
Efficient Selection of Unique and Popular Oligos
for Large EST Databases

Jie Zheng1, Timothy J. Close2, Tao Jiang1, and Stefano Lonardi1

1 Dept. of Computer Science & Engineering
2 Department of Botany & Plant Sciences

University of California
Riverside, CA 92521

Abstract. EST databases have grown exponentially in recent years and
now represent the largest collection of genetic sequences. An important
application of these databases is that they contain information useful for
the design of gene-specific oligonucleotides (or simply, oligos) that can
be used in PCR primer design, microarray experiments, and genomic
library screening. In this paper, we study two complementary problems
concerning the selection of short oligos, e.g., 20–50 bases, from a large
database of tens of thousands of EST sequences: (i) selection of oligos
each of which appears (exactly) in one EST sequence but does not appear
(exactly or approximately) in any other EST sequence and (ii) selection
of oligos that appear (exactly or approximately) in many ESTs. The first
problem is called the unique oligo problem and has applications in PCR
primer and microarray probe designs. The second is called the popular
oligo problem and is useful in screening genomic libraries (such as BAC
libraries) for gene-rich regions. We present an efficient algorithm to iden-
tify all unique oligos in the ESTs and an efficient heuristic algorithm to
enumerate the most popular oligos. By taking into account the distribu-
tion of the frequencies of the words in the EST database, the algorithms
have been carefully engineered to achieve remarkable running times on
regular PCs. Each of the algorithms takes only a couple of hours (on a
1.2 GHz CPU, 1 GB RAM machine) to run on a dataset 28 Mbases of
barley ESTs from the HarvEST database. We present simulation results
on synthetic data and a preliminary analysis of the barley EST database.

1 Introduction

Expressed sequence tags (ESTs) are partial sequences of expressed genes, usually
200–700 bases long, which are generated by sequencing from one or both ends
of cDNAs. The information in an EST allows researchers to infer functions of
the gene based on similarity to genes of known functions, source of tissue and
timing of expression, and genetic map position. EST sequences have become
widely accepted as a cost-effective method to gather information about the ma-
jority of expressed genes in a number of systems. They can be used to accelerate
various research activities, including map-based cloning of genes that control

R. Baeza-Yates et al. (Eds.): CPM 2003, LNCS 2676, pp. 384–401, 2003.
c© Springer-Verlag Berlin Heidelberg 2003

Verwendete Distiller 5.0.x Joboptions
Dieser Report wurde automatisch mit Hilfe der Adobe Acrobat Distiller Erweiterung "Distiller Secrets v1.0.5" der IMPRESSED GmbH erstellt.Sie koennen diese Startup-Datei für die Distiller Versionen 4.0.5 und 5.0.x kostenlos unter http://www.impressed.de herunterladen.ALLGEMEIN --Dateioptionen: Kompatibilität: PDF 1.3 Für schnelle Web-Anzeige optimieren: Nein Piktogramme einbetten: Nein Seiten automatisch drehen: Nein Seiten von: 1 Seiten bis: Alle Seiten Bund: Links Auflösung: [2400 2400] dpi Papierformat: [594.962 841.96] PunktKOMPRIMIERUNG --Farbbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitGraustufenbilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 300 dpi Downsampling für Bilder über: 450 dpi Komprimieren: Ja Automatische Bestimmung der Komprimierungsart: Ja JPEG-Qualität: Maximal Bitanzahl pro Pixel: Wie Original BitSchwarzweiß-Bilder: Downsampling: Ja Berechnungsmethode: Bikubische Neuberechnung Downsample-Auflösung: 2400 dpi Downsampling für Bilder über: 3600 dpi Komprimieren: Ja Komprimierungsart: CCITT CCITT-Gruppe: 4 Graustufen glätten: Nein Text und Vektorgrafiken komprimieren: JaSCHRIFTEN -- Alle Schriften einbetten: Ja Untergruppen aller eingebetteten Schriften: Nein Wenn Einbetten fehlschlägt: AbbrechenEinbetten: Immer einbetten: [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] Nie einbetten: []FARBE(N) --Farbmanagement: Farbumrechnungsmethode: Farbe nicht ändern Methode: StandardGeräteabhängige Daten: Einstellungen für Überdrucken beibehalten: Ja Unterfarbreduktion und Schwarzaufbau beibehalten: Ja Transferfunktionen: Anwenden Rastereinstellungen beibehalten: JaERWEITERT --Optionen: Prolog/Epilog verwenden: Ja PostScript-Datei darf Einstellungen überschreiben: Ja Level 2 copypage-Semantik beibehalten: Ja Portable Job Ticket in PDF-Datei speichern: Nein Illustrator-Überdruckmodus: Ja Farbverläufe zu weichen Nuancen konvertieren: Ja ASCII-Format: NeinDocument Structuring Conventions (DSC): DSC-Kommentare verarbeiten: Ja DSC-Warnungen protokollieren: Nein Für EPS-Dateien Seitengröße ändern und Grafiken zentrieren: Ja EPS-Info von DSC beibehalten: Ja OPI-Kommentare beibehalten: Nein Dokumentinfo von DSC beibehalten: JaANDERE -- Distiller-Kern Version: 5000 ZIP-Komprimierung verwenden: Ja Optimierungen deaktivieren: Nein Bildspeicher: 524288 Byte Farbbilder glätten: Nein Graustufenbilder glätten: Nein Bilder (< 257 Farben) in indizierten Farbraum konvertieren: Ja sRGB ICC-Profil: sRGB IEC61966-2.1ENDE DES REPORTS --IMPRESSED GmbHBahrenfelder Chaussee 4922761 Hamburg, GermanyTel. +49 40 897189-0Fax +49 40 897189-71Email: info@impressed.deWeb: www.impressed.de

Adobe Acrobat Distiller 5.0.x Joboption Datei
<< /ColorSettingsFile () /AntiAliasMonoImages false /CannotEmbedFontPolicy /Error /ParseDSCComments true /DoThumbnails false /CompressPages true /CalRGBProfile (sRGB IEC61966-2.1) /MaxSubsetPct 100 /EncodeColorImages true /GrayImageFilter /DCTEncode /Optimize false /ParseDSCCommentsForDocInfo true /EmitDSCWarnings false /CalGrayProfile (Ø©M) /NeverEmbed [] /GrayImageDownsampleThreshold 1.5 /UsePrologue true /GrayImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /AutoFilterColorImages true /sRGBProfile (sRGB IEC61966-2.1) /ColorImageDepth -1 /PreserveOverprintSettings true /AutoRotatePages /None /UCRandBGInfo /Preserve /EmbedAllFonts true /CompatibilityLevel 1.3 /StartPage 1 /AntiAliasColorImages false /CreateJobTicket false /ConvertImagesToIndexed true /ColorImageDownsampleType /Bicubic /ColorImageDownsampleThreshold 1.5 /MonoImageDownsampleType /Bicubic /DetectBlends true /GrayImageDownsampleType /Bicubic /PreserveEPSInfo true /GrayACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /ColorACSImageDict << /VSamples [1 1 1 1] /QFactor 0.15 /Blend 1 /HSamples [1 1 1 1] /ColorTransform 1 >> /PreserveCopyPage true /EncodeMonoImages true /ColorConversionStrategy /LeaveColorUnchanged /PreserveOPIComments false /AntiAliasGrayImages false /GrayImageDepth -1 /ColorImageResolution 300 /EndPage -1 /AutoPositionEPSFiles true /MonoImageDepth -1 /TransferFunctionInfo /Apply /EncodeGrayImages true /DownsampleGrayImages true /DownsampleMonoImages true /DownsampleColorImages true /MonoImageDownsampleThreshold 1.5 /MonoImageDict << /K -1 >> /Binding /Left /CalCMYKProfile (U.S. Web Coated (SWOP) v2) /MonoImageResolution 2400 /AutoFilterGrayImages true /AlwaysEmbed [/Courier-BoldOblique /Helvetica-BoldOblique /Courier /Helvetica-Bold /Times-Bold /Courier-Bold /Helvetica /Times-BoldItalic /Times-Roman /ZapfDingbats /Times-Italic /Helvetica-Oblique /Courier-Oblique /Symbol] /ImageMemory 524288 /SubsetFonts false /DefaultRenderingIntent /Default /OPM 1 /MonoImageFilter /CCITTFaxEncode /GrayImageResolution 300 /ColorImageFilter /DCTEncode /PreserveHalftoneInfo true /ColorImageDict << /QFactor 0.9 /Blend 1 /HSamples [2 1 1 2] /VSamples [2 1 1 2] >> /ASCII85EncodePages false /LockDistillerParams false>> setdistillerparams<< /PageSize [595.276 841.890] /HWResolution [2400 2400]>> setpagedevice

Efficient Selection of Unique and Popular Oligos for Large EST Databases 385

traits, comparative genome analysis, protein identification, and numerous meth-
ods that rely on gene-specific oligonucleotides (or oligos, for short) such as the
DNA microarray technology.

Due to their utility, speed with which they may be obtained, and the low cost
associated with this technology, many individual scientists and large genome
sequencing centers have been generating hundreds of thousands of ESTs for
public use. EST databases have been growing exponentially fast since the first
few hundreds sequences obtained in the early nineties by Adams et al. [1], and
now they represent the largest collection of genetic sequences. As of September
2002, the number of sequences deposited in NCBI’s dbEST [2] has reached 13
million sequences out of the 18 million sequences which composes the entire
GenBank.

With the advent of whole genome sequencing, it may appear that ESTs
have lost some of its appeal. However, the genomes of many organisms that
are important to society, including the majority of crop plants, have not yet
been fully sequenced, and the prospects for large-scale funding to support the
sequencing of any but a few in the immediate future is slim to none. In addition,
several of our most important crop plants have genomes that are of daunting
sizes and present special computational challenges because they are composed
mostly of highly repetitive DNA. For example, the Triticeae (wheat, barley and
rye) genomes, each with a size of about 5 × 109 base pairs per haploid genome
(this is about twice the size of maize, 12 times the size of rice, and 35 times the
size of the Arabidopsis genomes), are too large for us to seriously consider whole
genome sequencing at the present time.

Of the many EST databases, we will be especially interested in
the dataset of barley (Hordeum vulgare). Barley is premiere model
for Triticeae plants due to its diploid genome and a rich legacy
of mutant collections, germplasm diversity, mapping populations (see
http://www.css.orst.edu/barley/nabgmp/nabgmp.htm), and the recent accu-
mulation of other genomics resources such as BAC [3] and cDNA libraries [4,5].
Nearly 300,000 publicly available ESTs derived from barley cDNA libraries are
currently present in dbEST. These sequences have been quality-trimmed, cleaned
of vector and other contaminating sequences, pre-clustered using the software
Tgicl (http://www.tigr.org/tdb/tgi/software/) and clustered into final as-
semblies of “contigs” (i.e., overlapping EST sequences) and “singletons” (i.e.,
non-overlapping EST sequences) using CAP3 [6]. The collection of the single-
tons and consensus sequences of the contigs, called unigenes, form our main
dataset. As of July 23, 2002, the collection has 46,145 unigene ESTs of a total of
28,475,017 bases. This dataset can be obtained from http://harvest.ucr.edu/
using the HarvEST viewer.

In this paper, we study two computational problems arising in the selection
of short oligos (e.g., 20–50 bases) from a large EST database. One is to identify
oligos that are unique to each EST in the database. The other is to identify oligos
that are popular among the ESTs. More precisely, the unique oligo problem asks
for the set of all oligos each of which appears (exactly) in one EST sequence

http://www.css.orst.edu/barley/nabgmp/nabgmp.htm
http://www.tigr.org/tdb/tgi/software/
http://harvest.ucr.edu/

386 J. Zheng et al.

but does not appear (exactly or approximately) in any other EST sequence,
whereas the popular oligo problem asks for a list of oligos that appear (exactly
or approximately) in the largest number of ESTs. 1

A unique oligo can be thought of as a “signature” that distinguishes an EST
from all the others. Unique oligos are particularly valuable as locus-specific PCR
primers for placement of ESTs at single positions on a genetic linkage map,
on microarrays for studies of the expression of specific genes without signal
interference from other genes, and to probe genomic libraries [7] in search of
specific genes.

Popular oligos can be used to screen efficiently large genomic library. They
could allow one to simultaneously identify a large number of genomic clones that
carry expressed genes using a relatively small number of (popular) probes and
thus save considerable amounts of money. In particular for the database under
analysis, it has been shown previously by a number of independent methods that
the expressed genes in Triticeae are concentrated in a small fraction of the total
genome. In barley, this portion of the genome, often referred to as the gene-space,
has been estimated to be only 12% of the total genome [8]. If this is indeed true,
then at most 12% of the clones in a typical BAC library would carry expressed
genes, and therefore also the vast majority of barley genes could be sequenced
by focusing only on this 12% of the genome. An efficient method to reveal the
small portion of BAC clones derived from the gene-space has the potential for
tremendous cost savings in the context of obtaining the sequences of the vast
majority of barley genes. The most commonly used barley BAC library has a
6.3 fold genome coverage, 17-filter set with a total of 313,344 clones [3]. This
number of filters is inconvenient and costly to handle, and the total number of
BAC clones is intractable for whole genome physical mapping or sequencing.
However, a reduction of this library to a gene-space of only 12% of the total
would make it fit onto two filters that would comprise only about 600 Mb. This
is about the same size as the rice genome, which has been recently sequenced.
A solution for the popular oligo problem should make it possible to develop an
effective greedy approach to BAC library screening, enabling a very inexpensive
method of identifying a large portion of the BAC clones from the gene-space.
This would also likely accelerate progress in many crop plant and other systems
that are not being considered for whole genome sequencing.

Our Contribution. In this paper, we present an efficient algorithm to identify
all unique oligos in the ESTs and an efficient heuristic algorithm to enumer-
ate the most popular oligos. Although the unique and popular oligos problems
are complementary in some sense, the two algorithms are very different because
unique oligos are required to appear in the ESTs while the popular oligos are not.
In particular, the heuristic algorithm for popular oligos is much more involved
than that for unique oligos, although their (average) running times are similar.
The algorithms combine well-established algorithmic and data structuring tech-
niques such as hashing, approximate string matching, and clustering, and take

1 Note that, a popular oligo does not necessarily have to appear exactly in any EST.

Efficient Selection of Unique and Popular Oligos for Large EST Databases 387

advantage of the facts that (i) the number of mismatches allowed in these prob-
lems is usually small and (ii) we usually require a pair of approximately matched
strings to share a long common substring (called a common factor in [9]). These
algorithms have been carefully engineered to achieve satisfactory speeds on PCs,
by taking into account the distribution of the frequencies of the words in the
input EST dataset. For example, running each of the algorithms for the barley
EST dataset from HarvEST takes only a couple of hours (on a 1.2 GHz AMD
machine). This is a great improvement over other brute-force methods, like the
ones based on BLAST. 2 Simulations results show that the number of missed
positives by the heuristic algorithm for popular oligos is very limited and can be
controlled very effectively by adjusting the parameters.

Previous related work. The problem of finding infrequent and frequent pat-
terns in sequences is a common task in pattern discovery. A quite large family
of pattern discovery algorithms has been proposed in the literature and im-
plemented in software tools. Without pretending to be exhaustive, we mention
Meme [10], Pratt [11,12], Teiresias [13], Consensus [14], Gibbs Sampler
[15,16], Winnower [17,18], Projection [19,20], Verbumculus [21], Mitra
[22], among others. Although these tools have been demonstrated to perform
very well on small and medium-size datasets, they cannot handle large datasets
such as the barley EST dataset that we are interested in. In particular, some
of these tools were designed to attack the “challenge” posed by Pevzner and
Sze [17], which is in the order of a few Kbases. Among the more general and
efficient tools, we tried to run Teiresias on the 28 Mbases barley EST dataset
on an 1.2GHz Athlon CPU with 1GB of RAM, without being able to obtain any
result (probably due to lack of memory).

The unique oligo problem has been studied in the context of probe design
[23,9,24]. The algorithms in [23,24] consider physical and structural properties of
oligos and are very time consuming. (The algorithm in [24] also uses BLAST.) A
very recent algorithm by Rahman [9] is, on the other hand, purely combinatorial.
It uses suffix arrays instead of hash tables, and requires approximately 50 hours
for a dataset of 40 Mb on a high-performance Compaq Alpha machine with
16 Gb of RAM. However, his definition of unique oligos is slightly different from
ours (to be given in the next section).

The rest of the paper is organized as follows. Section 2 defines the unique and
popular oligo problems formally. The algorithms are presented in Section 3. Ex-
perimental results on the barley EST dataset and simulation results can be found
in Section 4. In Section 5, we draw some concluding remarks. The Appendix B
explains the popular oligo algorithm with an example.

2 For example, one can identify unique oligos by repeatedly running BLAST for each
EST sequence against the entire dataset. This was the strategy previously employed
by the HarvEST researchers.

388 J. Zheng et al.

2 The Unique and Popular Oligo Problems

We denote the input dataset as X = {x1, x2, . . . xk}, where the generic string xi

is an EST sequence over the alphabet Σ = {A, C, G, T} and k is the cardinality
of the set. Let ni denote the length of the i-th sequence, 1 ≤ i ≤ k. We set
n =

∑k
i=1 ni, which represents the total size of the input. A string (or oligo)

from Σ is called an l-mer if its length is l.
Given a string x, we write x[i], 1 ≤ i ≤ |x|, to indicate the i-th symbol in x. We

use x[i,j] as a shorthand for the substring x[i]x[i+1] . . . x[j] where 1 ≤ i ≤ j ≤ n,
with the convention that x[i,i] = x[i]. Substrings in the form x[1,j] correspond to
the prefixes of x, and substrings in the form x[i,n] to the suffixes of x. A string y
occurs at position i of another string x if y[1] = x[i], . . . , y[m] = x[i+m−1], where
m = |y|. For any substring y of x, we denote by fx(y) the number of occurrences
of y in x. fX(y) denotes the total number of occurrences of y in x1, . . . , xk.

The color-set of y in the set X = {x1, x2, . . . , xk} is a subset col(y) =
{i1, i2, . . . , il} of {1, 2, . . . , k} such that if ij ∈ col(y) then y occurs at least
once in xij . We also say that y has colors i1, i2, . . . , il. The number of colors, l,
of y is denoted as cX(w). Clearly fX(y) ≥ cX(y).

Given two strings x and y of the same length, we denote by H(x, y) the
Hamming distance between x and y, that is, the number of mismatches between
x and y. If H(x, y) ≤ d, we say that x d-matches y and x is a d-mutant of y.
The set of all the strings that d-match x is called the d-neighborhood of x. The
notion of occurrences and colors can be extended to d-occurrence and d-colors by
allowing up to d mismatches. If a string y has d-mutants at j distinct positions
in a string x, we say that y has j d-occurrences in x. If a string y has at least
one d-occurrence in each of j sequences in X, we say that y has j d-colors in X.

In the context of DNA hybridization, most papers define the specificity of an
l-mer in terms of its mismatches to the length-l substrings of target sequences,
although some also consider its physical and structural characteristics such as
melting temperature, free-energy, GC-content, and secondary structure [23,24].
In [9], Rahman took a more optimistic approach and used the length of the
longest common substring (called the longest common factor or LCF) as a mea-
sure of unspecificity. Given the nature of our target applications, we will take a
conservative approach in the definitions of unique and popular oligos.

Definition 1. Given the set X = {x1, x2, . . . xk} of ESTs and integers l and
d, a unique oligo is an l-mer y such that y occurs in at least one EST and the
number of d-colors of y in X is exactly one. In other words, y appears exactly
in some EST but does not appear approximately in any other EST.

Suppose that strings x and y have the same length. For any given constants
c, d, we say that string x (c, d)-matches string y if x and y can be partitioned into
substrings as x = x1x2x3 and y = y1y2y3 with |xi| = |yi| such that (i) |x2| = c,
(ii) x2 = y2, and (iii) the string x1x3 d-matches the string y1y3. In the above
partition, we call x2 a core in the (c, d)-match between x and y. (Note that a
(c, d)-match may have many cores). The notion of d-occurrences and d-colors
can be easily extended to (c, d)-occurrences and (c, d)-colors.

Efficient Selection of Unique and Popular Oligos for Large EST Databases 389

Definition 2. Given the set X = {x1, x2, . . . xk} of ESTs and integers l, d, c and
T , a popular oligo is an l-mer y such that the number of (c, d)-colors of y in X
is greater than or equal to T . In other words, the l-mer y appears approximately
in at least T ESTs.

The use of pooled oligo probes for BAC library screening [7] generally have
lengths from 24 to 40 bases. Given this range and based on discussion with
researchers from the Triticeae community, we consider l = 33 and d = 5 in the
unique oligo problem. In the popular oligo problem, we consider d = 1, 2, 3 and
c = 20.

3 The Algorithms

Our goal is to determine unique and popular oligos for a given set X of EST
sequences. Although the objectives of the two problems seem complementary,
our algorithms are quite different. The algorithm for the popular oligo problem
turns out to be much more involved because popular oligos are not necessar-
ily contained in the ESTs. Nevertheless, both algorithms share some common
strategies such as the idea of separating dissimilar strings as early as possible
to reduce the search space. To achieve this in the popular oligo problem, we
first find cores (i.e., c-mers) that appear exactly in at least two ESTs. Then
we cluster all length-l substrings of the ESTs by their cores of length c using a
hash table, and then, within each cluster, we cluster again the l-mers based on
Hamming distance between regions flanking the cores. Candidate popular oligos
are then enumerated from the small groups resulted from the two clusterings,
and their number of colors are counted. For the unique oligo problem, the notion
of cores, however, does not exist. On the other hand, due to the small number
of mismatches allowed (relative to l), two l-mers that d-match each other must
contain substrings that 1-match each other. Such substrings are called seeds. We
can thus cluster the ESTs by their seeds using a dictionary. For each cluster, we
compare the ESTs in the cluster by counting mismatches in the regions flanking
the seeds. The details are given below.

3.1 Unique Oligos

Recall that the unique oligo problem is to identify length-l substrings of the
ESTs that have exactly one d-color in the dataset X, for a given value of d. Our
strategy is first to eliminate all the those l-mers that cannot be unique oligos.
The algorithm is based on the following observation. Assume that x and y are
two l-mers such that H(x, y) ≤ d. Divide x and y into t = �d/2� + 1 substrings.
That is x = x1x2 · · ·xt and y = y1y2 · · · yt, where the length of each substring is
q = �l/t�, except possibly for the last one. In practice, one can always choose l
and d so that l is a multiple of t and hence x and y can be decomposed into t
substrings of length q, which we call seeds. It is easy to see that since H(x, y) ≤ d,
at least one of the seeds of x has at most one mismatch with the corresponding
seed of y.

390 J. Zheng et al.

Unique-Oligo-Selection(X, l, m)
Input: EST sequences X = {x1, x2, . . . , xk}

l: length of the oligos to be reported
d: maximum number of mismatches for non-unique oligos

Output: Mark each unique l-mers in X
1 t, q ← �d/2�+ 1, �l/t�
2 table ← Hit(X, q)
3 Extension(X, t, q, table, d)

Compare(table[i][j], table[i][k], d)
1 q1 ← the q-mer located at table[i][j]
2 q2 ← the q-mer located at table[i][k]
3 for each pair of l-mers that contain q1 and q2 as seeds respectively do
4 c← H(q1, q2)
5 if c ≤ d then
6 mark the two l-mers as “non-unique”

Hit(X, q)
1 for i← 1 to 4q do
2 initialize table[i]
3 index[i]← 0
4 for i← 1 to k do
5 for j ← 1 to ni − q + 1 do
6 key ← Map(xi,[j,...,j+q−1])
7 table[key][index[key]]← 〈i, j〉
8 index[key]← index[key] + 1
9 return table

Fig. 1. The algorithm for identifying unique oligos (continues in Figure 2).

Using this idea, we design an efficient two-phase algorithm. In the first phase,
we cluster all the possible seeds from the ESTs into groups such that within each
group, a seed has no more than one mismatch with the other seeds. In the second
phase, we check whether extending the flanking regions of a seed would result
in a d-match with the corresponding extension of any other seed in the same
group. If so, the l-mer given by this extension is not a unique oligo.

Phase 1. (Hit) We file all q-mers (seeds) from the input ESTs into a dic-
tionary with 4q entries. (If 4q cannot fit in the main memory, one could use a
hash table of an appropriate size.) Each entry of the table points to a list of
locations where the q-mer occurs in the EST sequences. Using the table we can
immediately locate identical seeds in the ESTs.

Efficient Selection of Unique and Popular Oligos for Large EST Databases 391

Extension(X, t, q, table, m)
1 for i← 1 to 4q do
2 List mut← mutant list of table[i]
3 len← # of records in table[i]
4 for j ← 1 to len do
5 for k ← j + 1 to len do
6 Compare(table[i][j], table[i][k], m)
7 for h← 1 to # of records in mut do
8 mutlen← # of records in table[mut[h]]
9 for k ← 1 to mutlen do
10 Compare(table[i][j], table[mut[h]][k], m)

Map(string S)
1 map S into an integer X with function f : {A,C,G,T} → {0, 1, 2, 3}
2 return X

Fig. 2. The algorithm for identifying unique oligos (continued).

Phase 2. (Extension) We compare the corresponding flanking regions of
each pair of matching seeds to determine whether they can be extended to a pair
of l-mers that d-match each other. Here, we also collect seeds that have exactly
one mismatch with each other as follows. For each table entry corresponding to
a seed y, we record a list of other seeds that have exactly one mismatch with
y, by looking up table entries that correspond to all the 1-mutants of y. This
list is called a mutant list of y. We examine all the seeds in the mutant list, and
compare the flanking regions of the q-mers and that of y in the same way as we
did for identical seeds, except that now the cutoff for the number of mismatches
in the flanking regions is d − 1.

The algorithm is summarized in Figures 1 and 2.

Time complexity. Suppose that the total number of bases in X is n. The
time complexity of phase one is simply Θ(qn). The time complexity of phase
two depends on the distribution of the number of seeds filed into each table
entry. Simply speaking, if the distribution is more or less uniform (which is the
case in our experiment) and each table entry contains r ≈ n/4q identical seeds,
the number of comparisons within the table entry is O(r2). The number for
comparisons for each mutant lists of size 3q is O(qr2). Each comparison requires
extension of the seeds and takes 2(l − q) time. Since there are 4q entries in
the table, the overall time complexity is O((l − q)qr24q). Given the exponential
dependency on q, one needs to make sure that q is not too large before using the
algorithm. (Again, in our experiment on the barley dataset, l = 33, d = 5 and
q = 11.)

392 J. Zheng et al.

In the practice of EST data analysis, we need also consider the reverse com-
plementary strand of each EST, which implies more stringency in the choice of
unique oligos. The above algorithm can be easily modified to take into account
reverse complementary EST strands without a significant increase of complexity.

3.2 Popular Oligos

Recall that the objective is to find all l-mers that have sufficiently large number
of (c, d)-colors in X. Since popular oligos are not required to appear exactly in
the EST sequences, we cannot solve the problem by exhaustive enumerate all
the substrings of length l in the EST sequences and count their (c, d)-colors. In
fact, one can easily show that the problem is NP-hard in general.

A straightforward algorithm is to consider all l-mers occuring in the ESTs and
for each l-mer, enumerate all its (c, d)-mutants and count their number of (c, d)-
colors. However, the number of (c, d)-mutants of an l-mer over the DNA alphabet
is more than

(
l−c
d

)
3d. Hence, the “brute-force” method becomes computionally

impractical due to its memory requirement as soon as the input size reaches the
order of hundreds of thousands of bases (like the barley dataset). 3

We can reduce the search space using the same idea as in the algorithm for
unique oligos, except that here the role of seeds is played by cores. Observe
that, if a (popular) oligo has (c, d)-occurrences in many ESTs, many of these
ESTs must contain length-l substring that share common cores. Based on this
observation, we propose a heuristic strategy that first clusters the l-mers in the
EST sequences into groups by their cores, and then enumerates candidate l-mers
by comparing the members of each cluster in a hierarchical way.

An outline of the algorithm is illustrated in Figure 3. Here, we determine
the popularity of the cores (i.e., length-c substrings) from the ESTs in the first
step. For each popular core, we consider extension of the cores into l-mers by
including flanking regions and cluster them using a well-known hierarchical clus-
tering method, called unweighted pair group method with arithmetic mean (UP-
GMA) [25]. We recall that UPGMA builds the tree bottom-up in a greedy fashion
by merging groups (or subtrees) of data points that have the smallest average
distance. Based on the clustering tree, we compute the common oligos shared
by the l-mers by performing set intersection. These common oligos shared by
many l-mers become candidate popular oligos. Finally, we count the number of
colors of these candidates, and output the oligos with at least T colors. A more
detailed description is given below. A complete example of the algorithm on a
toy dataset is also given in the appendix.

Phase 1. We compute the number of colors for all c-mers in the ESTs to
determine whether they could be candidate cores for popular l-mers, using a
hash table. According to our definition, a popular oligo should have a popular
core. We therefore set a threshold Tc on the minimum number of colors of each
3 When d = 3 and c = 20,

(
l−c
d

)
3d =

(
13
3

)
33 = 7, 722 for the barley dataset. Hence,

the straightforward algorithm would have to count the number of colors for about
7, 722 · 28× 106 = 217× 109 l-mers.

Efficient Selection of Unique and Popular Oligos for Large EST Databases 393

Cut tree

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

����
����
����
����

1

2

3

��������������

��������������

��������������

1

2

3

1

2

3

set 14set 2set 1

. . .

14 sets of 33−mers that share the core at a specific position

popular cores

1 2 3

1 2

Table of

1 2 3

1 2

Table of cores

UPGMA−tree

Compute candidates

Make tree

Count Colors

Collect flanking regions

List of candidates

Select

HashingInput
EST

Fig. 3. An overview of the algorithm for selecting popular oligos. For convenience of
illustration, the length of the oligos is assumed to be l = 33, and the length of the cores
is assumed to be c = 20.

popular core, depending on T, c, l and X. All cores that have a number of colors
below Tc are filtered out, and considered “unpopular”. However, since an l-mer
can (c, d)-match another l-mer with any of its l − d + 1 cores, it is possible that
we might miss some popular oligos that critically depend on unpopular core.
The parameter Tc represents a tradeoff between precision and efficiency. We will
show in Section 4 the effect of changing Tc on the output. We will see that in
practice we might miss only a negligible number of popular oligos.

Phase 2. Here we collect the substrings flanking the popular cores. For each
popular core, we construct l − c + 1 sets of substrings, one for each possible
extension of the core into an l-mer. Each set contains substrings of length l − c
constructed by concatenating the left and right flanking regions.

Phase 3. For each set of flanking substrings, we would like to identify all (l−
c)-mers that have d-occurrences in many of these substrings. In order to achieve
this efficiently, we first cluster the substrings according to their mutual Hamming
distance using the well-known hierarchical clustering method UPGMA. In the
process of building the clustering tree, whenever the Hamming distance between
some leaves in the tree is zero we compress the distance matrix by combining the

394 J. Zheng et al.

identical strings into one entry. This significantly reduces the running time not
only because the tree becomes smaller, but also because the number of common
d-mutants of two different l-mers is much less than that of two identical ones.
As we can see later, a significant proportion of the running time is spent on the
intersection of the sets of d-mutants. Compressing the distance matrices avoids
intersecting identical sets of d-mutants, which is expensive and also useless. We
then create a set of d-mutants for each substring represented at the leaves and
traverse the tree bottom-up. At each internal node u, we compute the intersection
of the two sets attached to the children, using a hash table based on the hash
function described in [26]. This intersection represents all the (l − c)-mers that
have d-occurrences in all the leaves (substrings) under the node u. As soon as
the intersetion becomes empty, we prune the tree. At the end of this process,
we obtain a collection of sets of (l − c)-mers, each of which, together with the
popular core, represents a candidate popular oligo.

Phase 4. Given the candidate popular oligos, we need to count their num-
ber of (c, d)-colors. Before counting, we radix-sort the candidates and remove
duplicates. More precisely, due to the possibly very large number of candidates
and duplicates (as in the barley case), we sort the candidates in several stages as
follows. For each core, we radix-sort all the candidates derived from the core and
remove duplicates. Then we merge the sorted list into the sorted list containing
all the candidates from those cores that have already been processed.

Time complexity. Phase 1 costs time O(cn). In phase 2, if the number of
popular cores selected in the first step is p and the average number of occurrence
of the cores is r, this phase costs O(nr(l− c)). For phase 3, the time for building
a UPGMA tree, including the computation of the distance matrix, is O((l −
c)r2), where r stands for the number of strings to be clustered. Since a (binary)
UPGMA tree with r leaves has 2r−1 nodes, the time for traversing (and pruning)
the tree is O(r

(
l−c
d

)
3d), where

(
l−c
d

)
3d is the number of d-mutants at each leaf.

Finally for phase 4, if the total number of candidates is m, counting the colors
for the candidates, excluding the time for radix-sort, costs time O(rm(l − c)).

4 Implementation and Results

We have implemented both algorithms in C and tested the programs on a desktop
PC with a 1.2GHz AMD Athlon CPU and 1GB RAM, under Linux. The main
dataset is a collection barley ESTs from HarvEST containing k = 46, 145 EST
sequences with a total of n = 28, 475, 017 bases. Before doing the searches, we
first cleaned the dataset by removing PolyT and PolyA repeats.

As mentioned above, our first task was to search for unique oligos of length
l = 33 with a minimum number of mismatches d = 5. Based on these parameters,
each oligo was divided into three seeds of length q = 11. Hence, our dictionary
table had 411 ≈ 4 million entries. The efficiency of our algorithm critically de-
pends on the statistical distribution of the seeds in the dictionary. The statistics
of the seeds in our experiment (before the extension phase) is shown in table in
the left of Figure 4. Clearly, most seeds occur less than 20 times in the ESTs

Efficient Selection of Unique and Popular Oligos for Large EST Databases 395

of occurrences # of seeds
0 242399

1-9 3063288
10-19 708745
20-29 120698
30-39 31637
40-49 11908

50-5049 15629
0

5000

10000

15000

20000

25000

30000

0 20 40 60 80 100

nu
m

be
r

of
 E

S
T

 w
ith

 s
pe

ci
fie

d
pe

rc
en

ta
ge

 o
f u

ni
qu

e
ol

ig
os

(number of unique oligos / all oligos) for each EST (%)

Distribution of unique oligos in each EST

"dist_percent.dat"

Fig. 4. LEFT: Distribution of frequencies of seeds in barley ESTs. RIGHT: Distribution
of unique oligos. The horizontal axis stands for the percentage of unique oligos over all
33-mers in an EST, and the vertical axis stands for the number of ESTs whose unique
oligos are at a certain percentage of all its 33-mers.

and this is the main reason why our algorithm was able to solve the dataset effi-
ciently. The final distribution of unique oligos is shown in the right of Figure 4.
Note that, there are many ESTs (slightly more than half of the entire dataset)
whose length-33 substrings are almost all unique oligos. In particular, there are
13,430 ESTs whose length-33 substrings are all unique oligos and there are 2,159
ESTs that contain no unique oligos. The whole computation took 2 hours and
26 minutes and used about 200 MB of memory.

Table 1. Distribution of the number of colors of the cores. The left column is the
range of the number of colors. The right column is the number of cores with a certain
number of color.

colors number of cores
1 22523412

2-10 2128677
11-20 5148
21-30 1131
31-40 492
41-50 346
51-60 242
61-70 77
71-80 34
81-90 29
91-100 43
101-176 19

Our second task was to search for popular oligos with length l = 33 and
core length c = 20. We considered different choices for the maximum number of
mismatches d ourside the core and the threshold Tc on the minimum number of

396 J. Zheng et al.

Table 2. Running time for enumerating popular oligos (in seconds).

Tc = 30 Tc = 40 Tc = 50 Tc = 60
d = 1 184 166 156 153
d = 2 278 219 177 338
d = 3 3808 1788 730 359

colors for the popular cores. The distribution of the number of colors of the cores
is shown in Figure 1. From the table we can see that the number of cores decreases
almost exponentially as the number of colors increases. On the other hand, cores
with low colors are unlikely to contribute to popular oligos. Therefore, it is
important to filter them out to increase the efficiency.

The running time of this program varies with the parameters d and Tc, as
shown in the Figure 2. The memory used in the program was mainly for storing
the candidate popular oligos. In general, about 64 MB suffices since the program
reuses the memory frequently.

4.1 Simulations

To evaluate the performance of our heuristics for selecting popular oligos we also
have run a few simulations as follows. We generated a set of artificial ESTs by
creating first a set of k random sequences and then injecting a controlled number
of approximate occurrences of a given set of oligos. The initial set of oligos,
denoted by I1, . . . , Is, was also generated randomly over Σ. Each oligo Ii was
assigned a predetermined number of colors Ci. We decided that the distribution
of the Ci should be Gaussian, that is, we defined Ci = C e−i2/2/

√
2π where C is

a fixed constant which determines the maximum number of colors. As said, the
positions in-between the oligos were filled with random symbols over the DNA
alphabet.

We then ran our program for popular oligos on the artificial ESTs dataset and
output a set of candidate oligos O1, . . . , Ot with their respective colors C ′

1, . . . , C
′
t.

The output oligos were sorted by colors, that is C ′
i ≥ C ′

j , if i < j. Since the output
contained redudant candidates that came from the mutations of the original
popular oligos, we removed those candidates that were a d-mutant of another
oligo with an higher number of colors. More precisely, if Oi was a d-mutant of
Oj , and 1 ≤ i < j ≤ t, then Oj was discarded. This “compression step” did
not eliminate good candidates for the following reason. Since the input oligos
I1, . . . , Is were generated randomly they were very unlikely to be similar. As a
consequence, the corresponding output oligos were also unlikely to be eliminated.

Finally, we compared the pair (I, C) with (O, C ′). The more similar (O, C ′)
is to (I, C), the better is the heuristic of our algorithm. Recall that I and O
were sorted by decreasing number of of colors. We compared the entries in
(I, C) with the ones in (O, C ′), position by position. For each 1 ≤ i ≤ u,
where u = min(s, t), we computed the average difference between C and C ′

Efficient Selection of Unique and Popular Oligos for Large EST Databases 397

Table 3. The average relative errors between the number of colors in the input and
the number of colors in output for a simulated experiment (n = 1, 440, 000, k = 720,
c = 20, C = 100, s = 100).

d = 2 d = 3
Tc = 10 0.019 0.022
Tc = 15 0.000 0.002
Tc = 20 0.018 0.000
Tc = 25 0.000 0.001
Tc = 30 0.000 0.000

as E = (1/u)
∑u

i=1
|C(i)−C′(i)|

C′(i) . If we assume that I and O contain the same set
of oligos, the smaller is E, the more similar is (I, C) to (O, C ′). To validate this
assumption, we also searched the list of oligos I in O, to determine whether we
missed completely some oligos.

Figure 3 shows the value of E for one run of the program on a dataset
of n = 1, 440, 000 bases composed by k = 2, 000 sequences of size 720. We
generated a set of s = 100 oligos with a maximum number of colors C = 100. In
the analysis, we fixed the size of the core to be c = 20, whereas the maximum
number of mismatches d outside the core and the threshold Tc were varied. The
results show that the average relative error is below 2%. In the final version of
the paper, we plan to repeat these simulations a few times to get more stable
and reliable results. We also compared the list of input oligos with the list of
output oligos and we found that sometimes the program misses one or two oligos
out of 100. However, the number of colors of these missed oligos is always near
the threshold Tc. We never miss an oligo whose number of color is above Tc +10.

5 Conclusion

We have proposed two algorithms to find unique and popular oligos in large EST
databases. The size of our dataset, in the order of tens of millions of bases, was
the real challenge due to the limitation in the size of main memory in common 32-
bits architectures. Our algorithms were able to produce a solution in a reasonable
amount of time on a regular PC with a modest amount of memory. As far as
we know, no other existing tools are capable of handling such a dataset with
such limited resources. Simulations show that the number of missed oligos by
the heuristic algorithm for popular oligos is negligible and can be controlled very
effectively by adjusting the parameters. Although the algorithms were initially
designed to address the challenges from the barley EST dataset, the methods can
be easily adapted to solve similar problems concerning infrequent and frequent
oligos on other large datasets. The software will be released in the public domain
in the near future.

398 J. Zheng et al.

Acknowledgments. The authors would like to thank Steve Wanamaker for
producing the sequence assemblies and unigene datasets that were used in this
work.

References

1. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H.,
Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F., Kerlavage, A.R., McCom-
bie, W.R., Venter, J.C.: Complementary DNA sequencing: Expressed sequence
tags and human genome project. Science 252 (1991) 1651–1656

2. Boguski, M., Lowe, T., Tolstoshev, C.: dbEST–database for “expressed sequence
tags”. Nat. Genet. 4 (1993) 332–3

3. Yu, Y., Tomkins, J.P., Waugh, R., Frisch, D.A., Kudrna, D., Kleinhofs, A.,
Brueggeman, R.S., Muehlbauer, G.J., Wise, R.P., Wing, R.A.: A bacterial ar-
tificial chromosome library for barley (Hordeum vulgare L.) and the identification
of clones containing putative resistance genes. Theor Appl Genet 101 (2000) 1093–
1099

4. Close, T., Wing, R., Kleinhofs, A., Wise, R.: Genetically and physically anchored
EST resources for barley genomics. Barley Genetics Newsletter 31 (2001) 29–30

5. Michalek, W., Weschke, W., Pleissner, K., Graner, A.: Est analysis in barley defines
a unigene set comprising 4,000 genes. Theor Appl Genet 104 (2002) 97–103

6. Huang, X., Madan, A.: CAP3: A DNA sequence assembly program. Genome
Research 9 (1999) 868–877

7. Han, C., Sutherland, R., Jewett, P., Campbell, M., Meincke, L., Tesmer, J., Mundt,
M., Fawcett, J., Kim, U., Deaven, L., Doggett, N.: Construction of a BAC con-
tig map of chromosome 16q by two-dimensional overgo hybridization. Genome
Research 104 (2000) 714–721

8. Barakat, A., Carels, N., Bernardi, G.: The distribution of genes in the genomes of
gramineae. Proc. Natl. Acad. Sci. U.S.A. 94 (1997) 6857–6861

9. Rahmann, S.: Rapid large-scale oligonucleotide selection for microarrays. In: Pro-
ceedings of the First IEEE Computer Society Bioinformatics Conference (CSB’02),
IEEE Press (2002)

10. Bailey, T.L., Elkan, C.: Unsupervised learning of multiple motifs in biopolymers
using expectation maximization. Machine Learning 21 (1995) 51–80

11. Jonassen, I., Collins, J.F., Higgins, D.G.: Finding flexible patterns in unaligned
protein sequences. Protein Science 4 (1995) 1587–1595

12. Jonassen, I.: Efficient discovery of conserved patterns using a pattern graph. Com-
put. Appl. Biosci. 13 (1997) 509–522

13. Rigoutsos, I., Floratos, A.: Combinatorial pattern discovery in biological sequences:
The Teiresias algorithm. Bioinformatics 14 (1998) 55–67

14. Hertz, G., Stormo, G.: Identifying DNA and protein patterns with statistically
significant alignments of multiple sequences. Bioinformatics 15 (1999) 563–577

15. Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F., Wootton,
J.C.: Detecting subtle sequence signals: A Gibbs sampling strategy for multiple
alignment. Science 262 (1993) 208–214

16. Neuwald, A., Liu, J., Lawrence, C.: Gibbs motif sampling: Detecting bacterial
outer membrane protein repeats. Protein Science 4 (1995) 1618–1632

17. Pevzner, P.A., Sze, S.H.: Combinatorial approaches to finding subtle signals in
DNA sequences. In: Proc. of the International Conference on Intelligent Systems
for Molecular Biology, AAAI press, Menlo Park, CA (2000) 269–278

Efficient Selection of Unique and Popular Oligos for Large EST Databases 399

18. Keich, Pevzner: Finding motifs in the twilight zone. In: Annual International
Conference on Computational Molecular Biology, Washington, DC (2002) 195–204

19. Tompa, M., Buhler, J.: Finding motifs using random projections. In: Annual
International Conference on Computational Molecular Biology, Montreal, Canada
(2001) 67–74

20. Buhler, J., Tompa, M.: Finding motifs using random projections. J. Comput. Bio.
9 (2002) 225–242

21. Apostolico, A., Bock, M.E., Lonardi, S.: Monotony of surprise and large-scale quest
for unusual words (extended abstract). In Myers, G., Hannenhalli, S., Istrail, S.,
Pevzner, P., Waterman, M., eds.: Proc. of Research in Computational Molecular
Biology (RECOMB), Washington, DC (2002)

22. Eskin, E., Pevzner, P.A.: Finding composite regulatory patterns in DNA sequences.
In: Proc. of the International Conference on Intelligent Systems for Molecular
Biology, AAAI press, Menlo Park, CA (2002) Bioinformatics S181–S188

23. Li, F., Stormo, G.D.: Selection of optimal DNA oligos for gene expression arrays.
Bionformatics 17 (2001) 1067–1076

24. Rouillard, J.M., Herbert, C.J., Zuker, M.: Oligoarray: Genome-scale oligonu-
cleotide design for microarrays. Bioinformatics 18 (2002) 486–487

25. Swofford, D. In: PAUP: Phylogenetic Analysis Using Parsimony version 4.0 beta
10. Sinauer Associates, Sunderland, Massachusetts (2002)

26. Wesselink, J.J., de la Iglesia, B., James, S.A., Dicks, J.L., Roberts, I.N., Rayward-
Smith, V.J.: Determining a unique defining DNA sequence for yeast species using
hashing techniques. Bionformatics 18 (2002) 1004–1010

27. Ito, M., Shimizu, K., Nakanishi, M., Hashimoto, A.: Polynomial-time algorithms for
computing characteristic strings. In Crochemore, M., Gusfield, D., eds.: Proceed-
ings of the 5th Annual Symposium on Combinatorial Pattern Matching. Number
807 in Lecture Notes in Computer Science, Asilomar, CA, Springer-Verlag, Berlin
(1994) 274–288

Appendix: An Example of the Popular Oligo Algorithm

We show a small example to illustrate each step of the algorithm. Again, let l
denote the length of oligos, c the length of cores, d the maximum number of
mismatches between two oligos, and Tc the threshold on the minimum number
of colors of popular cores. In this toy example, l = 8, c = 5, d = 1, Tc = 3. The
input is composed of four artificial EST sequences as shown in Figures 5. EST1
and EST3 are highly similar, which represents the similarity between some of the
EST sequences in real data.

Phase 1. Seven cores out of 148 possible cores are selected as popular cores.
Each entry of the hash table points to a list of positions of the occurrences of
the core in the input ESTs.

Phase 2. We collect the flanking regions for the seven cores. Figure 6 shows
the four sets of flanking regions for AAGGC. Note that the fourth set has one fewer
element than the other 3 sets. The reason is that the core AAGGC occurs at the
right boundary of EST0, and therefore has a shorter flanking region.

Phase 3. We cluster the flanking regions using UPGMA. In Figure 8, we
show the clusters for set 2 of the core AAGGC. Observe that the Hamming distance

400 J. Zheng et al.

AAAAGGCAGCTTATAATCTCCATATCGCTG
GTGAAGGAGGTAGATACTCGTATACGATCACTGCCTA
>EST3

GGCCCGTGCGC
TCCGACTACTGCACCCCGAGCGGATCACACAATGGAA
>EST2

AGGCAGCTTATAATCTCCACTGCT
GTGAAGGAGGTAGATCAAATAGAGCCTGCCCTAAAA
>EST1

GGCGA
TGGAGTCCTCGGACACGATCACATCGACAATGTGAA
>EST0

33GAAGG

TGAAG

0

ATCAC

AAGGC

GTGAA

GATCA

ACTGC

32

0

0

17

340

0 31

0 16

1 54

1

1 1

2

2 23

1 35

1 0

1 12

2 7

2 34

13

3 26

2 35

3 0

2 22

3 29

23

3 40

3 25

Fig. 5. The example dataset. The table of popular cores.

����
����
����
����

�����
�����
�����
�����

�������������� ��������

����
����
����
����

GTG GAAAGGC 1. GTG 1. TGG
2. AAA2. AAA

3. TGG
4. AAA

3. GGC
4. AAA

set 1 set 2

1. GGA

3. GCC
4. AAG

2. AAG 1. AGC

3. AGC
2. CCG

set 3 set 4

AAA AAGGC AGC
AAGGCTGG CCG
AAGGC AGCAAA

flanking region

core

Fig. 6. Collecting flanking regions for the core AAGGC.

3
2
3
0

0
3
0
3

3
0
3
2

0
3
0
3

AAA
GGC
AAA
TGG

4
3

1
2

1 2 3 4

make tree

compressionAfter

Before compression

1 3 (2, 4)

I

3I

I1

2

2 4 1 3

1

2

3

I

IImake tree

GGC

1 (2, 4) 3

3
0
3

3
2

0 2
3
0

AAA
TGG1

(2, 4)
3

Fig. 7. UPGMA tree construction for set 2 of the core AAGGC.

between entry 2 and entry 4 is zero and therefore distance matrix is compressed
by combining the identical strings into one entry. We then need to enumerate all
the 1-mutants of the strings denoted by the leaves of the trees, that is AAA, TGG

Efficient Selection of Unique and Popular Oligos for Large EST Databases 401

CGG
GGG
TAG
TCG
TTG
TGA
TGC
TGT

AGG AGC
CGC
TGC
GAC
GCC
GTC
GGA
GGG
GGT

emtpyI 2

1 3 (2, 4)

I 1

I 3

= I 1

1 3

cluster 1

(2, 4)

I 3

cluster2

cut tree

Our candidates(from core "AAGGC"):

AAAAGGCA
AGAAGGCA
GGAAGGCG
CAAAGGCA
ATAAGGCA

TGAAGGCC
GAAAGGCA
AAAAGGCC
TAAAGGCA
AAAAGGCG

ACAAGGCA AAAAGGCT

TAA

ATA

CAA
GAA

ACA
AGA

AAC

AAT
AAG

1−mutants of TGG: 1−mutants of GGC:1−mutants of AAA:

Fig. 8. Clustering set 2 of the core AAGGC

and GGC. Because leaf 1 and leaf 3 share the same parent, we apply intersection
on their sets of 1-mutants and get the set I1 = {GGG, TGC}. Then we apply
intersection between I1 and I3, where I3 represents the set of the 1-mutants of
leaf AAA. Since the resulting intersection I2 is empty, we prune the tree at I2
and separately output the strings in I1 and I3 as flanking regions of candidate
popular oligos. Note that, we output the 1-mutants of I3 even if it is represented
only by one node, because it is actually the intersection of two occurrences of
AAA, and therefore all elements of I3 have at least two d-matches in the EST
sequences.

	Introduction
	The Unique and Popular Oligo Problems
	The Algorithms
	Unique Oligos
	Popular Oligos

	Implementation and Results
	Simulations

	Conclusion

