

T.B. Ho, D. Cheung, and H. Liu (Eds.): PAKDD 2005, LNAI 3518, pp. 771 – 777, 2005.
© Springer-Verlag Berlin Heidelberg 2005

A Novel Bit Level Time Series Representation with
Implication of Similarity Search and Clustering

Chotirat Ratanamahatana1, Eamonn Keogh1, Anthony J. Bagnall2,
and Stefano Lonardi1

1 Dept. of Computer Science & Engineering, Univ. of California,
Riverside, CA 92521 USA

{ratana, eamonn, stelo}@cs.ucr.edu
2 School of Computing Sciences, University of East Anglia,

Norwich, UK
ajb@cmp.uea.ac.uk

Abstract. Because time series are a ubiquitous and increasingly prevalent type
of data, there has been much research effort devoted to time series data mining
recently. As with all data mining problems, the key to effective and scalable al-
gorithms is choosing the right representation of the data. Many high level repre-
sentations of time series have been proposed for data mining. In this work, we
introduce a new technique based on a bit level approximation of the data. The
representation has several important advantages over existing techniques. One
unique advantage is that it allows raw data to be directly compared to the re-
duced representation, while still guaranteeing lower bounds to Euclidean dis-
tance. This fact can be exploited to produce faster exact algorithms for similarly
search. In addition, we demonstrate that our new representation allows time se-
ries clustering to scale to much larger datasets.

1 Introduction

Time series are a ubiquitous and increasingly prevalent type of data. Because of this
fact, there has been much research effort devoted to time series data mining in the last
decade [1],[2],[3],[4]. As with all data mining problems, the key to effective and scal-
able algorithms is choosing a suitable representation of the data. Many high level
representations of time series have been proposed for data mining. In this work, we
introduce a novel technique based on a bit level approximation of the data. As we will
show, our clipped representation has several important advantages over existing tech-
niques. The proposed approach is not only a new representation; it is a new type of
representation. For data adaptive, non-data adaptive, and model-based approaches,
the user has a choice (implicit or explicit) of the compression ratio. This allows the
user to fine tune the parameters to achieve the ideal compression/ fidelity tradeoff for
their particular application.

In contrast, with the clipped representation, the data itself dictates the compression
ratio; the user has no choice to make. This may be seen as somewhat of a disadvan-
tage (although removing parameters from a data mining task is often a good thing

772 C. Ratanamahatana et al.

[5]). However, this lack of flexibility is counterbalanced by another unique property
of the clipped representation. For all other dimensionality reduction approaches, we
must transform the query into the same representation as the dimensionality reduced
database, i.e. having a loss of fidelity for the candidate matches stored in the index
and a loss of fidelity for the query. This in turn produces weak lower bounds, and thus
weak pruning power. In contrast, the clipped representation is unique in that the origi-
nal raw query can be compared directly to the clipped candidate sequences, thus pro-
ducing tighter lower bounds, greater pruning power and faster query by content.

2 The Clipped Representation

Our proposed representation works by replacing each real valued data point with a
single bit. gives the visual intuition.

C

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

C

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

Fig. 1. A time series, C, of length 64, is converted to the clipped representation, c, by observing
each element of C; if its value is strictly above zero, the corresponding bit is set to 1, and to 0
otherwise

More formally, we can define c, the clipped representation of C as:

⎩
⎨
⎧ >

=
otherwise

iCif
ic

0

)(1
)(

µ (1)

where µ is the mean of C. Since the importance of normalizing the data before at-
tempting any clustering, classification or indexing [3] is well-established, we can
simply assume µ = 0, without loss of generality for the rest of this work. Note that this
representation has been considered before in the statistical community [6], but its
utility for data mining, namely, the ability to lower bound distance functions, is first
documented here.

2.1 Lower Bounding Euclidean Distance

Suppose we have 2 time series, a query Q = Q1,Q2,…,Qi,…,Qn, and a candidate match
C = C1,C2,…,Cj,…,Cn. The Euclidean Distance can simply be used to compare the
two time series. However, if we have a clipped time series c, and a raw time series Q,
we can also lower bound the squared Euclidean distance between C and Q, using
equation 2) below. Due to space limitations, the proof of this LB_clipped is omitted
and can be found in [7]. However, gives its visual intuition.

 A Novel Bit Level Time Series Representation 773

() ∑
⎪⎩

⎪
⎨
⎧ =≤=>≡

=

n

i

iiiii

Otherwise

cdanQorcdanQifQ
cQclippedLB

1

2

0

)10()00(
,_ (2)

Q

C
c

Q

C
c

D(Q,C)

Q

C
c

LB_clipped (Q,c)

Q

C
c

Q

C
c

Q

C
c

D(Q,C)

Q

C
c

D(Q,C)

Q

C
c

LB_clipped (Q,c)

Q

C
c

LB_clipped (Q,c)

Fig. 2. The distance returned by both LB_clipped(Q, c) and D(Q,C) is the sum of squared
lengths of the gray hatch lines. Because every hatch line for LB_clipped(Q,c) is matched with
corresponding line in D(Q,c) which is at least as long, we must have LB_clipped(Q,c) ≤ D(Q,c)

2.2 Run Length Encoding

Consider the clipped sequence c, which we have been using as a running example. Its
value is 0000000000000000000000111111111111001000111111111111111111111111. Note
that we could write this as 22#0, 11#1, 2#0, 1#1, 3#0, 24#1, which we can interpret as
22 zeros followed by 12 ones, etc. The shorter format allows us to fit more data in
main memory. In fact, we can be even terser; because we always toggle from zero to
one or vice versa, so we only need to record the parity of the first bit, giving us 22#0,
11,2,1,3,24. This classic lossless compression technique is known as Run Length
Encoding (RLE). To make the representation even shorter, we can represent the par-
ity bits of 0 and 1 with two special characters, e.g. “@” and “!,” respectively; our run
length encoding now can be represented as @22,11,2,1,3,24. We can use this to
further reduce the clipped representation of the data. Note that while the example
above illustrates the idea with ASCII characters, we actually do RLE at the bit level.

2.3 Numerosity Reduction

Even though the run length-encoding scheme itself gives an impressive compression
ratio, we can improve it by numerosity reduction on sliding windows. This step is
motivated by observing that while applying a sliding window on the streaming data,
time series in consecutive sliding windows are very often identical in the clipped
representation, except for the first and the last values that are omitted and added,
respectively. If the time series in each sliding window has this property, we can ex-
ploit this fact and just record the maximum amount of time this property has consecu-
tively been observed, along with a special character, $, that represents this reduction.
Consider the run length encoding from our example in the previous section and let the
encoding of the next five sliding windows be:

@22,11,2,1,3,24@21,11,2,1,3,25@20,11,2,1,3,26@19,11,2,1,3,27@18,22,2,1,3,27,1@17,22,2,1,3,2
7,2.

We can readily see that the first four windows are very similar and can be reduced
to one since the only values differ from each other are the first and the last (italicized

774 C. Ratanamahatana et al.

for clarity). However, the 5th window cannot be combined with the previous one
since the last bit has changed from 1 to 0, but it can be combined with its next win-
dow. As a result, the final encoding with numerosity reduction becomes
@22,11,2,1,3,24$3@18,22,2,1,3,27,1$1.

As before, although we demonstrate the idea with ASCII text, we actually encode
everything at the bit level. With the Power Demand dataset of size 10,000 data points,
numerosity reduction together with Huffman coding yields a huge compression ratio
of 1057:1. Note that while the factor of 32 to 1 achieved by clipping is lossy, the re-
maining factor of approximately 33 to 1 is lossless with respect to the clipped data.

3 Empirical Evaluations

In this section, we will provide an extensive empirical comparison among the raw and
various representations of compressed data in two major data mining tasks, time se-
ries indexing and clustering. Twelve datasets were used in our indexing experiments,
and two were used for clustering experiments (only subsets of results are shown here
due to space limitations). We also tested on a wide range of both real and synthetic
datasets. The datasets range from 66 Kilobytes to 2 Gigabytes in size (see [7] for
complete details).

3.1 Experimental Methodology

For indexing, we will demonstrate the superiority of our clipped representation in
terms of number of disk accesses. We compare our proposed method with the classic
Piecewise Aggregate Approximation (PAA) and Discrete Fourier Transform (DFT),
all preserving similar compression ratio. We then demonstrate that clipped series can
produce clusters similar to those obtained with the raw data when clustering a very
large real world database introduced in section 3.3. We show that clipping performs
favorably when compared to clustering with unclipped data since clustering can be
done faster and with much less memory requirement.

For similarity search, we performed all experiments over a range of query lengths.
Since we want to include PAA in our experiments, the query length is somewhat
limited. We therefore consider query lengths of 256 and 512 data points. We tested
our approach on a variety of twelve datasets with various properties within the data,
obtained from the UCR Time Series Data Mining Archive [8]. The sizes of the data-
sets range from 6,875 data points to 198,400 data points. Leaving-one-out cross vali-
dation is used; on each run, we randomly pick a query from a database, create a run-
length encoding with numerosity reduction for the rest of the data, and determine the
resultant compression ratio. We then create PAA and DFT on the same data and with
the same compression ratio (or with smaller compression ratio, in favor of PAA and
DFT) then measure the number of random disk accesses for the nearest neighbor
queries of all methods. To determine the number of dimensionality reduction (m) in
PAA and DFT in these cases, we assume that each value in PAA and DFT can be
represented by only two bytes (instead of 4 or 8 bytes) to demonstrate that our results
are still competitive among all the approaches. In addition, to avoid any possibility of
implementation bias, the number of I/O disk accesses of each method is measured

 A Novel Bit Level Time Series Representation 775

instead of recording the actual running time. This is done by first computing the
lower bound distances using LB_clipped and Euclidean distance, between a query and
all the sequences in the dataset. Then to retrieve the nearest neighbor, each sequence
is visited in the order according to the lower bound values. We count the number of
times the real disk accesses must be made. These numbers also indicates the tightness
of the lower bounds for each representation. The results are averaged over 100 sepa-
rate runs for each dataset. For simplicity, we only report results for one-nearest
neighbor queries.

3.2 Indexing Results

As noted above, the amount of compression is dictated by the data itself. For the
twelve datasets considered the compression ratios range between 60.2:1 to 1,089.5:1.
We compare different representations in terms of I/O random disk accesses during the
process of the 1-nearest neighbor retrieval of a query time series. In particular, in
each run, we reduce the dimensionality of the data from n to m using Clipped, PAA,
and DFT representations, and build their indices on the reduced spaces based on their
lower bounds between each subsection (sliding window) of the time series and the
query. To allow a visual comparison, we normalize each experiment on each dataset
by the worst performing algorithm; the raw numbers are available in [7]. Fig. 3 shows
the number of disk accesses with lower bounding the Euclidean distance, using the
three dimensionality-reduction techniques over the range of query lengths of 256 and
512 data points. In general, the results show that the clipped representation greatly
outperforms or at least is comparable to the other approaches, expressing the superior-
ity in its tightness of the lower bounds. Again, we would like to emphasize that our
results here are obtained by conservatively assuming only two-byte requirement to
represent each number in PAA and DFT. If we assume 4 or 8 bytes or without the
parameter m adjusted, the results will be much improved.

Ann
gu

n

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki

_e
cg

M
em

or
y

Net
wor

k

Pow
er

_d
at

a

Po
wer

_it
a ly

W
ind

ing

Cli pped_256
PAA_256

DFT_256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ann
gu

n

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki

_e
cg

M
em

or
y

Net
wor

k

Pow
er

_d
at

a

Po
wer

_it
a ly

W
ind

ing

Cli pped_512
PAA_512

DFT_512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ann
gu

n

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki

_e
cg

M
em

or
y

Net
wor

k

Pow
er

_d
at

a

Po
wer

_it
a ly

W
ind

ing

Cli pped_256
PAA_256

DFT_256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Ann
gu

n

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki

_e
cg

M
em

or
y

Net
wor

k

Pow
er

_d
at

a

Po
wer

_it
a ly

W
ind

ing

Cli pped_512
PAA_512

DFT_512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Fig. 3. Number of disk accesses with lower bounding of Euclidean distance, normalized by the
worst performing approach, using the 3 representations for query lengths of 256 and 512 points

3.3 General Compression-Based Clustering

We examine a class of problems where a DFT approach should produce good results,
and show that clipping is better than the most commonly used DFT approach de-
scribed in [2].

776 C. Ratanamahatana et al.

To demonstrate how clipping can help with a real world large dataset, we cluster

optical recording data from a bee's olfactory system [9]. The data consists of 980
images, each image containing of 688x520 measurements. If we consider each posi-
tion in the image as a time series, the data consists of 357,760 time series of length
980. Preliminary analysis has shown that clustering the series based on similarity in
time produces results that have a sensible physiological interpretation [9]. We cluster
with k-means (with k set to 16) restarted 50 times from random initial centroids, and
take as the best clustering the one with the lowest within-cluster variation.

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

A B

C D

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500

100

200

300

400

500

600

A B

C D

Fig. 4. A) 16 clusters produced using all 2GB of raw data. B) Clusters formed using the clipped
data with 32:1 compression ratio. The spatial cluster co-occurrences between this plot and A)
shows its effectiveness in the clipped data reduction technique. C) Clusters formed using PAA
with 59 coefficients, giving 20:1 compression ratio. D) Clusters formed using first 17 DFT
coefficients, giving 29.7:1 compression ratio

4 Conclusions

In this paper, we have shown that a simple dimensionality reduction technique, i.e. the
clipped representation, can outperform more sophisticated techniques by a few orders of
magnitude. We have shown that our proposed clipped representation can improve the
compression ratio by a wide margin, while being able to maintain or increase the tight-
ness of its lower bound, which allows even faster nearest neighbor queries, especially in
ones that require Dynamic Time Warping distance measure. Other than producing faster
exact algorithms for similarity search, we have also demonstrated that our clipped repre-
sentation approach can support clustering and scale to much larger datasets.

Acknowledgements. This research was partly funded by the NSF under grant IIS-
0237918.

 A Novel Bit Level Time Series Representation 777

References

1. Aach, J. & Church, G. Aligning gene expression time series with time warping algorithms.
Bioinformatics(17) (2001) 495-508.

2. Berndt, D., Clifford, J. Using dynamic time warping to find patterns in time series. AAAI-
94 Workshop on Knowledge Discovery in Databases. (1994) 229-248.

3. Keogh E., Kasetty, S. On the Need for Time Series Data Mining Benchmarks: A Survey
and Empirical Demonstration. In the 8th ACM SIGKDD (2002) 102-111.

4. Yi B K., Faloutsos, C. Fast time sequence indexing for arbitrary Lp norms. VLDB (2000)
385-94.

5. Keogh, E., Lonardi, S., Ratanamahatana, CA. Towards Parameter-Free Data Mining. In
proceedings of SIGKDD (2004).

6. Kedem B., Slud, E. On Goodness of Fit of Time Series Models: An Application of Higher
Order Crossings, Biometrika, Vol 68, (1981) 551-556

7. Ratanamahatana, C.A., Keogh, E., Bagnall, A.J., Lonardi, S. A Novel Bit Level Time Se-
ries Representation with Implication of Similarity Search and Clustering. (2004)
[http://www.cs.ucr.edu/downloads/techrpt/TR_clippedpaper.pdf].

8. Keogh E., Folias, T. The UCR time Series Data Mining archive. (2002)
[http://www.cs.ucr.edu/~eamonn/TSDMA].

9. Galan, R.F., Sachse, S., Galizia, C.G., Herz, A.V.M. "Odor-driven attractor dynamics in
the antennal lobe allow for simple and rapid olfactory pattern classification." Neural Com-
putation (2004)

10. Bagnall, A. J., Janacek, G. Clustering time series from ARMA models with clipped data,
SIGKDD (2004).

	Introduction
	The Clipped Representation
	Lower Bounding Euclidean Distance
	Run Length Encoding
	Numerosity Reduction

	Empirical Evaluations
	Experimental Methodology
	Indexing Results
	General Compression-Based Clustering

	Conclusions
	References

