,
+, — which denote respectively hydrophobic, not charged, positively charged and
negatively charged amino acids. The mappings between the twenty natural amino
acids and the reduced alphabet of the electric charge is shown in the last column of
Table 4.2. The rationale of reducing the alphabet size is twofold. One one hand,
finding exactly conserved patterns of interesting size over an alphabet of 20 symbols
proved unlikely. On the other, amino acids within certain groups share chemical and
structural properties in such a way that they can actually swap without changing
the function of the protein. Indeed, it is sometimes biologically more meaningful to
compare amino acids based on their degrees of similarity rather than in terms of strict
equality of residues.

The classification we choose, based on the electric charge of amino acids, is taken
from [253, 231]. This is just one of the possible choices since some amino acids belong
to more than one class (for example H) and some to none (for example P). Also, several
classifications have appeared in the scientific literature, and they not always agree.

The execution of VERBUM on the file containing the sequence(s) under study
creates a file with the suffix dot that holds the representation of the tree. For example,
a run of VERBUM on the file of Figure 4.2 is shown in Figure 4.3.

The information printed by VERBUM on the standard output reflects the choices
of the user and summarizes the statistics of the tree. In our example, we submitted
108 sequences for a total of 5407 base pairs. The complete tree of all the words up to
size five is composed by 2935 nodes. The annotation took 0.03 seconds on our 300Mhz



Table 4.1
IupAac-1uB symbols for nucleotide nomenclature

Symbol Meaning Nucleic Acid
A A Adenine
C Cytosine

G Guanine
T Thymine
U Uracil
AorC
AorG
AorT
CorG
CorT
GorT
AorCorG
AorCorT
AorGorT
CorGorT
GorAorTorC
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Table 4.2
Amino acids naming and classification (table based on [253], picture based on [231]).
H, P, C, 0, +, and — denote respectively hydrophobic, polar, charged, not charged,
positively charged and negatively charged amino acids. Occurrence statistics were
compiled using the NCBI database

aliphatic

aromatic .
positive

non-polar

charged polar gi@ %

£ g o <

é v 3 ~3 E _§ g E E

S _§ s o & ~ S g g m m

$3 58588355 i E B

Name Symbol |= |& SRS |5 S8 3 > e
Alanine A, ALA | o oo 7.49% | H | H
Arginine R, ARG . oo 5.22% | C | +
Asparagine N, ASN ° ° 453% | P | 0
Aspartic acid | D, ASP o o o0 522% | C | —
Cysteine C,CYS | e . 1.82% | P | O
Glutamic acid | E, GLU o oo 6.26% | C | —
Glutamine Q, GLN . 411% | P | O
Glycine G, GLY | e oo 710% | H | O
Histidine H,HIS | e | e oo . 223% | P | +
Isoleucine I, ILE | e o | 545% | H | H
Leucine L,LEU | e e | 9.06% | H|H
Lysine K,LYS | e | e oo 582% | C | +
Methionine | M, MET | e 227T% | H | H
Phenylalanine | F, PHE | o . 391% | H | H
Proline P, PRO . 512% | H | H
Serine S, SER . . 734% | P | O
Threonine T, THR | o . 5.96% | P | O
Tryptophan | W, TRP | e ° 1.32% | P | H
Tyrosine Y, TYR | o . . 325% | P | O
Valine V,VAL | e . o [6.48% | H | H




“/data> verb -X 9 -L 5 -z 3 EarlyI.100.fasta
Reading data file EarlyI.100.fasta
Total size data set 5407
Number of sequences data set 108
Min_length 2
Max_length 5
Zoom 10
Score 3
Threshold 9
Building Suffix Tree
Annotating the tree
Size of the dataset tree 2935 nodes
Seconds 0.03
Writing EarlyI.100.fasta.dot
max: 16.4924
min: -0.840909
mean: 3.45274
std dev: 2.6454
——————— HISTOGRAM [-9, 9] ------

<-9 0
[-9,-5] 0
[-5,-1] 0
[-1,0] 14
[0,1] 136
[1,2] 248
[2,3] 208
[3,4] 192
[4,5] 122
[5,6] 88
[6,7] 64
[7,8] 37
[8,9] 31
>9 35

* Printed 35 nodes in the .dot file

Figure 4.3. A run of VERBUM on a sample FASTA sequence
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Figure 4.4. Web interface of VERBUMCULUS

Intel /Solaris machine. The shape of the distribution of the scores is approximately
Gaussian.

We do not describe here all the features of DOT. A user guide can be found at
http://www.research.att.com/sw/tools/graphviz/. The standard usage of DoT
to create a PostScript file is “dot -Tps <filename>.dot -o <filename>.ps”.

4.2.3 Web server usage

A portion of the main interface of the web server is shown in Figure 4.4. The user
has the option to submit the input as a raw sequence of letters or in FASTA format.
The input can be “pasted” into the window or uploaded to the server. In the case of
analyzing long sequences, we advise the user to download the executables VERBUM
and DoT and work locally, to avoid the overhead of network communication and the
relative inefficiencies of Perl scripts and Java.

Various filters can be used to reduce the size of the output and mask the irrelevant
information. The current filters offered by VERBUMCULUS support the selection of
words in which:

e length is within a specified interval;
e z-score (in absolute value) is higher than a fixed threshold;

e expectation is higher that a given threshold (this is to filter out rare words);
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Verbumculus Tree Visualizer (1.0)

TTTCG ] Ursigned Java Applet Window

] ]
r Pop-up "bird’s eye" Generate GIF Generate Postseript Quit |
3] Ureigned Java Applet Window:

Figure 4.5. TREEV1Z output on a sample sequence

e occurrence of a particular substring is forbidden.

These filters can be combined in any way to meet the user’s needs. We speculate
that future versions of the software could implement the filters directly in the visu-
alization module as “magic lenses” [38, 226, 103] that the user could apply on the
complete tree to “see through” only the relevant words.

Another important choice is the type of score used to annotate the tree. Strong
signals can be usually detected with any of the scores available, while more subtle ones
can be magnified only using the appropriate score. Some preliminary comparative
analyses on simulated sequences are reported in Section 5.1.

For performance reasons, we have limited the visualization of TREEV1Z to 100
nodes: when the tree becomes bigger, VERBUMCULUS generates a Postscript file with
the drawing of the tree. If the user wants to take advantage of the interactive facilities
of TREEV1Z he will have to increase the effectiveness of the filters in order to produce
a smaller tree.

Once TREEV1Z has drawn a tree, the user can wander about it. The magnitude of
a score value is transduced through font size, in the sense that for every word w, the
higher the absolute value of the score of w, the bigger the font used to represent w.
Words with a negative score are, in addition, printed in red italics (see Figure 4.5).
At any time the user can click on a word and get information about the number of
occurrences, the expected number of occurrences, and the value of the score. Along
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Verbumculus Tree Viz (1.0)
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Figure 4.6. TREEVIZ output in the case of sliding window

with these, a representation of the occurrences in the original sequence is produced
(see Figure 4.7).

Figure 4.7 refers to the output of the analysis of a multisequence. The two panels
show the usual information about two words picked from the tree, along with their
positions inside the submitted sequences. The original multisequence is displayed in
the window where the occurrences of the selected words are highlighted in red. The
first row shows the position of each base relative to the beginning the sequence.

Since the tree can be fairly big, TREEV1Z offers the option to get an overall picture
of the tree by clicking on the “bird’s eye” button (the small window in Figure 4.5).
Also, TREEV1Z can generate drawings in Postscript or GIF that can be saved on the
user’s machine for further scrutiny.

An alternate viewer that uses hyperbolic geometry has been added in the latest
version of TREEVIZ. Figure 4.8 shows a view of a pruned suffix tree projected on a
sphere. The software is an adapted version of the visualization applets by A. Robin-
son, based on the work by Lamping et al. [156, 157]. The idea is to lay out the tree
uniformly on the hyperbolic plane and map the plane onto a circular display region.
The projection onto the disk provides a natural mechanism for assigning more space
to a portion of the hierarchy while still embedding it in a much larger context. Change
of focus is accomplished by translating the structure on the hyperbolic plane, which
allows a smooth transition without compromising the presentation of the context.
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Figure 4.7. TREEV1Z output in the case of a multisequence: note the panels
showing the positions of the selected word in the submitted sequences
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The beauty of such visualization technique is that it allows the viewer to keep a
global perspective of the data (i.e., the context) while examining selected regions in
detail (i.e., to focus in). In the hyperbolic projection, as one moves away from the
origin, the distance increases, but not in a linear fashion. Thus, the perimeter of the
projection actually corresponds to being at infinity and therefore all space may be
shown in the projection.

The visualization of the suffix tree decorated with z-scores in the hyperbolic space
poses some additional problems. The font size of each word conveys the score, and
therefore must be maintained. However, when the words approach the boundary of
the hyperbolic plane they could become too small to be seen. In this case, they are
drawn with a fixed size font in grey (instead of black, if over-represented) or orange
(instead of red, if under-represented). The overall effect is to “dim” words close to
the boundary to avoid the cluttering, but at the same time to keep track of them.

The hyperbolic viewer supports several interactive facilities:

e dragging the pointer on the display will cause the scene to be translated;

e holding down “shift” while dragging on the display will cause the scene to be
rotated about the root node;

e if the “+” and “-” keys are pressed during the display of the tree, the number
of levels of the tree shown will be increased and decreased respectively;

e if the “=” is pressed during the display of the tree, the number of levels of the
tree shown will reset to the default.

The web server of VERBUMCULUS is available at the address http://www.cs.
purdue.edu/homes/stelo/Verbumculus/
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Figure 4.8. Hyperbolic tree viewer
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5. Tests and Experiments

Here we report some results of experiments performed on artificial and real sequences.
The artificial data was randomly generated and utilized to test and tune the tool. As
for the real data, we mainly used two popular datasets in the biological literature.
Given our limited biological knowledge, it would have been very difficult to inter-
pret entirely new results on previously untreated datasets. Apparently, however, our
analysis have exposed some previously unnoticed patterns.

5.1 Simulations and dithering

Before showing the results of using VERBUMCULUS on real biological data, we
report on a few preliminary tests performed on artificial sequences. In our present
context, this is meant primarily to show the effectiveness of the tool in the pattern
discovery process. In practice, this or a similar procedure may be followed fruitfully
as a preliminary treatment, for the purpose of fine tuning the sensitivity of the tool
and adapt it to the particular sequence or family under study.

An example dithering procedure could be as follows. First, we generate and
process several pseudo-random strings assuming a symmetric Bernoulli model. For
every random sequence produced, we generate and annotate the corresponding tree.
As expected, we find that unless the random sequence is very short the tree does not
display any significant word.

Next, we inject into the random sequences a controlled number of non-overlapping
repetitions of words. In our example, we use the two words GATTA and AAAAA, in
separate experiments. Since the process of overwriting the original random letters
with occurrences of a given word changes the probability distribution, we have to
make some adjustments in the probability distribution. Let p, denote the probability
of symbol a € ¥ in the original sequence and w some word of length |w| = m, with a
proportion of a’s given by ¢q,. Forcing h substrings in our sequence to coincide with
w will change the probability accounting for the “free” occurrences of a outside the

h copies of w into
__ pan—hmg,
“ n—hm
As the left part of Figure 5.1 displays, five occurrences of GATTA in a text of size
1,000 can be enough, with our settings, in order for the program to output that word
as the highest scoring pattern. If the size of the text is increased to 10,000, then

typically twenty occurrences of the word turn out to be enough to produce the same
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AAACT

AATGG
AGTTT
CGGA ceeAG ATTA —— ATTAA
CGAGT
CCGGA GTCAT
GGATT
GTGGG GATT —— GATTA
GAGT TGATT
GATTA
TACCT errt

Figure 5.1. LEFT: trie from a random string of size 1,000 with 5 forced occurrences
of the word GATTA. RIGHT: trie from another random string of size 10,000 with 20
forced occurrences of GATTA. Both tries are annotated using z3, with threshold 3.0

visual effect (see right half of Figure 5.1).

For a broader analysis, we run 1,000 trials for all choices of h = 0,1,...,15,
n = 1,000 counting the number of times that GATTA is the highest scoring pattern in
the entire tree. The graph on the left of Figure 5.2 shows the relative proficiency of
the scores 25, 23 and z; in separating the “signal” GATTA, from “noise”. Specifically,
the plots show the fraction of the 1,000 trials in which the word GATTA was the highest
scoring word in the tree, for increasing number h of injections. From the graph we can
observe that scores z3 and z4 have identical performance (as one would expect, since
GATTA is primitive) and they seem to be better than z,. On the right of Figure 5.2
we plotted instead three pairs of curves respectively for scores 2y, 23, 24 (it so happens
that in this particular case the pairs for z3 and z; are on top of each other) with
increasing number A of injections. For each pair, the upper curve represents the
average score for the word that achieves the largest score in the tree, while the lower
curve represents the average score for the word GATTA. Some observations are in order.
First, the score of GATTA grows linearly with h. Second, the average of the highest
zg-score is bigger than z3 and z4. Third, at some point h* the lower curve touches the
upper curve and the pattern is “discovered”. Note that the lower curve touches the
upper curve sooner for z3 and z, than z,.

If the pattern is periodic, like e.g., AAAAA, then we need fewer copies, i.e., a smaller
value of A in order to obtain a comparable visual impact. Figure 5.3 displays the
results using four forced occurrences in a sequence of size 1,000 and ten in a sequence
of size 10,000. We run the same simulation on 1,000 trials as before, this time
injecting h = 0,1,...,15 occurrences of AAAAA (see left half of Figure 5.4). We
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Figure 5.2. LEFT: The fraction of 1,000 trials in which the word GATTA is the
highest scoring word in the tree for z-scores 2o, 23, 24, versus number of injections h.
RIGHT: Curve pairs for scores z, 23, z4 versus h. The upper curve in each pair
represents the average score for the word that achieves the maximum score, the
lower curve represents the average score of the word GATTA. The curves for z3 and 24
are hardly distinguishable due to substantial overlap

were expecting the score z; to have an advantage over the other because of the high
periodicity of the word. Surprisingly, the figure shows that the score that detects
sooner the presence of AAAAA is z3. In the right half of Figure 5.4 we collected as
before the average scores for the words achieving the largest score in the tree (upper
curve), and the average score for the word AAAAA (lower curve). This time, the tree
families of curves corresponding to 25,23 and z, are clearly distinguishable. The
function that returns the biggest scores is again z,, followed by z3 and then z4. For
all three, the score of AAAAA grows linearly with h. Note, however that 2z and z3 have
different slopes than zj.

Our experience suggests that words which are highly significant in terms of scores
based on counting occurrences are usually highly significant in terms of colors, and
vice versa. As a result, it does not really matter which score one chooses — the
significant words will be discovered. Unfortunately, signals that are more subtle
could be missed using the simpler scores.

5.2 Experimental results

We report here some results on experiments running VERBUMCULUS on the up-
stream regions of some genes of the yeast. The upstream region of a gene is usually
defined as the untraslated region of size 500-1000 base pairs that precedes the start
codon ATG, when reading the sequence in the standard orientation 5’ to 3. It is
usually known to contain several control signals, called promoters or requlatory sites,
that regulate the production of the mRNA. Finding such motifs is usually the first
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AAAAA

TGGGA AAAA
AAAAA —
_ AAAAC
AAAA ATCGG
AAAAG

GAACT ATTTA
GGGGG TGTCC

aceee TGATT

Figure 5.3. LEFT: trie from a random string of size 1,000 with 4 forced occurrences
of the word AAAAA. RIGHT: trie from another random string of size 10,000 with 10
forced occurrences of AAAAA. Both trees are annotated using z3, with threshold 3.0

T T

'AAAAA z2 max' ——

'AAAAA 22.5C0' ----

'AAAAA z3.max’ -----

20l "AAAAA Z3.5¢0! 1
K z4.max’_~~-

Average z-score over 1,000 trials

Proportion of times that AAAAA is the highest scoring word

L L L L L L L L
12 14 16 0 2 4 6 14 16 18 20

8 10 12
Number of injections (h)

6 8 10
Number of injections (h)

Figure 5.4. LEFT: fraction of times versus h that AAAAA is the highest scoring word
in the tree, for z-scores, 29, 23, 24. RIGHT: curve pairs for the word AAAAA and the
highest scoring words under scores 29, 23, 24
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-35 -10
5 TTGACA TATAAT gene 3
16-19 bps 5-9 bps

Figure 5.5. The typical bacterial promoter consists of two specific sequence
respectively at 35 and 10 bases from the beginning of the gene

step in understanding how genes interact with the environment and with each other.

As an oversimplified example, Figure 5.5 shows the typical bacterial (prokaryotic)
promoter. It consists of two specific sequences TTGACA and TATAAT, called domains,
approximately at 35 and 10 bases upstream of the beginning of the gene. The dis-
tance between the two sequences is between 16 and 19 basepairs and the distance
between the -10 sequence and the start of the gene is between 5 and 9 basepairs.
Mutations in the composition of the domains or changes in the distance between the
domains determine the efficiency of the promoter, and ultimately the efficiency in the
transcription of the gene. The mechanism of transcription regulation in eukaryotic
organisms is much more complicated (see, e.g., Chapter 20 and 21 of [162]).

Given a set of upstream regions that belong to genes that share some common
regulatory behavior, the task for VERBUMCULUS is to discover the domains. The
first dataset we analyze is related to ten families of genes isolated by van Helden et
al. [239]. Each family contains a set of co-regulated genes, that is, genes that have
similar expression under the same external conditions. The assumption is that in each
family the upstream region will contain some common motif. Moreover, one can also
expect that such signals are going to be over-represented across the family. In this
first experiment we use the same parameters and score type on all the multisequences
to test the general performance of our tool.

The second dataset comes from the work on the sporulation of the budding yeast
conducted by Chu et al. [71]. Seven families of co-regulated genes have been char-
acterized using DNA micro-array technology. Again, one of the purposes of the in-
vestigation is to find unusual words in the upstream regions of these genes. Here
we concentrate on a couple of families and we show the sensitivity of our tool to
different choices of parameters and score functions. Both experiments also show the
limitations of our approach.

5.3 DPattern analysis: Regulatory sites in yeast

The metabolism of the yeast has been widely studied and provides several exam-
ples of known regulatory sites. In many cases, the transcriptional factor involved in
the common response is known, as well as its binding site.
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In [239], van Helden et al. selected ten families of genes based on prior biological
knowledge on their activity. For each gene in a family, its 800 bps upstream sequence
was extracted. The set of all upstream sequences belonging to the same family con-
stitutes the multisequence on which we performed the analysis using VERBUMCULUS.

The parameters of the analysis were as follows. We used scores based on the
number of occurrences (z3 and z4), a threshold between 3 and 10 depending of the
maximum size of pattern, the latter being between 5 and 8 symbols. We adjusted
the threshold to obtain a tree of about twenty nodes. We also filtered out words
containing any of the words TATA, AAAA and TTTT, when these latter words were
predominantly shadowing the others.

Tables 5.1, 5.2 and 5.3 summarize the results of our tests. For each multisequence
we report its identifier, the number £ of sequences, the motif previously character-
ized by experiments, the motifs found by van Helden et al., and the trees produced
with VERBUMCULUS. For the sake of clarity, we circled the words which match the
biologically-significant motif.

VERBUMCULUS has proved capable of discovering the biologically significant pat-
terns in the families NIT, MET, PHO, PDR, GAL, GCN and TUP, although some-
times only in part. Usually these motifs can be found among the highest scoring
words. Also note that other patterns which have high scores are usually in a suffix-
prefix relation with the highest, suggesting that their occurrences are correlated.

However, in the families INO, HAP and YAP, VERBUMCULUS assigns low scores
to their respective motifs so that they do not show up in the final tree. In two out of
three cases, the tool by van Helden et al. is also not capable of detecting the patterns,
as shown in the tables. Additionally, the tool by van Helden et al. does not give any
satisfactory answer for the GAL family, whereas VERBUMCULUS catches CGGCG and
GCCGC, which correspond to the beginning and the end of the motif. We note that, in
general, VERBUMCULUS has great difficulty to expose motifs contains multi-valued
symbols, for example the ones for the GAL and TUP families.

5.4 Pattern analysis: Sporulation in budding yeast

In this experiment the authors of [71] used DNA micro-array technology to expose
the temporal patterns of gene expression of Saccharomyces Cerevisiae during meiosis
and spore formation. This was done along the lines of a rather standard procedure,
as follows. First, changes in the concentration of mRNA transcript from 97% of the
known genes were measured during seven consecutive intervals. Next, the average
expression profiles were used to classify the genes. Figure 5.6 reproduces the image
at the outset, available at http://cmgm.stanford.edu/pbrown/sporulation/. As
usual, higher and higher degrees of expression translate into darker and darker shades
of red, while lower concentrations yield progressively darker shades of green. Seven
clusters were produced in this particular experiment, labeled as Metabolic, Early(I),
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van Helden’s dataset of co-regulated genes

Family £k Motif van Helden et al. VERBUMCULUS
NIT 7 GATAAG CTGATAAGA cataa —( GATAAG
CCGCGC GCACGG
CGGCAC ATAAGA
ACATCT CTTATC
CCGCGC
CCCGCG
CGCGCG
TTT NIT.X5.L6. TTTT.AAAA. TATA
MET 11 TCACGTG GTCACGTG GTGGTGG
AAAACTGTGG AACTGTGGC e
ATATAT T§ACGTG
AAA AAACTGT
TATATA
AACTGTG
GCTTCC ATTTCTT
ACTGTGG
CACGTG > CATCGTGA
PHO 5 GCACGTGGG CGCACGTGGG TTCTT
GCACGTTTT CACGTTT TGCAC
CTGCAC ACGTG
TGCCAA
AAGAA  CGTG — CGTGC
/
CGT — CGTCG
GCA —— GCAC —< GCACG
FHO\)(EGLSCTAVF?AAC
PDR 7 TCCGCGGA TCCG{C | T}GGAA GGGCCCGT
GCGCGA CCGCAGAG
AGGCACC CCGCGGA> £CCGCGGAA
CCGTGGA CCGTGGAA
CGTGGAAA
TCCGTGGA

TC\CGCGQ,&M
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Table 5.2
van Helden’s dataset of co-regulated genes (continued)

Family & Motif van Helden et al. VERBUMCULUS
GAL 6 CGGN°WN°CCG ?
CTGCT
CTT CTTC —— CTTCC
CGGCG
AGAAG
AT ATC
AA
GCCGC
GAA GAAG — GAAGG
GAT GATC
GACGA
TT
TA TAG
TCTTC GAL.X4.L5.z3 AAA.T
GCN 38 RRTGACTCTTT A{G|A}TGACTC{A|T}
CAGCGG -
AACCGGC o
CATCGAA -
AGAGAG AA o
GACTC TTC TTCT —— TTCTT
S ?TT///////TTA ‘
TA TAG
TCTTCTNTATATA
INO 10 CATGTGAAWT CAACAA{CIG} Senere
CATGTGAA CAACAA
CACATG
TCTTCA i
GTTCAA cecech
ACAAGA
GTCGCA AACAA
AGAACA
TGTTG
TGTGCC
TITT — TTTTT — TTTTTT
TIGTT — TTGTTG
TCTTC NOX5 L6 TATS
HAP 8 CCAA{T | C} AGAGAGA Ai’i’j‘s
_ mea— AAGAA
ATGGGGC A:Aici ARG — aee
ceTTe TTAG
S
T e — :ri: TTGCA
TA — TATAT
TGGGG\ TAG
o™ crrn

GGGG — GGGGA
GGGCC
[cleleleles
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Table 5.3
van Helden’s dataset of co-regulated genes (continued)
Family & Motif van Helden et al. VERBUMCULUS
YAP 16 TTACTAA CGTTCCGT CGAAGA
CTTC
CATTAC AAA
AAGAA
CTGAAG AGGCGG
TA
TGCCTT
TTC TTCT —— TTCTTT
TTT — TTTC — TTTCTT
TCTTC —— TCTTCT
GAAGA — GAAGAA
GGAACG e
TUP 25 KANW*ATSYG*W TT{CIT}{CIG}NG*{TIC}{AIC} o
AGGCACGGG “
AAA{A|G}AA s
AAGGAGGA "
AT/TAG TAGT
ACAAACA TA=—_ .,
CTCCGC e
{TIC}CTGCA Zii

CGTCGC
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Early(II), EarlyMiddle, Middle, MidLate, and Late.

The two bands of columns with blue bars in Figure 5.6 identify genes of which
the promoters contain a putative URS1 or MSE regulatory sequence, respectively.
The degree to which the sequence matches the consensus for each of these regulatory
elements is indicated by the brightness of the bar: the best matches are represented by
the bright blue bars that appear to be concentrated towards the left of each band, the
less stringent matches cause the darker blue bars more visible towards the right. The
most stringent match for the URSI site is 5’-TCGGCGGCTDW-3’, and the least stringent
is 5’-GGCGGC-3’. The most stringent match for the MSE site is 5’-HDVKNCACAAAAD-3’,
and the least stringent is 5’-DNCRCAAAWD-3’.

The underlying hypothesis of the experiment is that genes with similar expression
profiles may be regulated by similar expression mechanisms and thus may contain
similar transcription factor binding sites

Figure 5 of [71] shows that the upstream sequences relative to the genes in the
clusters Metabolic, Early(I), and Early(II) contain several occurrences of the
regulatory element URS1, while the ones in the clusters EarlyMiddle and Middle
contain many MSE sites. We report here results regarding the analysis of the cluster
Early(I) and Middle with the objective to “discover” the URS1 and MSE motifs.

5.4.1 The Early(I) cluster

The cluster Early(I) contains 36 genes, namely RTS2, MEK1, NDJ1, MNE1,
EHD2, DBP1, TIPL1, VPS30, UGA3, PCH2, SEO1, CIT2, SCC2, KIP3, RAD51,
IME4, Z1IP1, DMC1, RADb54, HFM1, LEU1, PAD1, ATP10, CIK1, FKH1, HOP1,
SPS19, KIN2, ECM17, RPM2, CCP1, BAT1, IME2, SPO13, RED1, SMT4. We
extracted the upstream region of 600 base pairs (allowing overlaps with other ORFs)
using the tool developed by van Helden et al. [239].

Table 5.4 shows the trees produced by VERBUMCULUS on the family of 36 up-
stream regions and annotated with the scores 29, 23, 24, 25 and 29, maximum length
6 bps. Only patterns with a score higher that T (in absolute value) are shown.
For comparison purposes, Table 5.5 lists a few most notable words along with their
statistics. In [71] it is reported that 43% of the upstream regions of the genes in the
cluster Early(I) have a core URS1 motif, while we found only 33%. However, the
expected number of GGCGGC is so small that the reported occurrences of this word
have to be considered surprising by any measure, whether in terms of total number
of occurrences or number of sequences containing it.

Observe that the words in the zo-tree of Table 5.4 are not independent. Instead,
prefixes of some words are suffixes of others, which suggests that their occurrences be
correlated. Table 5.6 shows an alignment produced by using four such overlapping

words from the tree. This results in the consensus pattern CGGCGGC, which matches
two motifs in TESS: YSHSP70.02 and Y$SSA1.01. This pattern contains the core
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Figure 5.6. Genes induced or repressed during the sporulation of the Saccharomyces
Cerevisiae (from the web site http://cmgm.stanford.edu/pbrown/sporulation/).
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Figure 5.7. Enlargement of a portion of Figure 5.6 showing genes of the Early(I)
and Middle cluster induced or repressed during sporulation



Table 5.4
Early(I) cluster as seen through VERBUMCULUS, T is the threshold
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Score T VERBUMCULUS Score T VERBUMCULUS
z9 4.0 z3 8.0
GCGCGC
GCGGCT
GCGGCT
GCCGGC
GCCGCC
[ — soces GGCGGC eereee
I~ coocma ™ T —— TTTT<
){CGGCGG TTTIT —— 7777
\\ CTTTTC o AAAAG ABARAG
cceeee Y
L CCGGCA ~ / /
AAAAAA N, AARA C AAAAR - AAAAAA
E ACCGGC
Aégcrﬁ,ﬁ.(;OObps_zz_L&XAf ™ Earlyl.600bps.z3.L6.X8
Z4 8.0 z8 9.0
GCGGCT GCGGCT
GCCGGC
GAAA GAAAA — GAAAAA GCCGTG
GCCGCC
e GGCGGC
- Trr7 —— TTTTC —— TTTTCT COGCOG
TTTTT TAGCCG
™ CGGCTA
CGGCGG
o e e AAAAAG CGCCGA
AAA . CCGCCG
A AAAAA‘\AAAAAA CCGGCG
AAGAAA CCGGCA
ACCGGC
AGAAA AGGACC
Earlyl.600bps.z4.L6.X8 AGCCGC
Earlyl.600bps.z8.L6.X8
z9 10.0

recre
GTATAT
Geeee

Geceee

GCCGCC

s — GGCGGC

cccccc
TAGCCG
(S cTe S —

GCGGCT

)

CGGCTA

crTTTe
cc6c¢c ———————————— CCGCCG

coceen

(1]

cceee

AAAAAA

AGGACC
AGTATA

AGCCGC

1

Earlyl.600bps.29.L6.X10
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Table 5.5
Explicit statistics for some most devious words in the 36 sequences that form cluster

Early(I). The individual symbol probabilities are .31 for A/T and .18 for G/C

occurrences co/ors
w | B2) | fw) | BW) | cw)
AAAAAA | 26.44 109 | 25.74 22
TTTTTT | 29.38 110 | 27.63 25
GGCGGC 1.15 25 1.51 12
TAGCCG 243 9 2.11 9

Table 5.6 Table 5.7
Alignment of four highly overlapping Alignment of four more highly
words picked from the zo-tree of overlapping words picked from the
Table 5.4 tree of zo-tree of Table 5.4
C GGCG G - CgccCcoea - - -
G G CG G - G CGCGc - - -
- G G C G G - - - G C G GG C T -
- G G C G G C - - - C G G C T A
Cc G G C G G C G C G CG G C T A
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Table 5.8
Alignment of five more highly overlapping words picked from the z,-tree of Table 5.4

AGCCGC - - -
- GCcCCGC -G -
- 6GCcCCGCC - -
- -¢cCcCGCgG -
- - CCGgC - A
AGCCGCCG A

GGCGGC, mentioned repeatedly in [71].

Next, we used four more motifs from the tree to build another alignment (see
Table 5.7). The consensus GCGCGGCTA matches one motif in TESS, Y$G3PDH 01,
which is already known in the literature [165].

Finally, we chose five motifs from the tree and build the multiple alignment of
Table 5.8. The consensus AGCCGCCGA exactly matches five motifs in the Transcription
Element Search System (TESS/TRANSFAC) database [217], namely Y$SCARI1 02,
Y$CAR2.01, YSMES1.01, Y$SPO13.01, Y$TOP1.01. For example, Y$SPO13_01
is known in the literature as a “key regulatory of nitrogen repression and meiotic
development” [228]. However, the authors of [71] did not report the finding of this
regulatory element.

In conclusion, VERBUMCULUS not only succeeded in identifying the regulatory
elements we were looking for, but also found some other interesting new patterns in
the cluster that were overlooked. At the same time, in the zs-tree of Table 5.4 there
were also patterns such as CTTTTC, AAAAAA, and ACCGGC. The former two have been
detected as elements in scaffold/matrix attachment regions (MARs) of eukaryotic
genomes [6, 229]. MARs are basic components for high level genome compaction
and organization, therefore are highly frequent in genomic sequences [112; 48]. In
addition, biological experiments have shown that they anchor genomic sequences to
proteinaceous nuclear matrix and affect gene expression [225, 173, 48|. For the latter
pattern, we have not found any biological significance yet.

We went on producing a few more suffix trees annotated with other scores. Ta-
ble 5.4 shows the tree decorated with scores z3, z4, 23 and zg. Some remarks are
in order. z3- and z4-tree are quite similar except for the following: the tree for z3
enhances GCCGCC, TTTTT while the tree for z, does not. Vice versa, the tree for z4
emphasizes TA as being under-represented, a phenomenon that is missed in the tree
annotated with z3.

The word GGCGGC appears again in both z3- and z4-trees. However, in the case of
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z3 the pattern GGCGGC is no more the highest scoring one. GGCGGC ranks fifth after
AAAAAA, AAAAA, AAAA, AAA. In fact, as one would expect, the approximation of the
variance used in z3 does affect in particular the scores of highly periodic words.

It is somewhat surprising that the families of words AT and T" appear as strongly
marked in the tree under z4. The pervasive over-representation of AAA, TTT, TAT, ATA
have been reported by Nussinov [186], Brendel et al. [56] and Leung et al. [161]. They
suggest the possibility of a connection with the genomic structure and organization.
In their study of E. Coli data, Phillis et al. [195] propose an explanation for the
over-representation of AAA by codon usage. In any case, it is comforting to see that
the word GGCGGC is still the highest scoring motif in the tree.

The zg- and zo-trees pertain both to scores defined in terms of sequence families.
It is interesting to compare the tree for the score zg with the tree for z5. The tree for zg
exposes GCCGTG, TAGCCG, CGCCGA, CCGGCG and AGGACC while the tree annotated with
2y does not. Vice versa, the tree for z, shows GCGCGC, GGCGG, CTTTTC and AAAAAA.
The fact that these trees are very similar seems to suggest that, under our conditions,
words that occur at least once in unexpectedly many sequences in a family might
be spotted just by looking for words with a high occurrence score in the family as a
whole. The function z¢9 happens to assign a high score the two motifs GGCGGC and
GCGGCT. Surprisingly, it exposes at least two words present in the tree for the score
25 but not appearing in the tree for zg, namely, GGCGG and CTTTTC.

We also tested our software using Markov chains as underlying model. We pro-
duced five trees assuming models of order 0, 1, 2, 3 and 4. Table 5.9 shows the
trees computed by VERBUMCULUS using a common score and parameters. To clarify
the differences we produced another figure where we removed the tree, we connected
common words with a red line, and we circled in green the singletons. We observe
that for M = 0,1, 2 there is some general agreement: in particular the word GGCGGC
consistently achieve the highest score.

However, for the order 3 we are left only with one word (AGGACC) that does not
appear anywhere else. Had we lowered the threshold to 3, GGCGGC would have ap-
peared among the other fifteen words. The fourth order tree contains the prefix
GGCGG, although other three unknown words scores a little higher. This phenomenon
can be expected. As the size of the model grows its ability of prediction grows as
well. Therefore there are less and less significant words. In order to get roughly the
same amount of nodes in the trees, one should decrease the threshold as M increases.

We finally used our tree comparison algorithm associated with the shuffling tech-
nique described in Section 3.9.2. This experiment was done along the lines of the
following procedure. We first randomly shuffled each one of the 36 upstream se-
quences of the cluster EarlyI for 100 times using the algorithm by Kandel et al.
[144]. Each one of these 3600 artificial sequence has the property that the count of
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Early(I) cluster, score zy, threshold 4.0. M is the order of the Markov chain

M VERBUMCULUS M VERBUMCULUS
0 1
ececec GCGGCT
GCGGCT
GCCGGE GCCGGC
GCCGCC GCCGCC
secee GGCGGC caces GGCGGC
CGC(:Z(/;G CGGCTA
TTTTTT CGGCGG
CCGCCG
cceaea CCGCCG
:::2:;: ACCGGC
AGCCGC , AGCCGC
2 3
GCGGCT
GCCGGC
GCCGCC
TAGCCG O— AG GACC
CGGCTA
CGGCGG
CCGCCG
AGCCGC
4

GTGAGG

GGCGG
GGGGGT

CCCGCA

Earlyl.X4.z2.M4
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MMO MM1 MM2 MM3 MM4
geecee GCGGCT
GCGGCT GCCGGC R ——GCGGCT GTGAGG
ccceec— T GCCGGC
GCCGCC — GCCGCC_\\GCCGCC
ceces GeCee GGCGG
GGCGGC —— GGCGGC GGCGGC AGGACC
GGGCGG GGGCGG TAGCCG
e e ——CGGCTA ceeaeT
TTTTTT | ~—CGGCGG CGGCGG
CCGCCe— | CCaCCs CCBECG CCCGOR
s acccec———__AGCCGC
AGCCGC AGCCGC

Figure 5.8. The collection of words from Figure 5.9. Identical words are connected
with lines, while singleton words are circled

all its substrings of size up to K is kept equal to the respective counts in the original
sequence. In a sense, these sequences constitute an empirical model of randomness
and therefore it can be used to evaluate the expectation. For brevity, we will call such
artificial multisequence a K -th model. Then we compare the suffix tree built on the
K-th model with the tree built on the sequence under analysis using the algorithm
described in Section 3.9.1.

Table 5.10 shows the trees produced using K-th models for different choices of K.
The similarity of the trees for K = 1,2 and 3 with the trees of Figure 5.9 for M =0, 1
and 2 respectively is striking. They are almost identical.

The experiment suggests that this method could represent an alternative to the
one based on probability models. Although it is a brute force approach, it is much
simpler to implement and to extend to a larger class of patterns.

5.4.2 Middle and EarlyMiddle clusters

We describe tests conducted with VERBUMCULUS on other clusters in the same
dataset from [71]. This will show that when the core of consensus is not a fixed
pattern, but admits instead multi-valued positions, then it becomes more difficult to
find by our method.

The cluster Middle is composed by 63 genes, namely: STE5, PBP2, MRPL37,
APC11, YSW1, UBC1, EKI1, CDC10, SPS2, SPS1, SPR6, GPI8, CDC26, CDHI,
ISC10, CLB6, SUT1, HXT10, PES4, SPR28, CDC20, GNP1, SPR3, YCK3, FET5,
CDA2, CDA1, SPS18, CDC5, REV7, PIG1, NMT1, MIP6, SPO20, CNM67, YCKZ2,
SUR4, TEP1, RNH70, BNR1, CDC3, KAR1, CWP1, HYM1, ORC1, NDT80, SPO12,
FUS2, ORC3, APC9, CDC16, SSP1, PCT1, STO1, BBP1, MUD13, AUT1, HXT14,
SPS4, UBC11, SPR1, HST1, ECM23, SSP2. The cluster EarlyMiddle is composed
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Early(I) cluster, score zg, threshold 4.0. K is the maximum size of the substrings
whose count is kept constant during the shuffling

K VERBUMCULUS K VERBUMCULUS
1 2
GCGGCT GCGGCT
GCCGGC GCCGGC
GCCGCC GCCGCC
s GGCGGC e —— GGCGGC
CéEEEG C;GGGEITGAG
C;(if;A CCGCCG
il e
3 4
GCGGCT
GCCGCC CGTACG
GGCGGC @<ij
CGGCTA
CGGCGG CCGACC
CGCCGA arlyl.shuffle4.z6.

Earlyl.shuffle3.26.X4

TCTCGT

CGGGGA

g

CACGCG

Earlyl.shuffle5.26.X4
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Table 5.11
Statistics for some notable words of the cluster Middle (63 sequences)

occurrences sequences

w | B(Z) | f(w) | EWV) | c(w)

CAAA | 24276 | 349 | 62.37 | 63
CTTT |197.31| 346 | 60.82 | 62
TTTT | 350.02 | 884 | 62.65| 63
CACAAA | 14.11| 40| 16.09 | 37
TTTTTT | 19.82| 78| 30.42 | 46

by: KAR3, CLB5, DBF20, DHS1, ISR1, NIP29, HST3, ALP1, THI3, AUT7, NTH2,
APC4, POP4, MEL1, QRI1, MSH5, YPT32, CLB1, ORM1, HST4, DIN7, NUF1,
DIN7, CIN8, DIG2, MET32, CDC14, APG1, HPR5, STU2, CDC46, KEL2, SPC42,
TID3, GFA1, YUHI1, BAS1, CDC23, IRS4, SCS7, SET1, SMI1, SIR1, CLB4, CCC1,
SPC98 (46 sequences in total).

The family of upstream sequences should display frequent occurrences of the MSE
sites ranging from HDVKNCACAAAAD (most stringent, appearing in 7 sequences) to
DNCRCAAAWD (least stringent, appearing in 31 sequences). The complication for VER-
BUMCULUS is that these patterns are not fixed strings but rather regular expression,
however trivial: for example N is a wildcard denoting any letter in the set A, C, G, T,
whereas R can be substituted only with a purine (A or G), Y with a pyrimidine (C or
T), etc.

We would like to isolate the core CAAA or, even better, CACAAA from the upstream
regions relative to the genes in the cluster Middle. Six sequences have the motif
CWBYSCTTT, too.

Unfortunately, it seems difficult to catch CACAAA in Middle. The zp-tree in Ta-
ble 5.13 shows the 15 words with highest z, score: CACAAA does not show up among
them. We have to lower the threshold on that score to 5.0 before we can see CACAAA,
but this has the simultaneous effect of raising the tree size to almost 100 nodes. The
same happens when we look for CAAA (see Table 5.13-right). However, at least CTTT
pops up now among the highest scoring motifs. Table 5.11 shows the statistics of
these and other notable words.

We tried to build the zo-tree for the cluster EarlyMid and this time both CAAA
and CTTT appear (see Table 5.12), but we had no luck for CACAAA.
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Table 5.12
EarlyMiddle cluster, T is the threshold

Score T
Z9 3.0

VERBUMCULUS

AAAAAA
CGCCGC
CTTTTT
CAGGCG
CCTTTT
- GTGCGG
GCGCCA
GCCACA
o e

T - TTTTTT

TTTTCC TTTTTC
Mid.600bps.z2.L6.X7

We used other scores to see if we could get CACAAA somewhere. Table 5.13 shows
the z4-tree for the cluster Middle that suffers again from the presence of the family
of words A™ and T", but no CACAAA. It also shows the zg-tree, but again no CACAAA.
Finally, a surprise. The zg-tree shows CACAAA in the high scoring patterns.
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Table 5.13
Middle cluster, 7T is the threshold
Score T VERBUMCULUS Score T VERBUMCULUS
29 7.0 29 3.0
AAAAAA AAGA
CGCCGC AAAA
CTTTTT AAAG
CAGGCG AGAA
CCTTTT CGCC
GTGCGG
GCGCCA CTTT
GCCACA GAAG
GCCAGC GAAA
TrTeTe ,— TTTTTG GCCA TTTC
T — TTTTTT TTT TTTG
TITTICC —— r777cC TTCT TTTT
Mid.600bps.z2.L6.X7 Mid.600bps.z2.L4.X3
24 10.0 28 6.0
AAGAA — AAGAAA AAAAAA AG G C G G
AAA — AAAA//T::AA: AAAAA C AG G CG
e CCGCAT
17T — CTTTT — CTTTTT G T G C G G
e - GCGACG
T e TTTIT - TTTITIT GCGCCA
—ml S e TGTGTC
S
i 600mpe 2210 ~ TACCCG
Mid.600bps.z8.L6.X6
o 120 S
CAGGCG
CACAAA
CCGCAT
CCACAA
GACACA
GTGCGG
GCGACG
GCGCCA
GCCACA
GGAAAG
TGTGTC
TACTGG
TACCCG
TCTCTT
TCCTTC
TTTGTG

TTGTGT

Mid.600bps.z9.L6.X12
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6. Final Remarks

As seen in this document, when efficiency is the critical factor, apparently simple
problems can require sophisticated algorithms. The efficiency becomes critical as soon
as we begin to handle massive datasets such as those accumulated in digital libraries,
biological databases, web search engines, multimedia repositories, etc. Even if we had
sufficient computational resources, the expected amount of processing results would
be overwhelming and impossible to convey to the user in a useful way.

In this dissertation we tackled the problem of counting and estimating statistical
parameters of various kinds of events in texts with the objective of discovering pat-
terns which appear too frequently or too rarely in the context of larger sequences.
The problem was formulated within the perspective of using the fewest possible com-
putational resources and limiting the size of the output. It turned out that these
objectives were strongly correlated.

We first presented a battery of efficient algorithms for counting, all based on
the “ubiquitous” suffix tree. Then, probabilistic models and corresponding score
functions were studied in order to expose useful mathematical properties, e.g., the
monotonicity or the convexity. These properties, along with the idea of partitioning
the set of all substrings into equivalence classes, enabled us to bound the number of
unusual words to a linear number in the size of the input. As a result, we showed
linear time and space algorithms for the detection of unusual words under Bernoulli
and Markov models.

To summarize our approach, the “ingredients” of our solution are

1. the monotonicity/convexity of the score function, which measures the surprise
of each word

2. a partition of all the substrings of a sequence into equivalence classes such that
each word in the class has the same count

3. an efficient algorithm to compute the scores.

As a result, if step 3 can be carried out in constant time per class, then the algorithm
runs in O(() time and space, where [ is the number of classes. By showing that the
number of classes is linear in the size of the textstring, we concluded that there exists
a linear-time algorithm which computes the set of all unusual words in a sequence.
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Considerable efforts have been devoted in this work to prove the monotonic-
ity /convexity properties for most of the scores employed in the scientific literature.
While the second and third “ingredient” appear to be necessary, we would like to
know how much the condition on the score can be relaxed, if not avoided at all.

The implementation of these algoritms in a software package, called VERBUM-
cuLus, allowed us to run several experiments on simulated and real data. These
experiments gave us new insights to the problem of pattern discovery. They also
helped in tuning the tool for the analysis of biomolecular data. Several comments
from final users, which were using the tool on the web, also improved the interface,
the available options, and the visualization of the output.

Clearly, a few questions remain open. With respect to the mathematical proper-
ties of the score function, we are still missing the monotonicity for the variance of the
random variable describing the number of occurrences, under Markov models. As for
the algorithmic design, more work should be done for the detection of unusual words
based on the number non-overlapping occurrences, clumps, and maximal quasiperi-
odic substrings. While some of these events require an efficient counting algorithm,
some others need fast algorithms for computing expectation and variance.

In the rest of this section we highlight a few research issues which solutions would
have a direct impact on this work.

As seen in Chapter 3, a common denominator in several algorithms that count
events in texts is some kind of dynamical data structure storing the leaf-lists of the
suffix tree. Such leaf-lists enter problems such as finding all squares in O(nlogn)
time [227], finding the maximal pairs with bounded gap in O(nlogn) [58], finding
the maximal quasiperiodic substrings in O(nlogn) [16, 59], counting the number of
colors [137] and the number of occurrences in linear time. We wonder whether one
could design a unifying data structure suitable for all these algorithms.

With genetic databases still growing exponentially fast, the memory requirements
for the data structures can become a very serious limiting factor. As said, suffix
trees require linear space. However, in practice even the multiplicative constants
involved matters. Although the size of the suffix tree depends on the particular
implementation, one might expect it to be about 20 bytes per symbols in the worst
case [154]. The problem of the analysis of massive dataset under limited memory can
be approached either by devising variations of the suffix tree suitable for secondary
memory allocation (see, e.g., [73, 78, 95, 178, 99, 97]), or by employing heuristics
directed to prune the search space. Another option to alleviate this problem, would be
to study sampling techniques and devise algorithms to compute approzimate counts,
approrimate expectations, and approzimate variances (see, e.g., [4, 119]).

As seen in Section 3.1.1, the maintenance of counts during dynamic text changes
is a difficult problem (see, e.g., [100, 158, 96, 98, 74]). Updating dynamically the
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suffix tree consists of changing the structure of the tree as to reflect the insertions
and deletions, and recomputing the counts in the internal nodes. With the current
knowledge about the problem, this process is at least as computationally expensive
as rebuilding an entirely new suffix tree at each change of the text.

A fundamental problem to all pattern discovery methods based on z-scores is their
limitation when comparing scores of words which have different lengths. The effect is
that shorter words tends to be penalized, because they are “shadowed” by the score
of larger ones. Longer words have small probability of occurrence, and therefore even
if they occur only once, their score can be very large. As far as we know, very little
has been has been done to address this issue. Our empirical solution was to scale the
score by 1/y/m, where m is the size of the word. However, we are not aware of any
theoretical result which would warrant such compensation factor to be incorporated
in the score function. In this respect, these and other “negative results” like those
reported in Section 2.8, should warn the reader against the dangers of taking the
results of any pattern discovery analysis without a critical perspective.

A research direction that looks promising, for which we have only preliminary
results is the idea of “shuffling” sequences for estimating the expected number of
occurrences in texts, as reported in Section 3.9.2 and at the end of Section 5.4.1.
As mentioned, it would also solve one of the issues in the “natural” extension of this
work, which is the discovery of flexible patterns. Flexible patterns are more appealing
to biologists, since rarely two motifs are 100% identical, but instead they frequently
occur with insertions, substitutions and deletions. The strategies to limit the size
of output are much more involved, since the number of all flexible patterns is not
quadratic, but ezponential in the size of the input (see, e.g., [188]).

On the experimental side, we would like to apply VERBUMCULUS to other con-
texts, such as the analysis of time-series (see, e.g., [85]), natural language processing,
data compression, and machine learning. For instance, in text data compression,
tables for storing the number of occurrences in a string of substrings of (or up to) a
given length find use in the development of context trees (see [249, 250, 252, 159] and
references therein). In particular, the minimal augmented suffix tree has been used in
an off-line compression scheme, particularly good at compressing families of genetic
sequences [19, 20, 21]. In natural language, the study and implementation of indices
of the kind considered here may be of some interest in the germane field of inference
of hierarchical structures or grammars for sequences (see, e.g.,[107, 108, 182]).

To conclude, we do believe that the contributions contained here will considerably
improve the performance of pattern discovery tools, and we hope that the algorithms
may find also use in other domains of application, such as data mining, clustering,
alignments of sequence, etc.
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