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1 Introduction

Greedy o�-line textual substitution refers to the following steepest descent approach
to compression or structural inference. Given a long textstring x, a substring w is
identi�ed such that replacing all instances of w in x except one by a suitable pair of
pointers yields the highest possible contraction of x; the process is then repeated on
the contracted textstring, until substrings capable of producing contractions can no
longer be found. This paper examines computational issues and performances result-
ing from implementations of this paradigm in preliminary applications and experi-
ments. There is enough motivation for studying this and the many other conceivable
variants of greedy o�-line methods that fall in the wide and relatively unexplored
gap between the classical, linear and polar methods introduced by [15] and [16], and
the generally intractable optimal macro schemes [12]. Apart from intrinsic interest,
these methods may �nd use in the compression of massively disseminated data, e.g.,
of the kind considered in [8], and lend themselves to e�cient parallel implementation,
perhaps on dedicated architectures such as, e.g., in [7].

Given a string x over an alphabet � and any substring w of x, we denote by f
w

the number of nonoverlapping occurrences of w in x. Clearly, fw may di�er from
the total number of occurrences of w. For example, w = aba occurs 11 times in
x = abaababaabaababaabababababaa, but no more than 7 such occurrences can be
chosen so that no two of them overlap. Our scheme is based on repeated identi�cation
of a substring w of x such that replacing all occurrences of w except one with a pointer
to the unique reference copy yields the highest contraction of x. This process requires
knowledge of the f -values and lengths of all substrings of the current version of x.
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The computation of the statistics of all substrings of a string x is an easy appli-
cation of the su�x tree T

x
of x. As is well known, the latter is a trie (digital search

tree) collecting all the su�xes of x$, where $ is a special symbol not included in �.
The tree in compact form is built by iterated insertion of consecutive su�xes in �(n2)
worst case time and O(n log n) expected time (see, e.g., [3]). A number of more clever
constructions are available achieving linear time for �nite alphabets (see, e.g., [13]).
The number of occurrences (with overlap) of a string w of x is trivially given by the
number of leaves reachable from the node closest to the locus of w in Tx, irrespective
of whether or not w ends in the middle of an arc. Thus, labeling every internal node
� of Tx with the number c(�) of the leaves in the subtree rooted at � yields this
statistics for all substrings of x.

The problem becomes more involved if we wanted to build a similar index for the
statistics without overlap. A perusal of Figure 1 shows that this transition induces a
twofold change in our structure: on the one hand, the weight in each node does no
longer necessarily coincide with the number of leaves; on the other, extra nodes must
be now introduced to account for changes in the statistics that occur in the middle of
arcs. The e�cient construction of this augmented index in minimal form (i.e., with
the minimum possible number of unary nodes) is quite elaborate [2]. For a string
x, the resulting structure is denoted T̂x and called the Minimal Augmented Su�x

Tree of x. It is not di�cult to build T̂x in O(n2) time and space by embedding the
necessary weighting as part of the individual su�x insertions, hence at an expected
cost of O(n log n) [3]. The time required by the construction given in [2] is instead
O(n log2 n) in the worst case. The number of auxiliary nodes can be bounded by
O(n log n), but it is not clear that such a bound is tight.

2 Implementing the Data Structures

When it comes to the actual allocation in memory of a su�x tree, one faces a number
of design choices, prominent among which those pertaining to the implementation of
nodes. There are three main possibilities in this regard. The �rst one is to implement
the node as an array of size j�j. This yields fast searches, but is likely to introduce an
unbearable amount of waste even for small alphabets. The second one is to implement
the node as a linked list (or, better, as a balanced search tree). This keeps space to a
minimum, but introduces an overhead on the search. The third one is to realize the
adjacency of a node as part of a global hash coding. This yields expected constant
time seach within overall �(n log n) space.

As is well known, the substrings representing edge labels are not stored explicitly
in the nodes but rather encoded each by an ordered pair of integers to a unique
common copy of x, so as to achieve overall linear space. However, even linear space
can be problematic: at 20 bytes per node and with a number of nodes 1.5 times the
number of symbols in the input string, as typically featured in our experiments, a text
of size n needs approximately 30n bytes of storage space. In general, although the size
of the su�x tree depends on the particular implementation, one might expect it to be
never lower than 15{20 bytes per input symbol, or bps. Various related or alternative
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Figure 1: Node and weight changes are required in the index storing statistics without
overlaps

structures have been devised with the primary objective of space minimization (cf.,
e.g., [13], [9], and references therein). In general, these space savings are achieved
at the expense of higher complexity in either construction, or searching, or both:
thus, for instance, the su�x array and the PAT tree need O(n log n) time for the
construction (O(n) on average for the array) and O(jwj+ log n) when searching for a
string w.

We use <w> to denote the node, if it exists, precisely at the end of the path in
T̂x labeled by the string w. In our realization, <w> contains the following items: (1)
two indices [i; j] identifying an occurrence of w in x, i.e., such that w = x[i; j]; (2) one
pointer to the list of children and one to the list of siblings of <w>; (3) one counter
to store the number of nonoverlapping occurrences of w in x.

The data structure allocating the textstring x should support somewhat contrast-
ing primitives such as, for instance, e�cient string searching and repeated substring
deletions. To accommodate the repeated contractions of x, the latter is maintained
in a linked list of dynamic arrays, as follows. At the beginning, the text is read from
the source into a single array of length n. Subsequently, the removal of the occur-
rences of a substring w = aba will partition the array into linked fragments. These
arrangements are complemented by refresh cycles that will recombine the text in a
single array, from time to time, to counteract excessive fragmentations.

Repeatedly building the su�x tree at each stage exacts a considerable toll irre-
spective of the method adopted. Ideally, one would like to build the tree once and
then maintain it, together with updated statistics, following every substring selection



and removal. Linear time algorithms for dynamically maintaining the tree under dele-
tion of a string were originally proposed by McCreight together with his construction.
Similar problems have been studied subsequently by others. However, we did not �nd
an existing satisfactory solution to the problem of quickly modifying our statistical
index so as to reect the deletion from the corresponding textstring of all the occur-
rences of a given substring. In our experiments, every new version of the su�x tree
was built from scratch.

3 Choosing and Computing a Gain Measure

By \gain measure", we refer here to the function that will be evaluated at every node
of T̂x in order to select the best substring substitution. In practice, it is not easy to
de�ne precisely such a measure, as we explain below.

The main di�culty is due to the fact that at the time when we need to compute the
contraction that would be induced by a particular substring, we lack some important
costs such as those associated with the optimal encodings of pointers or integers, which
can be computed precisely only at the outset. Letting l(i) represent the number of
bits needed to encode integer i, we assume for simplicity l(i) = dlog ie at the time
the gain is computed. Note that this choice does not a�ect the appraisal of �nal
compression, the latter being based on purely empirical measures. Along the same
lines, one could choose an expression for l that reects more accurately the e�cient
encoding of integers in an unknown range (see. e.g., [1]). However, as long as the
ultimate encoding of the compressed string is not based on those representations, but
rather on some statistical treatment (e.g., Hu�man encoding), there is hardly any
sense in resorting to them and hardly any way to compute l(i) accurately at this
stage.

With this choice made, we describe now in succession two possible measures of
gain. For a string w of length jwj = mw the fw copies of w require B � fw �mw bits
in the plain text. In practice, the value of B is appraised based on the zero-order
entropy of the source: the plain text is Hu�man encoded, and then B is set to the
average length of a symbol.

In our �rst measure, we assume that one of the fw copies of w is left in the original
text, marked by a \literal identi�cation" bit, while the remaining fw � 1 copies are
encoded by pointers, each pointer being preceded by a suitable identi�cation bit.
This results in B �mw +1 bits for the untouched copy and (fw � 1)(l(n) + l(mw) + 1)
bits for the copies, yielding a gain (or loss) given by G(w) = B � fwmw � B �mw �
(fw � 1)(1 + l(n) + l(mw))� 1 = (fw � 1)B �mw � (fw � 1)(1 + l(n) + l(mw))� 1 =
(f
w
� 1)(B �m

w
� 1� l(n)� l(m

w
))� 1 = (f

w
� 1)(B �m

w
� l(n)� l(m

w
))� f

w
:

If now w is the string maximizingG throughout the nodes of T̂
x
(trivially, it is safe

to neglect the f -values attainable in the middle of arcs), then the above substitution is
performed, and the process is repeated: the su�x tree is updated and searched again
for the next best substitution. These iterations terminate as soon as the optimum G

becomes zero or goes below some other convenient and predetermined threshold t.
There are some complications, though: from the second step on, the text is com-



x = text

do {

mast = create_min_augm_suffix_tree(x);

(substr,G(substr)) = compute_gain(mast);

if (G(substr) > 0) {

write the encoding;

x = delete all the occurrence of substr from x;

}

} while (G(substr) > t);

run huffman on the encoding;

Figure 2: The top level structure of the encoder.

posed by literals interspersed with pointers, and the contribution to G of pointers
and literals di�er. One possibility is to consider the text partitioned into a number
of segments separated by pointers, and treat these segments individually. A related,
albeit less critical issue, would then be to decide which one of the fw occurrences
to preserve as the reference copy of w. These complications lead to formulate an
alternative scheme, in which all the fw occurrences of the best string w are removed
from the text, while w itself is saved in an auxiliary data structure that contains: (1)
the length m

w
, at a cost of l(m

w
) bits; (2) the string w, that is B �m

w
bits long; (3)

the value of fw, at a cost of l(fw) bits; (4) the fw positions of w in x, at a global
cost bounded by fw _l(n) bits. The corresponding gain is now computed as G(w) =
B �f

w
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This second framework reects more accurately the \o�-line" nature of the method,
in particular, there is no di�erence in treatment between the �rst selection and the
rest. The outer structure of the encoder built along these lines is displayed in the
pseudocode of Figure 2.

4 Encoding the Output

The iterated substring substitution process is exempli�ed in Figure 3. The �rst
iteration results in the choice of aba; the second, of ba. The collection of data
representing the output encoding appears at the bottom of the �gure.

As seen in the �gure, the �nal encoding requires a few dynamic arrays. At
the end of a generic iteration i, resulting in the choice of substring w, such arrays
are as follows: sublen[i] contains jwj � min length; the latter term represents
a minimum acceptable length and is 0 in the example but 2 in our experiment;
substr[k,k+sublen[i]+min length-1] contains w, starting from the end k � 1 of
the substring identi�ed in iteration i � 1; occurr[i] contains fw � min occurr;
the latter term represents a minimum acceptable f -value, which is 0 in the ex-
ample but 2 in the experiments; abspoh[i] and abspol[i] contains the higher
and the lower byte of the absolute position of the �rst occurrence; relpoh[j] and
relpol[j,j+occur[i]+min occurr-1] contains the higher and the lower byte of the



1: abaababaabaababaababa$ Substituted substring: "aba"

2: bababa$ Substituted substring: "ba"

--------------------------- Final encoding:

sublen = [3 2]

substr = [ababa]

abspol = [0 0] abspoh = [0 0]

relpol = [0 2 0 2 0 0] relpoh = [0 0 0 0 0 0]

occurr = [5 3]

text = [$]

Figure 3: A run of the code on the string abaababaabaababaababa$.

Array Type of �nal coding

text Hu�man
sublen RLE + Hu�man
substr Hu�man
occurr RLE + Hu�man
abspol plain
abspoh Hu�man
relpol plain
relpoh Hu�man

Figure 4: Illustrating one of the possible �nal encodings of the arrays.

consecutive displacements of the other occurrences. Finally, array text stores what-
ever may be left of the original textstring at the end of the process. In general, the
number 255 is reserved to indicate that a current datum overows standard space so
that an additional byte is devoted to its storage.

As mentioned, the overall compression depends not only on the structure of G
but also on the particular encoding chosen for the arrays in the output. Possible
choices suggested by our experiments are summarized in Figure 4. At the end of the
iterated substitutions some arrays exhibit a high entropy (e.g., those containing the
lower byte of absolute and relative positions), so that their entries could be block-
encoded as plain numbers. Others tend to show long runs of identical values (e.g.,
those storing substring lengths and numbers of occurrences), and can be signi�cantly
compressed by a cascade of run-length and Hu�man encoding. The remaining arrays
are Hu�man encoded. Better results might be expected using arithmetic [14], rather
than Hu�man coding.

As one would expect, the bulk of the output is represented by the (lower byte
of the) relative positions relpol, and by the array text. Our experiments showed
that, although the former is practically uncompressible, in principle substr could be
compressed again.

These considerations make it clearer why a fully reliable computation of l-values
during any substring selection stage is hard. A number of ways exist in principle to



Coding paper2 progl mitoDNA chr-I camera hiv.pcb chr-VI

plain text 82201 71648 78521 230195 66336 108922 270148
Hu�man (Pack) 47736 43093 18152 63144 58947 45859 74077
LZ-78 (Compress) 36165 27148 17891 62935 55367 25499 73873

Off-line 32798 22427 17074 62369 51034 20982 73903

Figure 5: Comparing O�-line with Hu�man and LZ-78

Coding paper2 progl mitoDNA chr-I camera hiv.pcb chr-VI

plain text 82201 71648 78521 230195 66336 108922 270148

Off-line 32798 22427 17074 62369 51034 20982 73903

Off-line-pref 33240 22928 17117 62336 51024 21255 73909

Figure 6: Forcing all pre�xes of a selected word to be part of the encoding

mitigate this problem. For instance, one could resort to block or �xed codes, or to
dynamic Hu�man encoding of l based on past symbols, or even keep a statistics of the
code generated so far and use this history to estimate the �nal value of l. However,
we collected no evidence that any of these variations would import enough bene�ts
to warrant their induced overhead.

The values assigned to parameters such as the minimummatch length, minimum
number of occurrences and the threshold t, also have some impact on the compression
achieved. These, too, are di�cult to �ne-tune, because of their subtle relation to the
structure of G.

Before closing this Section, we point out that decoding a compressed textstring
given in the above representation is easily done in linear time. The details are left for
an exercise.

5 Experimental Results and Conclusion

Our data structures and algorithms were coded in C++ using the Standard Template
Library (STL), a clean collection of containers and generic functions endowing C++
with some of the features of higher-order imperative languages. Overall, the program
consists of circa 6,000 lines of code. Below we use Off-line to refer to it.

The tables report results from experiments carried out on a small set of test �les:
paper2 and progl are ASCII �les from the Calgary Corpus, mitoDNA, chr-I and
chr-VI are, respectively the mitochondrial genome and the �rst and sixt chromo-
some of the yeast (Saccharomyces cerevisiae strain S288), hiv.pcb is the collection of
the three-dimensional coordinates of the spatial con�guration of the hiv, and camera

is a 256-level gray scale image. which excited our curiosity. In terms of the param-
eters de�ned earlier, all experiments use a threshold of value 1, and a min-length

and min-occur of 2. As the Table of Figure 5 shows, the performance of Off-line



Coding paper2 progl mitoDNA chr-I camera hiv.pcb chr-VI

plain text 82201 71648 78521 230195 66336 108922 270148
Hu�man (Pack) 47736 43093 18152 63144 58947 45859 74077
LZ-78 (Compress) 36165 27148 17891 62935 55367 25499 73873
LZ-77 (Gzip) 29754 16273 19371 66264 48750 22443 78925
Off-line 32798 22427 17074 62369 51034 20982 73903

Off-line-pref 33240 22928 17117 62336 51024 21255 73909

Figure 7: Comparison table including Gzip

is better in all cases except one. Some, but not all, of the scores achieved could be
marginally improved upon by incorporating in Off-line the rule that, following the
selection of string w, all pre�xes of w capable of producing further compression are
immediately used in the encoding (Figure 6). In other words, the encoding overhead
introduced by such a complication seems to counterbalance the possible increase in
compression. On the other hand, variants built along these lines were found to be is
considerably faster. The advantages of our o�-line approach seem to fade in a com-
parison that would include Gzip (see Figure 7). This may surprise, since the latter
purports to incarnate a scheme, LZ-77, which in terms of vocabulary build-up would
appear to be closer to Off-line than LZ-78. However, a thoroughly faithful compar-
ison to Gzip is made di�cult by the many heuristics employed in the latter, among
which the critical role played by the window size. Crossing the boundary of tex-
tual substitution methods, the block-sorting-method Bzip based on [5] outperformed
Gzip on all inputs and Off-line on all inputs except one.

A number of interesting questions were brought up by these experiments which
would warrant additional e�ort. These include possible provisions for variable window
sizes, better ways to approximate the gain function G, the feasibility and usefulness
of reiteration of treatment following the �rst application of Off-line, and several
issues pertaining to the computational e�ciency achievable by sequential and parallel
implementations. Among the latter, a prominent concern would be to devise e�cient
algorithms that avoid building the statistical index from scratch at each iteration,
and better storage and matching algorithms for our data structure.

Figures 8 and 9 show the results achieved by a preliminary sloppy variant of
the algorithm, in which more than just one substring selection and substitution is
performed between two consecutive updates of the statistical index. Of course such
an approach saves time on one hand, but it risks blurring the perception of the best
candidates for substitution. In our implementation, a heap is maintained with the
statistical index, containing at each step the Q best words in terms of G, for some
chosen value of the parameter Q. Between any two consecutive index reconstructions,
the Q strings in the heap are retrieved and used in succession in a contraction step
for the text. It is possible at some point that a string from the heap will be no longer
found in the contracted text. In fact, part of the words in the heap turn out to be
useless in general. In any case, as soon as all words in the heap have been considered,
a new augmented su�x tree is built on the contracted text.



Q Subst. Trees Col2=Col3 Speedup Compr. size Percent.
1 787 788 1.0 1.0 32798 100.00%
10 799 83 9.6 6.2 32837 100.11%
100 910 13 70.0 23.7 33113 100.96%
1000 1174 4 293.5 22.5 33688 102.71%

Figure 8: Off-line-sloppy on paper2 (82201 bytes). The columns indicate, from
right to left: size of the heap, total substring selections-substitutions, total tree con-
structions, ratio of Columns 2 to Column 3, normalized time, size of compressed
string, and same size as a percentage of the size achieved by the standard method.

Q Subst. Trees Col2=Col3 Speedup Compr. size Percent.
1 165 165 1.0 1.0 17074 100.0%
10 170 22 7.7 6.4 17141 100.4%
100 303 7 43.3 14.1 17440 102.1%
1000 619 3 206.3 11.3 17861 104.6%

Figure 9: Off-line-sloppy on mito (78521 bytes).

As the �gures display, the number of individual substring substitution passes over
the text grows with the maximum allowed size of the heap. On the other hand, we
spend less and less time building weighted su�x trees. The overall result is, within
a wide interval, a considerable speed up with respect to the eager version of Off-
line without substantial penalty in compression performance. When the size of heap
becomes too large (approximately Q=1000 in our experiments) only a small subset
of the words in the heap is used: most of the computational e�ort is spent in pattern
searching, which results in deterioration of both speed and compression.

As mentioned, the parallel implementation of the method might result in relatively
clean and very fast real-time applications. The table in Figure 10 shows the modest
number of iterations of the main loop performed by Off-line on our inputs. The
experiments that subtend Figures 8 and 9 suggest that such a �gure might become
negligible in practical cases. This means that in a parallel implementation, the most
expensive tasks, represented by the tree constructions, can be limited so that very
little time is charged overall by it.

Finally, it is interesting to examine the performance of Off-line when used as

Coding paper2 progl mitoDNA chr-I camera hiv.pcb chr-VI

plain text (bytes) 82201 71648 78521 230195 66336 108922 270148

Off-line 788 577 165 71 634 216 27
Off-line-pref 776 615 168 73 641 218 29

Figure 10: Iterations of the main loop of Off-line under the various inputs



a tool for inferring hierarchical grammatical structures in sequences. The grammar
inferred for our example string by the Sequitur algorithm by Nevill-Manning et

al. [11], which is essentially patterned after an LZ parsing scheme, consists of the
productions: S ! DDC$;A ! ba;B ! aA;C ! BA;D ! BC. Except for the
one involving the start symbol S, productions are constrained to have right-hand
sides consisting of digrams. A grammar subtended by the strings of Figure 3 is:
S ! AABAABAB$;A! aba;B ! ba: Re-iteration of the treatment would expose
productions of the form C ! AAB and D ! AB, and �nally S ! CCD.
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