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Deconvolution of relationships between bacterial artificial chromosome (BAC) clones
and genes is a crucial step in the selective sequencing of regions of interest in a genome.
It often includes combinatorial pooling of unique probes obtained from the genes (uni-
genes), and screening of the BAC library using the pools in a hybridization experiment.
Since several probes can hybridize to the same BAC, in order for the deconvolution to
be achievable the pooling design has to be able to handle a large number of positives.
As a consequence, smaller pools need to be designed, which in turn increases the num-
ber of hybridization experiments, possibly making the entire protocol unfeasible. We
propose a new algorithm that is capable of producing high-accuracy deconvolution even
in the presence of a weak pooling design, i.e. when pools are rather large. The algo-
rithm compensates for the decrease of information in the hybridization data by taking
advantage of a physical map of the BAC clones. We show that the right combination
of combinatorial pooling and our algorithm not only dramatically reduces the number
of pools required, but also successfully deconvolutes the BAC—gene relationships with
almost perfect accuracy. Software is available on request from the first author.
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1. Introduction

While the number of fully sequenced organisms is growing rather rapidly, some
organisms are unlikely to be sequenced in the immediate future due to the large
size and highly repetitive content of their genomes. Many of these latter class of
organisms are in the plant kingdom. For these cases, a feasible alternative strategy
called reduced representation sequencing' entails focusing only on the gene space,
i.e. the portion of the genome that is gene-rich. It is well known that in higher
organisms, genes are not uniformly distributed throughout the genome, but instead
tend to cluster into gene-rich regions of the chromosomes.??

In many cases, however, even this latter strategy is too expensive or laborious.
The next level of reduced sequencing requires a specific list of genes of interest
(e.g. abiotic stress-related or pathogen-responsive). The task then is to identify
the portion of the genome that contains these genes of interest, e.g. by identifying
the bacterial artificial chromosome (BAC) clones® carrying those genes, and then
sequencing solely these BAC clones.

Identification of the BAC clones containing a specific set of genes is called decon-
volution. More precisely, the goal of BAC—gene deconvolution is to precisely assign
each gene (unigene®) to one or more BAC clones in the BAC library for that organ-
ism. Another important reason to deconvolute BAC—gene relationships is to place
BAC clones (and all of the genes that they contain) on the genetic linkage map,© if
such a map is available. This placement is possible when a gene within a BAC has
been placed on the genetic linkage map.

The assignment of genes to BAC clones can be accomplished experimentally
by performing hybridization between a characteristic short sequence in the gene,
called a probe, and the entire BAC library. The gene is then assigned to the set of
BAC clones that are positive for that probe. In this paper, we assume that each
probe has the property that it will hybridize only to the BAC clones containing
the original gene from which it was obtained. In other words, we assume that each
probe is a unique signature for each gene (unigene). The uniqueness of each probe
can be established with certainty only if we have complete knowledge of the full
sequence of the genome of interest, but the problem of designing such probes is
well studied.*>® Because our assumption establishes a one-to-one correspondence
between probes and unigenes, in the context of this paper the terms “probes” and
“unigenes” are equivalent and can be used interchangeably.

Figure 1 illustrates the BAC—unigene deconvolution problem. Each chromosome
is “covered” by a set of BAC clones. The totality of the BAC clones constitutes
the BAC library. A gene, represented by the arrow below the chromosome, can

ABAC clones are artificial chromosome vectors derived from bacteria used for cloning relatively
large DNA fragments, typically in the range of 100,000 nucleotide bases.

b A unigene is obtained by assembling one or more expressed sequence tags (ESTs). A unigene (if
correctly assembled) is a portion of a gene transcript.

€A genetic linkage map is a linear map of the relative positions of genes along a chromosome, where
distances are established by analyzing the frequency at which two gene loci become separated
during chromosomal recombination.



Deconvoluting BAC-Gene Relationships Using a Physical Map 605

fcontig ..., contig

|||||: e ——.
~.
~.

Chromosome

BACs

i
! i
i :
] ; ; — : : : : :
||||||||i #aumm
i :

Fig. 1. An illustration of a chromosome, BAC clones, contigs, genes, unigenes, and probes. The
goal of deconvolution is to uniquely determine the set of BAC clones that each probe/unigene
belongs to.

be covered by one or more unigenes. A typical unigene covers either the 3’ or 5’
end of a gene, or sometimes both, but not the introns. Probes are designed from
unigenes trying to avoid splicing sites; otherwise, they would not hybridize to the
corresponding BAC, which contains the introns as well.

Due to the large numbers of BAC clones and probes, usually in the order
of tens of thousands, it is not feasible to carry out a separate hybridization for
each probe/unigene. Group testing® is typically used to reduce the total number of
hybridizations required. Here, we assume that the probes are grouped into pools?
and that pools are used to screen the BAC library.

The hybridization experiments are then carried out for each BAC and probe pool
pair. The readout of one such experiment is positive if the BAC under consideration
happens to contain a gene that matches one or more probes in the pool, and as
a consequence the hybridization will take place. In computer science terms, one
can think of the hybridization process as a form of approximate string matching
between the probe and the BAC.

So far, the steps required for the deconvolution are to (1) design a unique probe
for each unigene, (2) group the probes into pools, and (3) screen the BAC library
using the pools. The input to the deconvolution problem is the set of readouts of
all these hybridizations between the pools of probes and the BAC clones. Clearly,
the smaller the size of each pool, the greater the number of experiments needed and
the “easier” the deconvolution. Vice versa, if the size of each pool is too large, then
too many BAC clones will be positives and the deconvolution may not be achieved
at all.

In order to study this trade-off, the notion of decodability needs to be introduced.
We say that a particular pooling design is d-decodable if the deconvolution can be
achieved in the presence of d or less positives. In this specific context, if all BAC

40ne can pool BAC clones, but this will not change the nature of the problem.
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clones happen to hybridize to at most d probes and the pooling is d-decodable,
the subset of positive probes can be unambiguously determined from the readouts
of the experiments. However, if a BAC hybridizes to more than d probes, it may
not be possible to achieve the deconvolution. If the goal is to resolve the BAC-
probe/unigene relationships exactly, the pools would have to be designed with a
decodability greater than or equal to the maximum number of probes that a BAC
might possibly contain.

As will be seen later in the paper, in order for a pool design to have a high
decodability, the pools have to be rather small, which in turn can make the number
of hybridization experiments prohibitively high. Our objective is to use a pooling
design with low decodability (e.g. d = 1 or d = 2) that is fast and inexpensive,
and exploit additional information to achieve deconvolution. More specifically, we
require some knowledge of overlap between the BAC clones, as provided by a phys-
ical map® of the genome of interest.

The rest of the paper is organized as follows. In Sec. 2, we define the problem
formally, and we describe three algorithms for solving the deconvolution. The first
one uses solely the results from the hybridization, the second exploits the physical
map, and the third is a variation of the second when we have a “perfect” physical
map. Although in practice it is unrealistic to assume a perfect map, this algorithm
will be useful in the simulations to test the limits of our method. We also formalize
the deconvolution problem (with physical map) as a new optimization problem,
and prove that it is NP-hard. The optimization problem is expressed in the form
of an integer linear program, which is then relaxed to a linear program in order
to be solved efficiently. To obtain the best integer solutions, several iterations of
randomized rounding are applied to the solutions obtained from the linear program.
Our randomized algorithm can be proved to achieve a constant approximation ratio.

In Sec. 3, we report experimental results of simulated hybridization data on the
rice genome, and of real hybridization data on the genome of barley. The results
show that our algorithm is capable of deconvoluting a much higher percentage of the
BAC—gene relationships from the hybridization data than the naive basic approach.
In particular, if given a high-quality physical map, we can solve almost 100% of the
assignments with almost perfect accuracy if the pooling is well designed.

2. Methods

As mentioned above, the deconvolution process consists of two major steps. In
the first step, we use a low-decodability pooling design, screen the BAC library
using these pools, and collect the hybridization data. Since the pooling has low
decodability, the data obtained by the first step will deconvolute the BAC—unigene

€A physical map consists of a linearly ordered set of BAC clones encompassing the chromosomes.
Physical maps can be generated by first digesting the BAC clones with restriction enzymes and
then detecting overlaps between clones by matching the lengths of the fragments produced by the
digestion.
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relationships only partially. In the second step, we exploit the physical map infor-
mation to attempt to resolve the remaining ambiguities.

2.1. Problem formulation

Let O be the set of all the unique probes obtained from the unigenes, and let B be
set of all BAC clones. A pool p of probes is simply a subset of Q, that is, p C O.
The collection of all pools is denoted by P. The result of the hybridization of BAC
b with pool p is captured by the binary function h(b,p). We have h(b,p) = 1 if
the readout is positive, and h(b, p) = 0 otherwise. If we assume no experimental
errors, h(b,p) = 1 if and only if there exists at least one probe from the pool p that
matches somewhere in BAC b.

Given the values of h(b,p) for all pairs b, p, the deconvolution problem is to
establish an assignment between the probes in @ and the BAC clones in B, in a
such a way that it satisfies the value of h.

2.2. Basic deconvolution

The basic deconvolution is rather simple. First, we determine for each BAC b the set
of probes that it cannot contain, which we denote by Q. This set can be obtained
as follows:

0, = {0 € O|3p € P such that o € p and h(b,p) = 0}.

Next, for each pair (b, p) of positive hybridization, we construct the pair (b, O p)
where Qp , = p — Q. The presence of the pair (b, Q) means that BAC b has to
contain at least one probe from the set @ . The output from this first step is a list
of such pairs, which we denote with the symbol €. For any pair (b, Qp ) € € such
that | p| = 1, the relationship between BAC b and the only probe o € Oy, is
exact, i.e. b must contain o (or, alternatively, o is assigned to b). We call exact pairs
those pairs in 2 for which |OQp | = 1. By definition, exact pairs can be resolved
uniquely.

A straightforward implementation of the above algorithm is not so efficient. This
is because Q) is rather large, since a BAC typically hybridizes to only a few pools.
In our implementation, we construct the complement of O, for every BAC b. The
details of our implementation are not shown here.

Since the decodability of the pool design is much lower than the number of
positives that a BAC may contain, we expect the proportion of exact pairs to
be rather small. In practice, a large majority of the pairs in 2 will be nonexact.
For these latter pairs, the relationships between BAC clones and probes can be
solved only by employing additional information. Next, we present an algorithm
that resolves the nonexact pairs using a physical map which may contain errors.
Then, we present an algorithm for the case where a high-quality or near-perfect
physical map is available.
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2.3. Deconvolution using an imperfect physical map

For the purposes of deconvolution, the essential information on the physical map is
represented by the overlaps between BAC clones. We will show how knowledge of
the overlap between BAC clones can help to resolve ambiguous (nonexact) BAC—
probe relationships. The following two observations are the cornerstones of our
algorithms.

The first observation is that if BAC b; has a large overlap with BAC by, and
at the same time probe o belongs to BAC by, then probe o will belong to BAC
by with high probability. The second observation is that since probes are carefully
designed to be unique for a specific gene (unigene), the probability that they will
match/hybridize in some location other than the location of the gene from which
they were designed is very low. Therefore, if probe o belongs to BAC by, and BAC
bo does not overlap BAC by, then o will belong to BAC by with very low probability.

In this section, we assume that we are given a physical map which may poten-
tially contain errors. Such a map could have been obtained, for example, by running
FPC7 software on some restriction fingerprinting data. The output of FPC is an
assembly of the BAC clones into disjoint sets, called contigs. If two BAC clones
belong to the same contig, they are very likely to overlap with each other. On the
other hand, if two BAC clones are from two different contigs, they are very unlikely
to overlap. Formally, each contig is a subset of B. Let C denote the collection of
contigs. The set C is a partition of B. Since probes are designed to hybridize only to
one location throughout the genome, we expect that each of them will only belong
to one contig.

The list of pairs in € can be interpreted as a list of constraints. A pair (b,Op ) €
Q is satisfied if there exists a probe 0 € O, , and o is assigned to BAC b. Ideally, we
would like to compute a BAC—probe assignment such that each probe is assigned
to a set of BAC clones belonging to the same contig and all the constraints in €2 are
satisfied. Due to the fact that the physical map is imperfect and that some of the
probes may not match anywhere! or match multiple locations® in the genome, we
may not able to satisfy all constraints. Therefore, a reasonable objective is to assign
probes to BAC clones so that the number of satisfied constraints is maximized,
subject to the restriction that each probe may be only assigned to one contig.

We have now turned the deconvolution problem into an optimization problem,
which is going to be tackled in two phases. In phase I, we will assign probes to
contigs (not to BAC clones). The list of BAC constraints ) is transformed to a
new list of contig constraints €’ of the same size, as follows. For each constraint
(b,0pp) € €, we create the contig constraint (c,Qsp) where c is the contig to
which b belongs. A contig constraint (c, 0y p) is satisfied if probe o € Opp and o
is assigned to contig c. As said, the goal is to maximize the number of satisfied

fThis can happen, for example, if the probe happens to cross a splicing site.
gIn practice, it is impossible to guarantee the uniqueness of probes, unless one knows the whole
sequence of the genome and the hybridization is modeled perfectly in silico.
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constraints in €)' by assigning each probe to at most one contig. If a constraint
in € appears in multiple copies, that constraint will contribute its multiplicity to
the objective function when satisfied. In phase II, probes will be assigned to BAC
clones. Let o be a probe in O and assume that o was assigned to contig ¢ € C in
phase L. In phase II, o is assigned to the following set of BAC clones:

{b € ¢|3(b,0yp) € Q such that o € Oy p}. (1)

It can be easily verified that if the assignment of probes to contigs in phase I is
optimal (i.e. it satisfies the maximum number of constraints from '), the final
assignment of probes to BAC clones using set (1) is also optimal (i.e. it satisfies the
maximum number of constraints from €2).

Since the final assignment can be easily obtained from an optimal solution to
phase I, the rest of this section will be focused on solving the optimization problem
in phase I. First, we present a formal description of the problem:

MaxiMUM CONSTRAINT SATISFYING PROBE-CONTIG ASSIGNMENT (MCSPCA)
Instance: A set of probes O, a set of contigs C, and a list of constraints ', where
each item of €’ has the form (¢, 0y p), ¢ € C and Oy , C O.

Objective: Assign each probe to at most one contig in C such that the number of
satisfied constraints in 2’ is maximized. A constraint (¢, Oy p) is satisfied if one or
more of the probes from Oy ;, is assigned to c.

Unfortunately, but not surprisingly, the MCSPCA optimization problem is NP-
complete. This can be proved by a reduction from the 3SAT problem.®

Theorem 1. The MCSPCA problem is NP-hard.

Proof. Let us define a language problem L, which corresponds to a special case of
the above optimization problem as follows:

L ={(0,C, Q)| there exists a many-to-one mapping from Q to C

such that all constraints in ' are satisfied},

where @, C, and ' are defined in the original optimization problem above. We will
prove that L is NP-complete by a reduction from 3SAT. As a result, the MCSPCA
optimization problem is also NP-complete.

Let ¢ = (V,S) be an instance of 3SAT, where V' = {v1,va,...,v,} is the set
of variables and S = {s1,52,...,8%} is the set of clauses of y. We construct an
instance £ = (0,C,Q) of L, with the property that £ € L if and only if ¢ is
satisfiable. The construction is as follows: @ = {vf, v vt v, ... v vf}, where
v} and vlf correspond to the “true” and “false” assignments to variable v; € V,
respectively. We set C = {c,v1,v2,...,v,}; and Q' consists of two parts, namely,
0f and Q5. Q] is used to ensure the satisfiability of all the clauses in S; and €2 is
used to ensure that either v} or vl is used to satisfy the constraints, but not both

i
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of them. We set

the three literals corresponding to clause s; € S. For example, if s; = (v1 UtaUvs),
then the constraint (c, {vf,v],vt}) is added to €.

i Q/2 = {(Ulv {Uivv{}% (U27 {Uévvg})7 R (Uﬂ7 {U’It'L7U’I'fL )}

It can be verified that £ € L if and only if ¢ is satisfiable. O

2.3.1. Solving the MCSPCA problem wvia integer programming

The MCSPCA optimization problem can be solved with integer linear programming
(ILP) as follows. Let X, c be the variable associated with the possible assignment
of probe o to contig c, which is set to 1 if o is assigned to ¢ and set to 0 otherwise.
Let Y, be a variable corresponding to the constraint ¢ € €', which is set to 1 if
q is satisfied and set to 0 otherwise. The following integer program encodes the
MCSPCA problem:

Maximize Z Y,

qeQY
Subject to ZXotc <1 Vo e O
ceC
Y, <1 Vge Y (2)
Yi—(c,5) £ D peg Xoe Vg
X, €4{0,1} Voe 0,ceC
Y, € {0,1} Vg e .

The first constraint ensures that each probe can be assigned to at most one
contig, whereas the third constraint makes sure that the constraint ¢ = (¢, S) €
is satisfied iff one or more probes from S is assigned to c.

The integer program above cannot be solved optimally for real-world instances
because solving integer programs is very time-consuming, and in the worst case
takes exponential time. Faster and approximate algorithms must be obtained.
Below, we present one such fast approximate algorithm based on relaxation and
randomized rounding.

2.3.2. Relazation and randomized rounding

The integer linear program is first relaxed to the corresponding linear program
(LP) by turning all {0, 1} constraints into [0, 1]. Then, the linear program can be
efficiently solved optimally. Let {X; . |Vo € O,c € C} and {Y,"|Vq € Q'} be the
optimal solutions to the linear program. In general, X . and Y are fractional
values between 0 and 1. X7 . is to be interpreted as the probability of assigning
probe o to contig c. We apply the standard randomized rounding technique to
convert the fractional solutions into an integral solution as follows. For each probe
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o,let C, = {c|lce C,X;. >0} If Y - X; . =1, randomly assign o to one of
the contigs in C, according to the associated probability X7 .. If > . X5 . <1,
randomly assign o to one of the contigs in C, according to the associated probability
X, ¢» or to none of the contigs with probability 1-> -~ X/ .. The output from this
rounding step is an assignment of each probe to at most one contig, as required.
This rounding procedure can be applied multiple times. Among the assignments
produced by each individual rounding step, the one that satisfies the maximum
number of constraints will be taken as the final solution. The following theorem
shows that the randomized rounding step achieves a constant approximation ratio.

Theorem 2. The randomized MCSPCA algorithm achieves approximation ratio
(1—et).

Proof. Let us still use {X;. | Yo € O,c € C} and {Y" | Vg € Q'} to denote the
optimal solutions obtained by solving the linear program. Let OPT be the optimal
value of the objective function of the linear program, that is, OPTy = quQ, Y,/
Let I, be an indicator random variable, which is set to 1 if the constraint ¢ is satisfied
under our randomized rounding step and to 0 otherwise. Let W denote the total
number of satisfied constraints after the rounding step. Clearly, W =3 1,, and

EW) = quﬂ, Prob(I, =1). Consider the following two cases:

qeY

(1) Y = 1. Let g be of the form (c,S), where ¢ € C and S C O. In this case,
ZOGS X:;,c 2 L.
Prob(l; =1) =1— Prob(I, =0)
=1-JJa-X:0)

o€S
> ]_ — e ZOES X:,c
>1-— e L.
So, Prob(I; =1)/Y; >1—e .
(2) Y < 1. Let ¢ be of the form (c,S), where ¢ € C and S C O. In this case,
Y:z* - EOGSX:;,C'
Prob(l; =1) =1— Prob(I, =0)
=1-J[a-X:0
o€S
>1—e" ZOES X:,c
=1—eYa,
So, Prob(I; =1)/Y; > ming<y<i(1—e™¥)/y=1—e"".
Therefore, to sum up, E(W) > (1 — e 1) OPTy. m|

The algorithm can be derandomized via the method of conditional expectation
to achieve a deterministic performance guarantee. The derandomization step fol-
lows the procedure in Vazirani.” We observe that the approximation algorithm we
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Algorithm MCSPCA(O, C, B, ()
0. Convert Q to .
1. Generate the integer program (2) from (O, C, ).
2. Solve the LP relaxation of the ILP in step 1, and obtain the optimal
fractional solutions { X} .} and {Y,"}.
3. Apply K steps of randomized rounding and save the best solution:
For each o € O, do
Co={c|ceC,X;. >0}
Assign o to ¢ € C, with probability X7 . or to none of the contigs
with probability 1 — 3 .o X; .
4. Further assign probes to BAC clones:
If o is assigned to c in step 3, then assign o to the set of BAC clones
{bec|3(,0pp) € st.ocOyp}.

Fig. 2. Sketch of the two-phase deconvolution algorithm that exploits an imperfect physical map.

propose here is similar to the one for MAX-SAT.'%:!1 To summarize, a sketch of
the MCSPCA algorithm is presented in Fig. 2.

2.4. Deconvolution using a perfect physical map

As said, although it is not realistic to assume to have a perfect or near-perfect
physical map, this variation of the problem allows us to establish the limits of how
many assignments we can correctly deconvolute from the hybridization data. This
is particularly useful for simulations, to ensure that our algorithm can achieve good
results if the input physical map is of good quality.

If we are given a perfect (or near-perfect) physical map, the problem can be
tackled from the “opposite” direction. Instead of trying to take advantage of the
grouping of BAC clones into disjoint contigs, we partition each BAC into several
pieces. We preprocess the physical map as follows. We align the BAC clones along
the chromosome according to their relative positions on the physical map. Then,
starting from the 5’ end, we cut the chromosome at each location where a BAC
either starts or ends. This process breaks the genome into at most 2n fragments,
where n is the total number of BAC clones. Each fragment is covered by one or
more BAC clones, and some fragments may be covered by exactly the same set
of BAC clones. In the latter case, only one fragment is kept while the others are
removed. At the end of this preprocessing phase, a set of fragments is produced
where each fragment is covered by a distinct set of overlapping BAC clones. Let us
denote the final set of fragments as F. Given a fragment f € F and a BAC b € B,
we use BFun(f) to denote the set of BAC clones that f is covered by, and use F(b)
to denote the set of fragments that b covers.

For the same reasons mentioned above, we expect that each probe will match its
intended place in the genome and nowhere else. Our goal is to assign each probe to
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one fragment while at the same time maximize the number of satisfied constraints
in Q. A constraint (b,Qpp) € Q is satisfied if one or more probes from O p is
assigned to any of the fragments in the set F(b). Given an assignment between
probes and fragments, the probe-BAC assignment can be easily obtained. Below is
a formal statement of our new optimization problem.

MAXIMUM CONSTRAINT SATISFYING PROBE-FRAGMENT ASSIGNMENT (MCSPFA)
Instance: A set of fragments F, a set of probes O, a set of BAC clones B, and a list
of constraints Q = {(b, Oy p)|b € B, Oy, C O}.

Objective: Assign each probe in O to at most one fragment in F, such that the
number of satisfied constraints in €2 is maximized.

The MCSPFA problem is also NP-hard, since it is a special case of MCSPCA
when all BAC clones in B are disjoint.

2.4.1. Solving the MCSPFA problem via integer programming

A variant of the integer program that we presented for MCSPCA can also solve this
problem optimally. Let X, ; be a variable associated with the possible assignment
of probe o to fragment f, which is set to 1 if o is assigned to f and to 0 otherwise.
Let Y, be defined in the same way as the previous integer program. The integer
linear program for MCSPFA is as follows:

Maximize Z Y,

qgeC
Subject to ZXva <1 Yo e O
feF
Y, <1 Vg e Q (3)
Yors) Y. Y. Xop VgeQ
0€S feF(b)
Xo,r€{0,1} YoeO,feF
Y, € {0,1} Vq € Q.

The major difference between ILP (3) and ILP (2) is in the third constraint.
The third constraint in ILP (3) translates the fact that a constraint (b, S) € € is
satisfied if any probe in S is assigned to any fragment in F(b).

2.4.2. Relazxation, rounding, and analysis

Following the same strategy used in the MCSPCA problem, the ILP is relaxed to its
corresponding LP, and then the LP can be solved optimally. Let {X ;[Vo € O, f €
[} and {Y,"|Vq € '} denote the optimal solutions to the LP. The fractional solu-
tion will be rounded to an integer solution by interpreting X ; as the probability
of assigning probe o to fragment f.
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Let OPTy be the optimal value of the objective function in the LP, that is,
OPT; = quQY Let I, be the indicator random variable, which is 1 if the
constraint ¢ is satisfied under the above randomized rounding step and 0 otherwise.
Let W denote the total number of satisfied constraints after the rounding step.
Clearly, W = 3" Io, and E(W) =3 g Prob(I; = 1). In the following, we prove
that E(W) > (1 — e”*)OPT}. This is formally stated as the following theorem:

Theorem 3. The randomized MCSPFA algorithm achieves an approximation
ratio (1 —e™1).

Proof. As we did in the proof for Theorem 2, in order to show E(W) > (1 —
e 1)OPTY, it is sufficient to show that Prob(l; = 1)/Y > 1—e™ ' Vg e Q. We
consider the following two cases:

(1) Y = 1. Let g be of the form (b,S), where b € B and S C O. In this case,
ZOES Zfef(b) Xo,f* > 1.

Prob(I, =1) =1— Prob(I, =0)

ST (- Y

o€S feF(b)
>1—e EOES Zfe]-‘(b) X0~f
>1- e L.
So, Prob(Iy =1)/Y; >1—e™!
2) Y < 1. Let ¢ be of the form (b,5), where b € B and S C O. In this case,
q
Y =2 0es Zfef(b) Xo>f*'

Prob(I, =1) =1— Prob(I, =0)

ST (- Y

o€S feF(b)
>1—e" EOES Zfe}‘(b) Xo.f

=1—ecYa,

So, Prob(I, =1)/Y; > minpcy<i(1—e ¥)/y=1—e"".
Therefore, it follows that E(W) > (1 — e 1)OPTy. 0
The MCSPFA algorithm can also be derandomized via the method of conditional

expectation to achieve a deterministic performance guarantee. The pseudocode for
our algorithm is presented in Fig. 3.
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Algorithm MCSPFA(O,F,B, Q)
1. Generate the integer program (3) from (O, F, Q).
2. Solve the LP relaxation of the ILP in step 1, and obtain the optimal
fractional solutions { X} ,} and {Y;'}.
3. Apply K steps of randomized rounding and save the best solution:
For each o € O, do
Fo={fIfeF,X;;>0}
Assign o to f € F, with probability X} ; or to none of the fragments
with probability 1 — ZfeFo X5 g
4. Further assign probes to BAC clones:
If o is assigned to f in step 3, then assign o to all of the BAC clones
in F(b).

Fig. 3. Sketch of the two-phase deconvolution algorithm that exploits a perfect physical map.

3. Experimental Results

In order to evaluate the performance of our algorithms, we applied them to two
datasets. The first one is partially simulated data on the rice genome, while
the second one is real-world data from hybridizations carried out on the barley
genome (details to be described elsewhere). Before delving into the experimental
setup, we give a short description of the pooling design, which is relevant to the
discussion.

3.1. Pooling design

Pooling design (or group testing) is a well-studied problem in the scientific literature
(see Du and Hwang® and references therein). Traditionally, biologists have used the
rather rudimentary two-dimensional (2D) or three-dimensional (3D) grid design.
There are, however, more sophisticated pooling strategies.'? '* To the best of our
knowledge, the shifted transversal design (STD)' is among the best choices due
to its capability to handle multiple positives, its flexibility, and its efficiency. STD
pools are constructed in layers with each layer consisting of P pools, where P is a
prime number. Each layer constitutes a partition of the probes; and the larger the
number of layers, the higher the decodability of the pooling. More specifically, let
I" be the smallest integer such that PT*! is greater than or equal to the number of
probes to be pooled, and let L be the number of layers. Then, the decodability of
the pool set is equal to [ (L — 1)/T'|. In order to increase the decodability by one, an
additional PI" pools are needed. By a simple calculation, one can realize that the
number of pools required to provide sufficient information for deconvolution (e.g.
to be at least 10-decodable) for a real-world problem assuming 50,000 BAC clones
and 50,000 unigenes is prohibitively high.
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3.2. Experimental results on the rice genome

The rice “virtual” BAC library used here is a subset of the Nipponbare BAC library,
whose BAC end sequences are hosted at the Arizona Genomic Institute (AGI). The
fingerprinting data for this library were also obtained from the AGI. Our rice virtual
library contains the subset of BAC clones in the original library whose location on
the rice genome (Oryza sativa) can be uniquely identified and for which restriction
fingerprinting data were available. The location of the BAC clones was determined
by BLASTing the BAC end sequences against the rice genome.

Since our rice virtual BAC library is based on real fingerprinting data (agarose
gel), we expect the overlapping structure of the rice BAC clones in the physical map
to be an accurate representation of what would happen in other organisms. Also,
since we know the actual coordinates of the BAC clones on the rice genome, we can
produce a perfect physical map and test the maximum amount of the deconvolution
that can be extracted from the hybridization data.

For the purposes of this simulation, we restricted our attention to chromosome
1 of rice, which includes 2,629 BAC clones. This set of BAC clones provides a
8.59x% coverage of chromosome 1. We created a physical map of that chromosome
by running FPC” on the fingerprinting data with the cutoff parameter set to le —15
(all other parameters were left to default). FPC assembled the BAC clones into 347
contigs and 416 singletons. Not including the singletons, each contig contains on
average about 6.4 BAC clones. Given that the fingerprinting data are noisy, the
physical map assembled by FPC cannot be expected to be perfect. It is also well
known that the order of the BAC clones within a contig is generally not reliable.'®

We then obtained rice unigenes from the National Center for Biotechnology
Information (NCBI) (build #65) with the objective of designing the probes. First,
we had to establish the subset of these unigenes that belong to chromosome 1.
We BLASTed the unigenes against the rice genome, and we selected a subset of
2,301 unigenes for which we had high confidence to be located on chromosome 1.
Then, we computed unique probes using OLIGOSPAWN.*® This tool produces 36-
nucleotide-long probes, each of which matches exactly the unigene it represents and
at the same time does not match (even approximately) to any other unigene in the
dataset.

OL1GOSPAWN successfully produced unique probes for 2,002 unigenes (out of
2,301). The remaining unigenes were not represented by probes because no unique
36-mers could be found. This set of 2,002 probes is named probe set 1. Some of
the probes in probe set 1, however, did not match anywhere in the genome. This
will occur if the probe chosen happens to cross a splicing site or when the unigene
from which it was selected was misassembled. In probe set 1, 330 probes did not
match anywhere on rice chromosome 1, while the remaining 1,672 probes matched
exactly once in rice chromosome 1. This latter set constitutes our probe set 2, which
is a “cleaner” version of probe set 1. We observe that in order to clean the probe
set, one has to have access to the whole genome, which is somewhat unrealistic in
practice. Each BAC contains on average 5.8 probes and at most 20 probes.
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The probes were hybridized in silico to the BAC clones using the following
criterion: a 36-nucleotide probe hybridizes a BAC if they share a common (exact)
substring of 30 nucleotides or more. Observe that the hybridization table is the only
synthetic data in this dataset.

The next step was to pool the probes for group testing. We followed the STD
pooling strategy'* and designed four sets of pools, for different choices of the pooling
parameters P and L. Recall that in STD, the number of pools is P * L. Pool set 1
is 1-decodable, obtained by choosing P = 13 and L = 3. Pool set 2 uses two extra
layers (P = 13, L = 5), which increased the decodability by 1. For pool set 3, we
chose P = 47 and L = 2; pool set 3 is also 1-decodable, but since each pool contains
a smaller number of probes, it will deconvolute the BAC—probe relationships better
than pool set 1. Pool set 4 is constructed from pool set 3 by adding an additional
layer (P = 47, L = 3); as a consequence, pool set 4 is 2-decodable. The four pooling
designs were applied to probe set 1 and probe set 2. In total, we constructed eight
sets of pools.

The hybridization tables h between pools and BAC clones were formed for the
eight sets of pools. Then, the basic deconvolution step (described in Sec. 2.2) was
carried out. This step produced a list of constraints, some of which were exact pairs
and could deconvolute immediately.

The set of BAC clones, the set of probes, the list of constraints from the previous
step, and the physical map produced by FPC were then fed into MCSPCA. Our
ILP-based algorithm produced a set of BAC—probe assignments, which were then
merged with the exact pairs obtained by the basic deconvolution to produce the
final assignment. Similarly, the set of BAC clones, the set of probes, the list of
constraints from the basic deconvolution, and the perfect physical map were fed
into MCSPFA. The assignment obtained by MCSPFA was also merged with the
exact pairs to produce the final assignment.

For both algorithms, we used the GNU Linear Programming Kit (GLPK) to
solve the linear programs. The size of the linear programs is quite large. The number
of variables ranged from 47,820 to 165,972, and the number of constraints ranged
from 29,412 to 60,475.

To evaluate the accuracy of our algorithms, we employed two performance met-
rics: recall and precision. Recall is defined as the number of correct assignments
made by our algorithm divided by the total number of true assignments. Precision
is defined as the number of correct assignments made by our algorithm divided by
the total number of assignments our algorithm made. Tables 1 and 2 summarize
the assignment accuracy of our algorithms. “Basic recall” is the recall of the basic
deconvolution step (precision is not reported because it is always 100%).

A few observations are in order. First, note that 2-decodable pooling designs
achieve a much better performance than 1-decodable pooling. Second, probe set
2 provides better-quality data and, as a consequence, improves the deconvolution.
However, if we stick with the more realistic probe set 1 and noisy physical map, our
algorithm still achieves 91% recall and 94% precision for the pooling P = 47, L = 3.
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Table 1. Assignment accuracy of MCSPCA (with imperfect physical map) and MCSPFA (with
perfect physical map) on probe set 1.

# true  Basic MCSPCA MCSPFA

Pooling # pools assigns recall Recall Precision Time* Recall Precision Time*

39 14742 0.0103 0.199 0.2647 56 0.4857  0.4227 29

1

3

;3} 65 14742 0.2726 0.618 0.7668 41 0.9708  0.8511 409
;} 94 14742 0.0173 0.4005  0.5236 9 0.8856  0.7626 83
4

I — 7} 141 14742 0.763  0.9069  0.9446 2 0.9991  0.9798 <1

2The time reported is the running time in minutes for GLPK to solve the linear program on a
3 GHz Pentium machine with 3 GB memory. The running time for the randomized rounding step
is negligible.

Table 2. Assignment accuracy of MCSPCA (with imperfect physical map) and MCSPFA (with
perfect physical map) on probe set 2.

# true  Basic MCSPCA MCSPFA

Pooling # pools assigns recall Recall Precision Time* Recall Precision Time?

39 14742  0.0121 0.2163  0.3182 26 0.625 0.6214 28

1

3

513} 65 14742 0.3111 0.6488  0.8314 26 0.9984  0.9964 149
;1 } 94 14742 0.0298 0.4348  0.6009 5 0.9971  0.9962 24
4

7} 141 14742 0.8182 0.9285  0.9767 <1 0.9995  0.9997 <1

2The time reported is the running time in minutes for GLPK to solve the linear program on a
3 GHz Pentium machine with 3 GB memory. The running time for the randomized rounding step
is negligible.

Even more impressive is the amount of additional deconvolution achieved for the
other 2-decodable pooling when compared to the basic deconvolution. For example,
for P = 13,L = 5, the pooling is composed by only 65 pools, and thereby the
basic deconvolution achieves just 27% recall; our algorithm, however, achieves 62%
recall with 77% precision. The results for the perfect map show that our algorithm
could potentially deconvolute all BAC-probe pairs with almost 100% precision (if
the pooling is “powerful” enough).

Finally, in order to show the effectiveness of our randomized rounding scheme,
Tables 3 and 4 report the total number of constraints, the optimal value OPT} of
the LP, and the number W of satisfied constraints. Note that the rounding scheme
does not significantly affect the value of the objective function (see ratio OPTy/W).
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Table 3. Performance of the randomized rounding scheme on probe set 1.

MCSPCA MCSPFA
Pooling # constraints  OPTy w OPTy/W  OPTy w OPTy /W
P=13,L=3 35071 28683 22615 0.7884 35033 30562 0.8724
P=13,L=5 58472 45220 41462 0.9169 58425 58277 0.9975
P=47,L =2 27591 21472 18633 0.8678 27567 26524 0.9622
P=47,L =3 41509 29458 29378 0.9973 41467 41467 1
Table 4. Performance of the randomized rounding scheme on probe set 2.
MCSPCA MCSPFA
Pooling # constraints  OPTy w OPTy/W  OPTy w OPTy /W
P=13,L = 35102 27161 21567 0.7940 35089 31183 0.8887
P=13,L=5 58210 42795 39934 0.9331 58179 58179 1
P=47,L =2 27739 20127 17990 0.8938 27711 27711 1
P=47,L =3 41378 28567 28532 0.9988 41378 41338 0.9990

3.3. Experimental results on the barley genome

The second dataset is related to the barley (Hordeum wvulgare) project in progress
(details to be described elsewhere). The Barley BAC library used is a Morex library
covering 6.3 genome equivalents.'% Selected BAC clones from the BAC library were
fingerprinted using a technique that employs four different restriction enzymes,
called high-information-content fingerprinting (performed by Ming Cheng Luo, Uni-
versity of California, Davis, CA).1” The physical map was constructed using FPC.
The total number of BAC clones that were successfully fingerprinted and that were
present in the physical map is 43,094. Among the set of BAC clones present in the
physical map, about 20 have been fully sequenced; they will be used for valida-
tion of our algorithm. The Barley unigenes were obtained by assembling the EST's
downloaded from the NCBI EST database. The unigene assembly contains in total
26,743 contigs and 27,121 singletons.

About a dozen research groups around the world contributed hybridization
data. Each group designed probes for certain genes of interest and performed the
hybridization experiments. Since those efforts were not centrally coordinated, the
probe design and the pool design were completely ad hoc. The length of probe
ranges from 36 nucleotides to a few hundred bases. The number of unigenes that
each pool represents also ranges from one to a few hundred. We collected the data
and transformed it into a list of constraints that we processed first with the basic
deconvolution.

Recall that if we obtain an exact pair, the assignment is immediate. But if a
constraint is nonexact, we cannot conclude much even if the size of Oy is very
small. However, intuitively, those constraints for which |Q p| is small are the most
informative.
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In an attempt to filter out the noise and isolate the informative constraints, we
selected only those for which |Qp | < 50. In total, 14,796 constraints were chosen.
Then, we focused only on the 5,327 BAC clones and 2,263 unigenes that were
involved in this selected set of constraints. We then used our MCSPCA method
on this reduced set (along with the barley physical map produced by FPC) and
obtained 9,587 assignments. We cross-referenced these assignments to the small set
of sequenced BAC clones, and determined that six of them were in common to the
5,327 BAC clones we selected. Our algorithm assigned eight unigenes to those 6
BAC clones, and six of them turned out to be correct by matching them to the
sequences of 20 known BAC clones.

4. Conclusion

In this paper, we proposed a new method to solve the BAC—gene deconvolution
problem. Our method compensates for a weaker pooling design by exploiting a
physical map. The deconvolution problem is formulated as a pair of combinatorial
optimization problems, both of which are proved to be NP-complete. The combi-
natorial optimization problems are solved approximately via integer programming
followed by linear programming relaxation and then randomized rounding. Our
experimental results on both real and simulated data show that our method is very
accurate in determining the correct mapping between unigenes and BAC clones.
The right combination of combinatorial pooling and our method can not only dra-
matically reduce the number of pools required, but also deconvolute the BAC—gene
relationships almost perfectly.

5. Future Work

The time complexity for both our algorithms MCSPCA and MCSPFA is dominated
by the step of solving the LPs. Among the data sets that we have tried, the largest
LP takes several hours for GLPK to solve optimally. One way to speed up our
algorithm is to rely on the Lagrangian relaxation technique to solve the LP only
approximately. This will inevitably sacrifice the accuracy of the algorithms, but will
dramatically increase the efficiency.
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