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The first attempts at global analysis of gene expres-
sion were undertaken in the mid-1970s with studies
of the hybridization of an mRNA pool with radioac-
tively labeled cDNA. Interest in gene expression 
increased steadily during the 1980s, and in the 1990s
a new era of high throughput gene expression stud-
ies unfolded with the development of microarrays
[1,2]. Although microarrays are relatively new, their
penetration has been phenomenal. Biologists and
physicians have enthusiastically embraced this tech-
nology, and are currently producing an unprecedented
quantity of microarray data. As of March 2005, for 
example, the Stanford microarray database (SMD)
[3] contained sets of images for ~54,000 microarrays,
relating to the biology of 35 organisms. The database
has been growing exponentially since its inception.

Microarrays allow studies of gene expression on
a massively parallel scale; a single microarray exper-
iment can provide information on the expression of
thousands of genes. More specifically, a microarray
experiment is designed to compare the transcrip-
tional activity of a set of genes under two conditions
(hereafter called ‘reference’ and ‘experimental’). The
outcome is a quantitative measure of the relative
change of expression of each gene in an experimen-
tal condition compared with the reference condition.

Currently, a few variants of microarray technology
exist. To simplify the discussion in this review, we will
describe the so-called cDNA microarrays. Proprietary
technologies developed by Affymetrix and NimbleGen
Systems employ somewhat different strategies – 
although the general principles remain the same.
cDNA microarrays are fabricated on a glass or a nylon
substrate by specialized high-speed robots. The fab-
rication process creates thousands of microscopic
spots containing DNA probes that are immobilized
in the substrate. The DNA probes are chosen to 
hybridize to unique sequences in the genes being
studied.

The mRNA from the two different conditions is
obtained separately and reverse transcriptase is used
to transcribe the mRNA into cDNA. The cDNA is 
labeled with a green or red dye, depending on which
conditions it corresponds to. The microarray chip is
then exposed to a mix of the two populations of
cDNAs. A given strand of cDNA will hybridize with
the DNA probe that was selected from the gene that
produced that transcript. The chip is then washed
to remove any unbound cDNAs (see [1,2] for more
details on the protocols). The microarray chip is 
finally scanned using a confocal laser or a charge-
coupled device (CCD) to generate two digital images,
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each corresponding to one of the colors [4,5]. The output
of a single microarray experiment is a pair of 16 bits per
pixel (bpp) digital images whose total size is typically in
the tens of megabytes [6].

Microarray images are usually structured as a series of
high intensity spots located on a regular grid. For example,
Figure 1 shows a microarray with 16 subgrids for a total
of ~9000 spots. A variety of methods and software tools
are available to extract the gene expression information
from microarray images (reviewed in [4]). However, there
is still a debate in the scientific community about the 
accuracy, reliability and robustness of the analytical and
statistical methods that need to be used. In practice, 
microarray images are challenging to process. For exam-
ple, when the image contains high levels of noise, the 
detection of low-intensity spots is easily compromised.
Because there is not yet a clear choice of a specific analytic
method, it is believed crucial to keep the raw image data
in some permanent storage medium [7]. Simply discarding
the raw data and repeating the experiment is not an option
because of the high costs associated with each experiment.
Given the massive amount of data produced and the need
of long-term storage and efficient transmission, ad hoc
compression methods and dedicated database systems 
are currently an active area of research in computational
biology.

Before turning the attention to the current research in
microarray image compression, we report on the image

compression formats employed by some of the microar-
ray databases currently available (Table 1 is a summary of
some commonly used image formats). The focus of this
review is mainly on databases in the public domain because
of the difficulties involved in finding technical specifica-
tions of proprietary platforms.

Storage of microarray images
The importance of organizing and storing the data of 
microarray experiments in relational databases cannot be
overemphasized. Many microarray users are still strug-
gling in the transition from spreadsheets to databases 
designed to handle the explosive growth of their microar-
ray datasets. An international effort led by the Microarray
Gene Expression Data (MGED) Society (www.mged.org) is
under way to ‘establish standards for microarray data
annotation and exchange, facilitate the creation of 
microarray databases and related software implementing
these standards, and promote the sharing of high quality,
well annotated data within the life sciences community’.
The MGED group has prepared standards on the ‘minimum
information about a microarray experiment’ (MIAME) that
requires all the information needed to interpret, share
[8,9] and possibly replicate the results of a microarray 
experiments to be recorded in the database and made
public [10–12]. A relational database system allows users
to process and store the large quantities of data produced
by microarray experiments and thereby accommodate the
enforcements of standards like MIAME. Moreover, because
microarray experiments typically depend on the work of
several people in the laboratory, database systems can easily
enforce common principles in data format and data entry
[13]. To facilitate the exchange of information between
databases, the MGED group has also designed a standard
called microarray mark-up language (MAML).

A proliferation of microarray databases has occurred in
response to the demands of the life science communities
[14–16]. We have reviewed several databases both for local
installation and public data repositories, and here we pres-
ent our findings. Public data repositories allow multiple
users to access the data remotely via a browser, whereas
local installations allow access only through the machine
in which the database is installed. Some databases are not
designed to manage images but only gene expression data
[e.g. ChipDB (http://chipdb.wi.mit.edu) or AMAD (www.
microarrays.org)].

Local installation databases, such as GeneDirector
(www.biodiscovery.com), mAdb (http://madb.niaid.nih.gov),
maxdSQL (http://bioinf.man.ac.uk/microarray/maxd) and
the SMD (http://genome-www5.stanford.edu) [3,17], store
file images in TIFF format and allow users direct access to
them. SMD allows images in GIF format to be obtained
for viewing purposes or web posting and the mAdb database
can export images in JPEG format for presentation. Among
the databases for public data repositories, ArrayExpress
(www.ebi.ac.uk/arrayexpress) [17–20], the RNA Abundance
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FIGURE 1

A typical microarray image, composed by 4x4 sub grids. Each sub grid is composed
of a 24×24 matrix of spots.The original resolution of this image is 1872×1916 pixels,
16 bpp.
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Database (RAD; www.cbil.upenn.edu/rad) [21,22], SMD,
and the National Center for Biotechnology Information
(NCBI) Geo (www.ncbi.nlm.nih.gov/geo) [23,24] store
links to TIFF images. NCBI Geo also allows users to link
to JPEG images. (See Table 2 for summaries of the image
formats supported by these databases.)

All the databases mentioned above claim to follow the
MGED minimum information guidelines. AMAD is the
only nonrelational database in the group. GeneDirector,
maxdSQL and SMD use Oracle as the underlying database
management system (DBMS), and mAdb uses Sybase
DBMS. Some of these databases already allow the users to
upload data in the MAML format (e.g. ArrayExpress). All
the databases, with the exception of ChipDB, allow the
storage of gene expression data obtained with cDNA
microarrays. Only GeneDirector, maxdSQL, ArrayExpress,
ChipDB, NCBI Geo and RAD also allow managing data
generated with Affymetrix arrays.

The image format specifications of commercial platforms
are harder to obtain. For example, the documentation of
the Affymetrix GeneChip operating system (GCOS) men-
tions several intermediate data formats. Raw files generated
by the Affymetrix proprietary chip scanning software are
16 bit TIFF files that are converted to 8 bit PNG or JPEG
format for viewing. The feature extraction tool used by
Agilent only supports uncompressed TIFFs (Agilent TIFF
and standard TIFF) as an input file format. Agilent TIFF
contains both channel images and also includes the grid
and the protocol information. The output format supports
JPEG for viewing and for downstream analysis packages.

As in many domains of application in computer sci-
ence, the technologies currently used are several years 
behind what is proposed in the literature.

Compression of microarray images
Data compression is a crucial step in several technologies
that rely on the storage or transmission of large quanti-
ties of data. Data compression methods can be divided
into two disjoint classes depending on the quality of the

decompressed file. If the decompressed file is identical to
the original, the compression is termed lossless; if any loss
of quality occurs, the compression is called lossy. For loss-
less files, the typical strategy to reduce the size of the file is
to use an encoding scheme that exposes the regularities
of the data (for example, repetitions or periodicities). For
lossy files, the general idea is to use fewer bits to encode
less important features of the image. The specification
of what constitutes an ‘important feature’ (sometimes
called a region of interest) depends on the domain of 
application. For example, to compress real-world photo-
graphs one could design an encoder that uses more bits to
encode the edges of the objects and fewer bits to encode
weak variations of colors.

In microarray images, the regions of interest are the
subset of pixels that correspond to the spots (the fore-
ground). The shape of the spots is approximately circular,
although significant variations from this shape are pos-
sible because of experimental deviations in the spotting
procedure. Perturbations on the spot position, irregular-
ities in the spot shape and size, holes in spots, unequal
distribution of the DNA probe within spots, variable back-
ground and global problems that affect multiple spots
(like scratches, contamination, dust, etc.) are common.
In general, the shape and the size of the spots can fluctu-
ate significantly across the array. The background is usually
much less crucial for the downstream image-processing
step, although it is used as a reference. In cDNA microar-
rays, some of the labeled cDNA will attach to the substrate
even where there are no DNA probes. The intensity of a
spot must therefore be corrected by the intensity of the
background in a nearby area [25].

It is well known that microarray images cannot be 
easily compressed with standard approaches. As a conse-
quence of the microscopic size of the spots and the digi-
tization process, microarray images contain a high level
of noise. In addition, the region of the image carrying the
useful information is composed of thousands of tiny spots
that are placed close to each other. Transform-based
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TABLE 1

Common image formats 

Image format Extensions Description 

JPEG (joint 
photographic 
experts group) 

.jpg, .jpeg, .jif  
and .jfif 

JPEG is a lossy format. JPEG is most suitable for images with subtle color variations, such as a photograph. JPEG allows  
24 bpp color or 8 bpp grayscale. 

JPEG-LS .jls JPEG-LS is a lossless/near-lossless compression standard for JPEG. The standard is based on the LOCO algorithm.  
JPEG-LS allows up to 24bpp color or 16bpp grayscale. 

JPEG 2000 .jp2, .jpx, .j2k
and .j2c 

New JPEG standard based on wavelets. It is mainly a lossy format and it provides a better compression ratio than JPEG. It
also has a lossless mode. JPEG2000 allows up to 38bpp color or grayscale. 

PNG (portable 
network graphics

.png Official version support lossless compression only. Uses a two phase prediction and LZ-77. PNG allows up to 48 bpp true 
color or 16 bpp grayscale 

TIFF (tagged 
image file format)

.tif and .tiff TIFF supports storing multiple images in a single file. TIFF can be an uncompressed or compressed. If compressed, it can 
be compressed lossless with LZW or lossy with JPEG. TIFF allows up to 64 bpp color or 16 bpp grayscale.  

GIF (graphics 
interchange 
format) 

.gif GIF is a lossless format internally compressed with LZW, but limited to 8 bpp color or grayscale.  
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image-compression methods (e.g. JPEG and JPEG 2000)
have been designed for real-world images and they are
known to perform poorly on images containing large
numbers of sharp edges. In fact, microarray images are
perhaps the worst possible type of image for these tech-
niques. When transform-based methods are applied to
microarray images, the distortions in the decompressed
images are very noticeable and likely to introduce too
much variability in downstream stages.

In general, the first decision to make when choosing
an image compression method is whether one absolutely
needs lossless compression or can afford to have some loss
of data in the reconstruction. If lossy data is acceptable,
one must also decide the amount of acceptable loss. The
measure used to quantify the loss must be tailored to the
domain of application. For photographic images, the stan-
dard measure of quality is mean square error or peak 
signal to noise ratio (PSNR), although measures that better
capture the perceptual loss have been proposed (for 
example, see Ref. [26]). In the microarray image domain,
Jornsten et al. [27,28] allow a distortion in the recon-
structed images that would not affect the extraction of the
useful information in downstream stages [4]. According to
the authors, an acceptable loss is a loss of data in the 
reconstructed microarray image that is smaller than the
variability between different images obtained by scanning
the same microarray multiple times [27].

Although the scientific literature on image compres-
sion is vast (a search on the collection of computer science
bibliographies with the keywords ‘image compression’ 
returned almost 6000 results), the body of published
knowledge on compression of microarray image is not
very extensive. Nevertheless, some general principles are
emerging. For example, it is clear that to achieve good
compression, one needs to exploit the unique geometric
structure of microarray images. Because most of the 
information is in the foreground, the accurate segmen-
tation of the background is a crucial step. If the encoder

does a poor job in segmenting the image, some of the
foreground will be misclassified and the compression will
suffer. Another distinctive feature of microarray images is
the fact that they come in pairs and that the two images
are strongly correlated. Because both images have the
spots exactly in the same location, an encoder could exploit
the data in one image to compress the other.

The compression of microarray images without loss of
data turns out to be particularly challenging [29–32].
Several papers report that the eight least significant bits
of each pixel of microarray images statistically resemble
random data (for example, see Ref. [30]), which, if true,
would imply that they would be impossible to compress.
The consequence of this is a theoretical upper bound of 2:1
of lossless compression, which in fact is rarely achieved in
practice. Zhang et al. [33] were the first to report a slight
reduction in the size of the eight least significant bits of
microarray images.

As mentioned, the first step in most approaches to 
microarray image compression is the separation of the
foreground from the background. The rationale is that
the data in the foreground have different statistical fea-
tures than the data in the background and must be treated
differently. In fact, in the majority of the papers reviewed,
background and foreground are compressed separately
[29–31]. It is therefore necessary for the encoder to have
the capability to determine which pixels belong to the
foreground and which ones belong to the background
(the segmentation problem).

Microarray images are segmented using different strate-
gies, the most adaptive of which are capable of handling
rotations and distortions of the microarray grid. There is
now strong evidence that the segmentation method can
significantly affect the accuracy of the data extracted from
microarray images [34]. According to Yang et al. [4], exist-
ing methods can be grouped in four categories: fixed circle
segmentation; adaptive circle segmentation; adaptive
shape segmentation; and histogram segmentation. Fixed

REVIEWS

TABLE 2 

A sample of microarray databases grouped by the format of the microarray images supported 

Database type Supported image format Database name URL 

GeneDirector www.biodiscovery.com 

GeneX http://genex.sourceforge.net 

mAdb http://madb.niaid.nih.gov 

maxdSQL http://bioinf.man.ac.uk/microarray/maxd 

TIFF

SMD http://genome-www5.stanford.edu 

Local installation

None AMAD www.microarrays.org 

ArrayExpress www.ebi.ac.uk/arrayexpress 

GeneX http://genex.sourceforge.net 

RAD www.cbil.upenn.edu/RAD 

TIFF

SMD http://genome-www5.stanford.edu 

TIFF+JPEG NCBI Geo www.ncbi.nlm.nih.gov/geo

Online public data repositories

None ChipDB http://chipdb.wi.mit.edu 
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circle segmentation assumes that the spots have a circu-
lar shape and fits a circle with fixed radius to all spots.
Adaptive circle segmentation allows each spot to have its
own radius. In adaptive shape segmentation, the shape
of the spots is arbitrary, for example, Yang et al. [4] show
that the foreground and the background can be grown
from two initial seeds to become arbitrary shapes. Histogram
segmentation methods are purely intensity-based. Pixels
are classified as foreground or background using thresh-
olds on the histogram of pixel values. For example, we
have used an iterative refinement algorithm based on the
horizontal and vertical histograms of the microarray images
[31]. Some recent techniques classify the pixels based on
statistical tests [29,33,34]; the tests are based on the 
assumption that foreground and background have dif-
ferent probability distributions.

When the image is segmented, the compressor must
encode the foreground and the background. In some
works, spots are encoded by first transforming them into
1D time series by tracing spiral paths [31,32]. Hua et al.
[29,35] showed that an integer wavelet transforms for 
arbitrarily shaped objects can be used to encode both the
foreground and the background. Zhang et al. [33] have
compressed the data in the foreground and background
with a technique called prediction by partial approximate
matching (PPAM), which extends the idea proposed in
the prediction by partial matching (PPM) text compression
algorithm [36]. In PPAM, the encoder has an adaptive pre-
dictor that is capable of predicting the intensity of a pixel
based on the brightness of neighboring pixels.

Comparing experimental results across different 
approaches is difficult because each paper uses different
microarray images. However, when custom-designed loss-
less encoders are compared to JPEG-LS and JPEG 2000
lossless standard, the latter are still very competitive
[29,31]. For example, our method [31] is on average just

about 0.75 bpp better than JPEG-LS. When both the red
and the green image are compressed jointly, the results
are much more promising; Zhang et al. [33] report 6.3 bpp
for compressing both images.

A significant improvement in compression can be
achieved if one is willing to lose some data in the recon-
struction (for example, see Refs [27,28,30,31,37]). Again,
the typical strategy is to encode separately foreground and
background, compress the spots without loss and com-
press the background lossy and more aggressively (see
Figure 2 for an outline of the typical compression
pipeline).

We [31] have used a combination of two powerful 
encoders, namely the Burrows–Wheeler transform [38]
for the foreground and the set partitioning in hierarchical
trees method [39] for the background, to achieve 4–6 bpp
with extremely high quality (PSNR of 60 dB or better).
Jornsten et al. [27,28,30] proposed keeping higher precision
in low intensity spots and coarse image reconstruction near
high intensity spots. More specifically, they compressed
the foreground with a variant of the low complexity loss-
less compression (LOCO) algorithm, which is the JPEG-LS
lossless and near-lossless standard [40]. Faramarzpour 
et al. [37] proposed to use a circle-to-square transform to
map the foreground data to a spatial domain where a reg-
ular transform (i.e. discrete cosine transform) can be 
directly applied. Several authors have attempted to sepa-
rate a greater amount of background data, typically based
on the bit-planes of the image [30,31]. Jornsten et al. [30]
have compressed the background using a variant of vector
quantization, a method frequently used to compress 
real-world images. In several papers (for example, see Ref.
[30]) it is reported that compression rates of 4 bpp (lossy
compression of 4:1) minimally affects the information 
extracted from the images. In the realm of lossy–lossless
hybrid schemes, these custom techniques for microarray

REVIEWS

FIGURE 2

An outline of the typical workflow in lossy and lossless methods for microarray image compression. In the grid-finding step, the geometry of
the image is recovered. In the spot-finding step, the spots are located and encoded.The content of image is divided in three channels, namely the
foreground, the background and the header.The foreground stores the spots, the background the rest of the image and the header contains
information about the geometry of the image. Each channel can be compressed lossy or lossless depending on the application.
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images have a significant advantage over, say, the JPEG
standards. In fact, it is clear that none of the general-purpose
compression methods can achieve these compression ratios
without introducing significant distortions. An orthogonal
approach to the compression and transmission of microar-
ray images is the use of specialized hardware, as proposed
by Samavi et al. [41].

Conclusions
Our brief review of microarray databases indicates that
currently the large majority of them rely on the TIFF for-
mat for the long-term storage of raw microarray data.
Frequently, JPEG (or GIF) is available for viewing or 
exporting the images. While research in microarray image
compression is still in its infancy, it is reasonable to assume
that it will take several years before a new standard dedi-
cated to these images will emerge. A standard is necessary
because it allows interoperability among different soft-
ware tools, platforms and users, and guarantees some
longevity to the data. Still, the administrators of large
repositories of microarray images are struggling to keep
their datasets within reasonable dimensions.

While research in microarray image compression is 
ongoing, it would be certainly beneficial if developers of
microarray databases would include in their supported
formats other high-performance lossless compression
standards, like JPEG-LS or JPEG 2000. According to the
literature, JPEG-LS and JPEG 2000 are likely to deliver
compression ratios between 1.5:1 and 2:1 on microarray
images. Currently, none of the microarray databases surveyed
in this review uses the JPEG-LS and JPEG 2000 formats. If
TIFF is the only lossless format allowed, we advise practi-
tioners to consider saving their images in TIFF-LZW (i.e.
TIFF compressed internally with Lempel–Ziv–Welch) to
save storage space.

In the domain of lossy compression (or lossy–lossless
hybrid schemes) the choice of the best standard is not
very clear. General-purpose compression methods based
on transforms (JPEG, JPEG 2000, etc.) introduce significant
distortions in the regions around the spots, especially at
low bit rates. These artifacts could significantly affect the
extraction of information from the spot, and it is there-
fore risky to use these methods as a permanent storage
format. The reality is that there is no commercial-quality
lossy encoder that is capable of compressing microarray
images to the bit rates and the quality described in the 
research papers surveyed in this review.

From the research viewpoint, we believe that the key to
significant improvements in compression of microarray
images is held in the invention of novel segmentation 
algorithms to separate background and foreground more
effectively. Several automatic techniques have been pro-
posed to handle microarray images in the presence of dis-
tortions in the shape of the spots, rotations of the grid,
missing spots, deviations in the spot positions and so 
on. Most of the methods are Bayesian image processing 
techniques called Markov random fields (for reviews see
[42–54]). Markov random fields and their variants have
been shown to be very promising in capturing the unique
geometry of microarray but they have not been used yet
in microarray image compression.

We want to conclude on a practical note. This review
of microarray image compression has revealed the urgent
need of a standard set of microarray images to benchmark
microarray image compression algorithms, like the Calgary
corpus for text compression algorithms. A benchmark
dataset would be of great help for comparing the quality
of different algorithms (i.e. their compression efficiency
and their computational cost) and for helping researchers
in designing and fine-tuning new methods.
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REVIEWS

Erratum

In the September 1 issue of Drug Discovery Today (Vol. 10, No. 17), in the review entitled Interdisciplinary education at the biology–engineering–computer science

interface: a perspective, there were a number of errors, including the following:

• We only listed Dr Bruce Tidor as the corresponding author. Dr Brigitta Tadmor is also a corresponding author for this article and can be contacted at

tadmor@mit.edu 

• At the end of the first paragraph in the ‘Interdisciplinary graduate education’, we should have inserted the following:‘In a related effort, MIT is launching a

new undergraduate major in Biological Engineering.’

• All figures should have included the copyright line:‘CSBi@MIT’

• Figure 4(b) is courtesy of Michael D. Altman

• The correct acknowledgements for the article are below:
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