
Error-Resilient LZW Data Compression

Yonghui Wu Stefano Lonardi
Dept. Computer Science & Engineering

University of California
Riverside, CA 92521

Wojciech Szpankowski
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Abstract

Lossless data compression systems are typically regarded as very brittle to transmis-
sion errors. This limits their applicability to domains like noisy tetherless channels or
file systems that can possibly get corrupted. Here we show how a popular lossless data
compression scheme used in file formats GIF, PDF, and TIFF, among others, can be made
error-resilient in such a way that the compression performance is minimally affected. The
new scheme is designed to be backward-compatible, that is, a file compressed with our
error-resilient algorithm can be still decompressed by the original decoder. In this pre-
liminary report, we present our scheme, collect some experimental data supporting our
claims, and provide some theoretical justifications.

As many practitioners of data compression know, compressed streams are very sensitive
to transmission errors. Even a single error can have devastating effects and compromise
all the data downstream [9]. In fact, the lack of resiliency of adaptive data compression
has been a practical drawback of its use in many applications. Joint source-channel coding
[6, 2] has emerged as a possible solution to this problem. Usually, joint source-channel
coding trades source bits for channel bits or vice versa, and more than often requires some
adjustments in source coding and channel coding parts.

In this paper, we deal with the popular Lempel-Ziv-Welch (LZW) compression scheme.
LZW is a lossless data compression algorithm developed by T. Welch in 1984 [11] for
implementation in hardware for high-performance disk controllers as an improved version
of the LZ-78 dictionary coding algorithm [12]. The method became moderately widely-
used when the program compress became more or less the standard compression utility
in Unix systems circa by the year of 1986. In 1987, the algorithm was adopted as part
of the GIF image format, and has since been very widely used. LZW is employed in
the V.42bis modem standard and can also be used optionally in TIFF images and PDF
formatted documents.

Here we focus on the problem of adding error-resiliency to LZW. Compared to our pre-
vious work on LZ-77 [2], extracting from LZW/LZ-78 the extra redundancy bits needed
to store the error-correcting parity bits turned out to be significantly more involved. We
had two main constrains in the design of the new scheme. First, we wanted to maintain

This project was supported in part by NSF CCR-0208709, NSF CAREER IIS-0447773, and NSF DBI-0321756.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

the backward-compatibility with the original LZW, that is, we wanted a file compressed
with the new LZW (augmented for error-resiliency) to be decodable by the original LZW.
Backward-compatibility is an essential property because it allows one to deploy the new
scheme gradually over the existing one, without interruptions of service. Second, we
wanted the compression ratio to be minimally affected by the embedding of the extra parity
bits for the detection and correction of errors.

We were able to achieve both objectives by relaxing (i.e., shortening) a small set of
selected LZW phrases in the compressed stream, so that the pattern of shorter phrases
would encode the extra bits. According to our experimental results, our strategy affects
compression only marginally. In fact, sometimes the file compressed with the new LZW
which embeds the parity bits is actually shorter than the original LZW compressed file
appended with the file of the parity bits. An extensive testing of several LZW decoders
available allows us to claim that our error-resilient LZW encoding is backward-compatible.

The content of this paper can be summarized as follows. Section 2 introduces some basic
concepts and notation. In Section 3 we carefully detail the process of embedding extra bits
in LZW, which depends on two integer parameters. In Section 4 we discuss how to choose
these parameters so that we extract enough bits from the compressed stream to store the
parity bits. An asymptotic analysis of the redundancy of the new scheme is carried out
in Section 5. In Section 6 we describe how to achieve error-resiliency in LZW using the
new LZW encoder. Finally, in Section 7 we present the implementation and discuss some
preliminary experimental results.

Let be a text of length over a finite alphabet , and let be its corresponding
LZW-compressed stream. We write to indicate the symbol of . We use
shorthand for , where , with the convention that .
Given two strings and , is the string obtained by concatenating with .

For completeness of presentation we briefly review the original LZW scheme [11, 12].
The algorithm parses the text online left-to-right into phrases, where each phrase is
the longest matching substring seen previously plus one extra symbol. Each new phrase
is added to the dictionary, which is first initialized to include every single symbol in the
alphabet. The index of the longest matching phrase is added to the output as a new
codeword, whereas the extra symbol, i.e., the last symbol of the current phrase, becomes
the first symbol of the next phrase.

To decode the compressed text , the decoder first fills the dictionary with all the sym-
bols in the alphabet. Then, it reads the codewords one by one from the compressed text

. Every time the decoder reads a new codeword, it looks up the dictionary for the corre-
sponding phrase. The string identified by the codeword is added to the output, while a new
phrase, which is constructed by appending the first symbol of the current codeword to the
previous codeword, is added to the dictionary.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

Due to the greediness inherent to the LZW algorithm, at any point of the encoding pro-
cess there is always only one way of producing the next phrase, and hence, every phrase in
the dictionary is unique. The greediness implies lack of redundancy which in turns effec-
tively prevents us from embedding directly extra bits into the compressed data stream. A
possible solution to this problem is to relax the greediness by making some of the phrases
a little shorter, in such a way to introduce enough redundancy to encode the extra bits.
Relaxing the length of too many phrases will, however, degrade considerably the compres-
sion performance. Care must be taken to select the set of phrases to shorten so that we will
have the necessary “extra space” to store the bits for error detection and correction. Note
that by relaxing the greediness some entries in the dictionary will have multiple codewords
associated with them.

A somewhat similar approach was taken in [10], where the authors analyze a scheme
where the entries in the dictionary might have multiplicities up to a constant . After this
manuscript was completed, papers [7, 8] were brought to our attention. In these works,
the parity of the length of all LZW phrases is matched (and possibly adjusted) in order to
hide extra bits in the compressed file. According to our experimental evaluations, the latter
strategy is not practical because the compression performance is degraded too much.

Before proceeding further, we first determined whether our modification in the encoder
would produce a compressed file that can still be decompressed by the original LZW algo-
rithm (called greedy-LZW hereafter, to distinguish it from our relaxed-LZW scheme). We
argue that the backward-compatibility of relaxed-LZW depends on the specific data struc-
ture used to represent the dictionary in the implementation of the LZW decoder. Although
in the literature the dictionary is always represented as a trie, all LZW implementations
we checked use a fixed-size hash table (typically with 4096 entries). Because the decoder
uses a hash table instead of a trie, it is not affected by multiple identical entries in the
dictionary. The decoder refers to the existing phrases by their indices, whether there exists
multiple such phrases or not, and concatenates two strings to produce the next phrase. As a
consequence, our relaxed-LZW scheme is backward-compatible with the greedy-LZW de-
coding. We verified the backward-compatibility on various software that support LZW. For
example, for GIF images, we tested MS Paint, MS Internet Explorer and Mozilla Firefox.
We also tested Unix Compress and Winzip. All the latter software were able to decompress
a relaxed-LZW stream. We expect PDF and TIFF decoders to be capable of handling our
scheme as well.

A detailed description of the relaxed-LZW scheme is in order. Let denote the extra
bits that are going to be embedded into the compressed text , which we call message.
The LZW phrases that will become shorter because of the relaxation are called non-greedy
phrases. The behavior of relaxed-LZW is determined by two non-negative integer param-
eters called and . The integer specifies the number of bits of the message that is
embedded in the interval between two consecutive non-greedy phrases, whereas the pa-
rameter specifies the number of bits that is embedded in the length of each non-greedy
phrase.

The message to be embedded is first logically divided into consecutive blocks of
bits. Every block is further divided into two sub-blocks of and bits each. The

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

MESSAGE EMBEDDING LZW ENCODER

1.
2. get next bits from
3. if then
4. while (have not finished encoding yet) do
5. next phrase as according to the standard LZW algorithm
6. if then
7.
8. if then
9.

10. get next bits from
11. if then
12. reduce the length of by symbols
13. get next bits from
14. if then
15.
16. return

Figure 1. A sketch of the encoder capable of embedding a message while compressing text into a LZW
stream. and are two integer parameters (see text for details)

contents of the two sub-blocks are interpreted as positive integers, and for clarity purposes,
we denote them by and respectively. Note that1 and . The
message is embedded into one block a time while compressing according to the
LZW scheme, as follows. We initialize a counter to , and generate new phrases greedily
according to the greedy-LZW algorithm. Every time a new phrase is generated, its length
is compared to the value (note that is the maximum value for , see footnote). If
the length of the phrase is greater we increase the counter by one. As soon as the counter
reaches the value we relax the length of that phrase by symbols. Then, the counter is
reset, and a new cycle begins (see Figure 1 for details).

The decoding process is rather straightforward. As codewords are read from , phrases
are being reconstructed. For each phrase the decoder determines whether the phrase is
greedy or non-greedy. If the phrase is non-greedy, a block of message is recovered ac-
cording to the rules we followed to embed it. At the same time, the original text is also
rebuilt according to the LZW algorithm. Note that in order to determine whether a phrase
is greedy or not, the decoder need to look ahead several phrases. This can be done by
saving the last few phrases in a look-ahead buffer. A sketch of the decoder is illustrated in
Figure 2.

As a final remark, we want to note that the strategy described above does not exploite the
multiplicities in the dictionary to embed additional bits of the message. When the relaxed-
LZW algorithm looks for a longest prefix of text (to be compressed) that matches an entry
in the dictionary, there might be multiple identical longest phrases in the dictionary, due
to the fact that we have reduced the lengths of some of the previous phrases. If that is the
case, we can embed “free of charge” another where is the multiplicity of the
longest phrase. A similar idea is used in [2, 3] to embed extra bits in LZ-77 streams.

1 and are treated as a special case, by mapping them to and , respectively.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

MESSAGE EMBEDDING LZW DECODER

1.
2. while (have not finished decoding yet) do
3. decode the next phrase according to the standard LZW decoder
4.
5. Fill
6. encode the text in according to the standard LZW encoder
7. if then
8.
9. if then

10. & &
11.
12. return

Figure 2. A sketch of the decoder capable of recovering the embedded message from a relaxed-LZW
stream . and are two integer parameters (see text for details)

Embedding extra information into the LZW data stream is clearly not free of charge.
With additional bits embedded, the new LZW stream tend to be slightly longer. Intuitively,
the compression performance degrades as decreases and increases, but at the same
time the number of bits embedded in the compressed text increases. In the error-resilient
application it is crucial to determine the best trade-off. The first step is to compute the total
number of parity bits needed, step that will be discussed later in Section 6. Once that is
done, one need to estimate the number of bits that can be embedded in as a function
of the parameters and . The aim is to create enough “space” for the parity bits of the
error-correcting code, but not much more so that the compression will degrade.

In our analysis, we assume that during the embedding of the message, the lengths of the
phrases are always greater than , which of course is not true at the beginning of the file.
However, if the text is long enough and is small (in our experiments or),
the assumption will be satisfied. For simplicity, we assume that the message to be
embedded has been generated by an i.i.d. source with 0 and 1 having equal probabilities.
Then, on average we will have a non-greedy phrase every phrases. On average,
the length of the non-greedy phrase will be reduced by symbols. To simplify
the exposition, we set and .

Let us call the portion of that is encoded by greedy phrases, and call the portion
of encoded by non-greedy phrases. Intuitively, if we “zip” and at the points
where is broken into phrases, we get back . Let the sizes of and be and
respectively. Clearly, .

The set of unique phrases in the dictionary consists of the greedy phrases, which are
determined by . According to [1], the expected number of the phrases approximately
equal to , where is the entropy of . Thus, the average length of the
greedy phrases will be . The number of blocks of message that is embedded
in the text will be , and hence we have .
The average length of non-greedy phrases is and therefore

.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

From the set of equations above, we can estimate the size of the message given ,
, , and . The entropy can either be computed directly from the text according to its

definition, or it can be inferred experimentally. In our implementation, we chose the latter
method. In our estimation phase, we first count the number of phrases generated when
the text is compressed by the greedy-LZW algorithm. Then, according to the asymptotic
equation , we set . Inferring in this way has the advantage
of taking into account any constant factor that may be hidden in the asymptotic equation.

One crucial step in estimating the channel capacity is to determine from the above
relations. Let us define a function . The value we are looking
for is the one that satisfies . Observe that is monotonically increasing in for
reasonably chosen and and for sufficiently large , because the function is dominated
by the first two terms. Therefore, a binary search can be employed to find . Once is
determined, we calculate from the equations above.

As we will show in our experimental results section, our estimation of is fairly
accurate. The estimate is more precise when , which is expected since we are
assuming that all phrases are longer than .

In this section we are concerned with the theoretical analysis of the redundancy of
relaxed-LZW when the input is large (). In particular we are interested in com-
paring the redundancy of relaxed-LZW to that of greedy-LZW/LZ-78, to determine how
much we are losing due to the embedding. We follow the notation of [4], and we assume
the text to be generated by an i.i.d. source over a binary alphabet (with probabilities and

), but the analysis can be easily generalized. Observe that on average relaxed-
LZW decreases the number of manipulated symbols by where is the yet unknown
(average) number of phrases when a string of length is compressed.

As in [4], we define a function that gives the length of the text as a function of the
number of phrases

where and where is the
entropy, is the Euler constant, , and

The function is a fluctuating function with mean zero and a small amplitude for
rational (e.g., the amplitude of is smaller than for the unbiased

case, when), and otherwise.
Define now as

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

Ck-2C1 C2 C3 Ck-1 Ck...

Error-resilient LZW Decoder

decompress

get RS parity bits

Error-resilient LZW Encoder

 detect and
correct errors

compute RS
 parity bitsrecompress Ck-1

with M embedded

M

$$$ $$ $$ $$ $$ $$

Figure 3. The sequence of operations on the chunks for the encoder (right-to-left) and the decoder (left-to-
right)

that is, is the length of the text when number of phrases is . Let us define to be
the random variable associate with number of phrases constructed by relaxed-LZW when
given a text of length . Observe that the average number for phrases of our scheme is

and therefore the code length of our scheme is

Thus, the relative average redundancy becomes

Comparing it to the regular LZW/LZ-78, the redundancy of the relaxed-LZW is in-
creased by .

The last piece of the puzzle is to show how to use the extra space to embed the parity bits
to achieve error-resiliency. As in [2], we can use Reed-Solomon codes [5] to detect and
correct errors. Reed-Solomon codes are block-based error-correcting codes widely used
in digital communications and storage. Compared to our error-resilient LZ-77, turning the
relaxed-LZW into a error-resilient scheme is somewhat more involved.

The operations performed by the error-resilient LZW encoder and the decoder are illus-
trated in Figure 3. First, the text is compressed with the greedy-LZW. As mentioned
above, the typical LZW implementation has a fixed sized dictionary (implemented as an
hash table). As soon as the dictionary contains 4096 entries, the dictionary is flushed out
and refreshed. In the figure, we denote the places in where the dictionary is refreshed by
the symbol $. In LZW files these position are marked by a special end-of-dictionary (EOD)
symbols. The compressed text can therefore be broken into chunks .

The error-resilient LZW encoder processes the chunks right-to-left, starting from the
last chunk. In the generic step, it computes the Reed-Solomon parity bits on the chunk
and then embeds the parity bits in the chunk . The embedding requires the encoder to
re-compress the chunk by calling MESSAGE EMBEDDING LZW ENCODER . Be-
cause we are relaxing the length of some of the phrases, that may introduce in a

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

estim.

airplane 64908 5.77 66468 1706 5.63 -146 0.02628 1980
baboon 149414 2.49 151804 2169 2.45 221 0.01451 4678
couple 19604 4.88 20088 505 4.77 -21 0.02576 587
girl 23573 4.04 24127 566 3.94 -12 0.02401 712
lena 96373 3.87 98770 2396 3.78 1 0.02486 2973
peppers 105262 3.54 107792 2372 3.46 158 0.02253 3258

Table 1. Comparing the size of a set of 8 bpp GIF images compressed with the greedy-LZW against the
relaxed-LZW scheme . All pictures are except couple and girl, which are

pixels. is the length of the message in bytes that is embedded in the GIF file. is the length
of the original GIF file in bytes, is the length of the GIF with the message embedded. is the average
length of the LZW phrases before the embedding and is average phrase length after the embedding. The
last column reports our estimate of the message length.

premature end of dictionary. For this reason, we must use two back-to-back EOD symbols
to encode the boundaries of the chunks. This will not affect the backward-compatibility.

The error-resilient LZW decoder processes the chunks left-to-right, starting from .
In the generic step, it decompresses chunk with the MESSAGE EMBEDDING LZW
DECODER , which also retrieves the Reed-Solomon parity bits. The parity bits allow the
decoder to detect and correct errors in before that chunk is decompressed. Note that
the first chunk is not protected against errors, but not much can be done unless we sacrifice
the backward-compatibility.

Although a full implementation of the error-resilient LZW is still in progress, we have
implemented both MESSAGE EMBEDDING LZW ENCODER and MESSAGE EMBEDDING

LZW DECODER in C++, and tested them on GIF files (which are internally compressed
by LZW). Our implementation consists of two executables, called relaxedlzw and
messagedecoder. The executable relaxedlzw takes as input a standard GIF file,
a message file and the parameters and , and produces a message-embedded GIF file.
The encoder also provides some useful statistics, such as the total number of phrases, the
length of the message that has been embedded, etc. The executable messagedecoder
takes the message-embedded GIF file and the parameters and (which should match the
ones used in the encoding) as input. It regenerates the message-free GIF file and extracts
the message that was embedded.

To establish the backward-compatibility, we have extensively verified that the message-
embedded GIF files can be opened with several existing software capable of displaying
GIF images (e.g., MS Paint, MS Internet Explorer and Mozilla Firefox). We have also
verified that the GIF file extracted by messagedecoder is identical to the original GIF
file, and that the message extracted from the relaxed-LZW file is identical to the one that
was embedded. The source code of the encoder and the decoder is available in the public
domain at http://www.cs.ucr.edu/˜yonghui. We have also implemented sepa-
rately in Python the estimation of the size of the message given the parameters , and
the file to be compressed.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

estim. estim.

airplane 5295 3.91 25058 2532 0.081577 9122 3.97 20001 5249 0.14053737
baboon 10973 1.66 62620 6470 0.07344023 10768 1.97 28233 14201 0.07206821
couple 1509 3.38 7035 762 0.07697408 2650 3.39 5798 1591 0.13517649
girl 1823 2.76 8798 937 0.07733423 2978 2.85 6654 1975 0.12633097
lena 8003 2.53 42706 3912 0.08304193 12624 2.65 31451 8271 0.13099104
peppers 8392 2.34 45190 4320 0.07972487 12278 2.51 30728 9188 0.11664228

airplane 5227 4.73 8759 3493 0.08052936 6799 4.75 6950 5370 0.10474825
baboon 10778 2.02 23867 8654 0.07213514 8365 2.2 11363 13807 0.05598538
couple 1524 4 2638 1045 0.07773923 1979 4.01 2134 1614 0.10094878
girl 1794 3.34 3023 1278 0.07610401 2207 3.4 2202 1987 0.09362406
lena 7776 3.12 15101 5337 0.08068649 9337 3.18 11384 8314 0.09688398
peppers 8167 2.87 16189 5875 0.07758735 9119 2.97 11055 9188 0.08663145

airplane 3947 5.23 2720 3239 0.06080914 4542 5.24 2035 4384 0.06997596
baboon 8100 2.23 8947 7821 0.05421178 5718 2.33 4477 10821 0.0382695
couple 1160 4.45 779 964 0.05917159 1289 4.48 521 1309 0.06575188
girl 1356 3.67 995 1174 0.05752343 1468 3.69 690 1600 0.06227463
lena 5813 3.47 5311 4903 0.06031772 6205 3.49 4031 6690 0.06438525
peppers 6153 3.17 5934 5383 0.05845414 6185 3.23 3967 7362 0.05875814

airplane 2656 5.48 623 2450 0.04091945 2819 5.49 366 3090 0.0434307
baboon 5432 2.36 3033 5814 0.03635536 3698 2.4 1482 7418 0.02475002
couple 778 4.67 140 727 0.03968577 828 4.67 93 919 0.04223627
girl 940 3.83 282 882 0.03987612 952 3.84 201 1117 0.04038518
lena 3873 3.66 1555 3686 0.0401876 3941 3.67 1129 4667 0.04089319
peppers 4071 3.35 1718 4039 0.03867492 3917 3.37 1176 5121 0.0372119

Table 2. Experimental results for and (see caption of Table 1 for the legend)

For our tests, we used images which are commonly used in digital image processing
and data compression literature. Table 1 shows our experimental results for and

. The column indicates how many extra bytes (not bits) we can embed into the
original GIF file. Since we are still missing the module that computes the Reed-Solomon
parity bits, the extra bits were randomly generated by an i.i.d. model with equal probability
of 0 and 1. Column determines whether the relaxed-LZW packs more
information than the greedy-LZW. With respect to the latter measure, our scheme performs
better on airplane and couple than the rest of the GIF files, and baboon is the worst
among all of them. This is because the average phrase length for airplane and couple
(5.77 and 4.88 respectively) is much higher than that for baboon (2.49), and thus reducing
the length of the phrases for the first two images will not have such a negative impact on
the compression than for baboon. Column gives the number of bytes embedded
for each byte in the compressed file. For example, on the file airplane we can embed
one byte every 38 bytes of compressed text, on average. We notice that the variation of

among the files is quite small, except baboon, which we believe is due to its
relatively poor compression ratio. We also report our estimation of , which is quite
accurate, in particular when (again, with the exception of baboon).

Tables 2 and 3 summarize our experimental results for several choices of parameter
and . As expected, the number of extra bits that can be embedded (i.e.,) decreases as
the parameter increases. However, the relationship between and the parameter is
not as clear. In our observations, when the parameter is small, say less than 4, increasing
the parameter from 0 to 1 usually increases the number of bits that can be embedded as
well. However, increasing beyond 1 neither helps to embed more bits nor improves the
image compression ratio.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

estim. estim.

airplane 1663 5.63 -90 1643 0.02562087 1706 5.63 -146 1980 0.02628335
baboon 3413 2.42 756 3856 0.02284257 2169 2.45 221 4678 0.01451671
couple 479 4.77 -27 486 0.02443378 505 4.77 -21 587 0.02576004
girl 582 3.92 63 589 0.02468926 566 3.94 -12 712 0.02401052
lena 2441 3.76 276 2461 0.02532867 2396 3.78 1 2974 0.02486173
peppers 2566 3.45 357 2694 0.02437726 2372 3.46 158 3258 0.02253424

airplane 987 5.72 -300 1023 0.01520613 982 5.71 -181 1196 0.0151291
baboon 2039 2.46 -130 2387 0.01364664 1305 2.47 -98 2800 0.00873412
couple 288 4.81 -14 302 0.01469087 286 4.83 -64 354 0.01458885
girl 329 3.99 -37 366 0.01395664 311 3.98 -4 428 0.01319305
lena 1478 3.82 -236 1529 0.01533624 1390 3.83 -260 1790 0.01442312
peppers 1545 3.49 -84 1673 0.01467766 1376 3.49 25 1959 0.01307214

airplane 591 5.75 -303 608 0.00910519 583 5.75 -294 696 0.00898194
baboon 1184 2.47 -127 1415 0.00792429 782 2.48 -102 1621 0.00523377
couple 182 4.84 -38 180 0.00928381 175 4.85 -37 206 0.00892674
girl 193 4.01 -22 217 0.00818733 183 4.01 -7 249 0.00776311
lena 840 3.85 -262 908 0.00871613 765 3.85 -166 1039 0.0079379
peppers 903 3.51 -110 993 0.00857859 753 3.52 -81 1137 0.00715357

airplane 359 5.76 -172 350 0.0055309 309 5.76 -132 395 0.00476058
baboon 706 2.48 -65 815 0.00472512 407 2.48 -100 918 0.00272397
couple 105 4.86 -45 103 0.00535604 100 4.87 -47 116 0.00510099
girl 122 4.01 10 125 0.00517541 111 4.02 -4 141 0.00470877
lena 498 3.86 -260 523 0.00516742 436 3.86 -245 589 0.00452408
peppers 517 3.52 -99 572 0.00491155 450 3.52 -25 644 0.00427504

Table 3. Experimental results for and (see caption of Table 1 for the legend)

[1] JACQUET, P., AND SZPANKOWSKI, W. Asymptotic behavior of the Lempel-Ziv parsing scheme and digital search
trees. Theor. Comput. Sci. 144, 1–2 (June 1995), 161–197.

[2] LONARDI, S., AND SZPANKOWSKI, W. Joint source-channel LZ’77 coding. In IEEE Data Compression Con-
ference, DCC (Snowbird, Utah, March 2003), J. A. Storer and M. Cohn, Eds., IEEE Computer Society TCC,
pp. 273–283.

[3] LONARDI, S., SZPANKOWSKI, W., AND WARD, M. Error resilient LZ’77 and its analysis. In IEEE International
Symposium on Information Theory (ISIT’04) (Chicago, IL, June 2004), p. 56.

[4] LOUCHARD, G., AND SZPANKOWSKI, W. On the average redundancy rate of the Lempel-Ziv code. IEEE Trans.
Inf. Theory 43 (1997), 2–8.

[5] REED, I. S., AND SOLOMON, G. Polynomial codes over certain finite fields. J. SIAM 8 (1960), 300–304.

[6] SAYOOD, K., OTU, H., AND DEMIR, N. Joint source/channel coding for variable length codes. IEEE Trans. Inf.
Theory 48 (2000), 787–794.

[7] SHIM, H. J., AHN, J., AND JEON, B. DH-LZW: lossless data hiding in LZW compression. In International
Conference on Image Processing, 2004. ICIP ’04 (2004), vol. 4, pp. 2195– 2198.

[8] SHIM, H. J., AND JEON, B. DH-LZW: Lossless data hiding method in LZW compression. In Advances in
Multimedia Information Processing (PCM 2004), Lecture Notes in Computer Science (2004), vol. 3333, pp. 739–
746.

[9] STORER, J. A., AND REIF, J. H. Error-resilient optimal data compression. SIAM Journal on Computing 26, 4
(1997), 934–949.

[10] SZPANKOSWKI, W., AND KNESSL, C. A note on the asymptotic behavior of the height in -tries for large.
Electronic J. of Combinatorics 7 (2000), R39.

[11] WELCH, T. A. A technique for high-performance data compression. IEEE Computer 17, 6 (June 1984), 8–19.

[12] ZIV, J., AND LEMPEL, A. Compression of individual sequences via variable-rate coding. IEEE Trans. Inf. Theory
24, 5 (Sept. 1978), 530–536.

Proceedings of the Data Compression Conference (DCC’06)
0-7695-2545-8 /06 $20.00 © 2006 IEEE

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (None)
 /CalCMYKProfile (None)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 2.00333
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 2.00333
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.00167
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /False

 /Description <<
 /JPN <FEFF3053306e8a2d5b9a306f300130d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f00200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e007400730020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d0061002000760069007300750061006c0069007a006100e700e3006f0020006500200069006d0070007200650073007300e3006f00200061006400650071007500610064006100730020007000610072006100200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e00300020006500200070006f00730074006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650072002000650067006e006500640065002000740069006c0020007000e5006c006900640065006c006900670020007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e007400650072006e00650020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e00200064006900650020006700650073006300680069006b00740020007a0069006a006e0020006f006d0020007a0061006b0065006c0069006a006b006500200064006f00630075006d0065006e00740065006e00200062006500740072006f0075007700620061006100720020007700650065007200200074006500200067006500760065006e00200065006e0020006100660020007400650020006400720075006b006b0065006e002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200071007500650020007000650072006d006900740061006e002000760069007300750061006c0069007a006100720020006500200069006d007000720069006d0069007200200063006f007200720065006300740061006d0065006e0074006500200064006f00630075006d0065006e0074006f007300200065006d00700072006500730061007200690061006c00650073002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f006900740020006c0075006f006400610020006a0061002000740075006c006f00730074006100610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e0020006500730069006b0061007400730065006c00750020006e00e400790074007400e400e40020006c0075006f00740065007400740061007600610073007400690020006c006f00700070007500740075006c006f006b00730065006e002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a0061002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e007400690020005000440046002000610064006100740074006900200070006500720020006c00610020007300740061006d00700061002000650020006c0061002000760069007300750061006c0069007a007a0061007a0069006f006e006500200064006900200064006f00630075006d0065006e0074006900200061007a00690065006e00640061006c0069002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000700061007300730065007200200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f600720020007000e5006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b0072006900660074002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 /ENU <FEFF005500730065002000740068006500730065002000730065007400740069006e0067007300200074006f0020006300720065006100740065002000500044004600200064006f00630075006d0065006e007400730020007300750069007400610062006c006500200066006f007200200049004500450045002000580070006c006f00720065002e0020004300720065006100740065006400200031003500200044006500630065006d00620065007200200032003000300033002e>
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

