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Abstract

Motivation: Histone post-translational modifications (PTMs) are involved in a variety of essential regulatory proc-
esses in the cell, including transcription control. Recent studies have shown that histone PTMs can be accurately
predicted from the knowledge of transcription factor binding or DNase hypersensitivity data. Similarly, it has been
shown that one can predict PTMs from the underlying DNA primary sequence.

Results: In this study, we introduce a deep learning architecture called DeepPTM for predicting histone PTMs from
transcription factor binding data and the primary DNA sequence. Extensive experimental results show that our deep
learning model outperforms the prediction accuracy of the model proposed in Benveniste et al. (PNAS 2014) and
DeepHistone (BMC Genomics 2019). The competitive advantage of our framework lies in the synergistic use of deep
learning combined with an effective pre-processing step. Our classification framework has also enabled the discov-
ery that the knowledge of a small subset of transcription factors (which are histone-PTM and cell-type-specific) can

provide almost the same prediction accuracy that can be obtained using all the transcription factors data.
Availabilityand implementation: https:/github.com/dDipankar/DeepPTM.

Contact: stelo@cs.ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

Histones are a class of proteins that bind to DNA and help to con-
dense the DNA into chromatin. They contain a large proportion of
positively charged amino acids, while DNA is negatively charged.
These opposite charges create a high-binding affinity structure be-
tween histones and DNA, called the nucleosome.

Histone proteins can be classified into core histones (H2A, H2B,
H3, H4) and linker histone (H1). The eight histones in the core are
arranged into a (H3)2(H4)2 tetramer and a pair of H2A-H2B
dimers, called the histone octamer. Each core histone has an amino-
terminal extension called histone tail which is the target for post-
translational modifications (PTMs).

Research in epigenetics has shown that post-transcriptional mod-
ifications of core histones are involved in a variety of essential regu-
latory processes in the cell, including transcription control (see, e.g.
Barski et al., 2007; VerMilyea et al., 2009; Zhang and Reinberg,
2001). Epigenetics factors (including PTMs and DNA methylation)
and the complex interaction between nucleosomes and transcription
factors are among the most critical factors influencing gene expres-
sion. Histone PTMs also have an indirect effect on gene expression
by influencing the interactions between transcription factors and
chromatin-modifying enzymes (Benveniste et al., 2014). In fact,
some studies (e.g. Dong et al., 2012; Karli¢ et al., 2010) have shown

that gene expression can be accurately predicted from the know-
ledge of histone tail PTMs.

In Benveniste et al. (2014), the authors investigated the opposite
problem, that is, the prediction of histone PTMs from the know-
ledge of transcription factors (TF) binding and the underlying DNA
sequence data. They reported that histone PTMs can be predicted
accurately from the knowledge of TF binding either at the promoter
or distal regulatory regions for three different human cell lines. They
also showed that the prediction from TFs is more accurate than the
prediction from the DNA sequence alone, and that the predictive
power of TF binding data can be extended to predict histone modifi-
cations across cell lines. They suggested that interactions between
TFs and histone-modifying enzymes might be important in driving
the deposition of histone modifications.

Other works on the prediction of histone PTMs include
DeepHistone (Yin et al., 2019), DanQ (Quang and Xie, 2016),
DeepSEA (Zhou and Troyanskaya, 2015) and gkm-SVM (Lee et al.,
2015), although the latter three are more general. DeepHistone is a
convolutional neural network that can predict seven histone PTMs
from the DNA sequence and DNase-Seq data for fifteen ENCODE
cell lines. In Yin et al. (2019), the authors of DeepHistone show that
their method outperformed DanQ, DeepSEA and gkm-SVM, but
they did not compare to the regression model in (Benveniste et al.,
2014).
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In this work, we propose a deep learning architecture called
DeepPTM for predicting histone PTMs from TF binding and DNA
sequence data. Extensive experimental results show that our neural
network achieves a prediction accuracy substantially higher than the
logistic regression model proposed in Benveniste ef al. (2014) and
the CNN used in DeepHistone (Yin et al., 2019). The competitive
advantage of our framework lies in synergistic use of deep learning
combined with an effective data cleaning pre-processing step. Our
framework has also enabled the discovery that the knowledge of a
small subset of transcription factors (which are histone-PTM- and
cell-type-specific) can provide essentially the same prediction accur-
acy that can be obtained using all the transcription factors data.
Additional insights on which TFs are strongly positively (or nega-
tively) correlated with the model’s prediction were provided by the
interpretability analysis of our deep learning model using the SHAP
framework.

2 Materials and methods

2.1 Data collection

Human epigenetic and genetic data were obtained from ENCODE
(ENCODE Project Consortium, 2004), as follows. Exactly 29 828
unique protein-coding transcription start sites (TSS) for the human
reference genome were obtained from the ENSEMBL database.
Histone tail modifications in the proximity of these TSS were
assigned based on ChIP-Seq analysis for three ENCODE Tier 1 cell
lines, namely H1 ES cells, K562 erythroleukemia cells and
GM12878 lymphoblastoid cells. We considered three histone PTMs
that are known to be relevant for transcription, namely H3K4me3,
H3K9%ac, H3K27ac for all three cell lines. For cell line H1, we also
considered H3K27me3.

As it was done in Benveniste et al. (2014), we have focused on
histone PTMs at gene promoters (rather than genome-wide) to ob-
tain an homogeneous set of training samples. Given a histone PTM,
each unique transcription start site (TSS) for a protein-coding gene
was assigned a positive label if a ChIP-Seq peak for that PTM was
detected within a 100 bp window center at the TSS (negative other-
wise). In ChIP-Seq, (i) DNA-bound proteins are cross-linked to their
DNA, which is then fragmented, (ii) DNA fragments those that are
not cross-linked with proteins are removed by immuno-precipitation
and (iii) short reads from either ends of cross-linked DNA fragments
are produced. We aligned ChIP-Seq reads to the human genome
using BWA, then used MACS2 (Zhang et al., 2008) using a false-
discovery rate of 0.01 to detect peaks. As a result of this process, the
proportion of positive/negative examples in the training set for cell
line H1 ranges from 8.3% to 39.8% (see Supplementary Table S1).

The DNA sequence data were obtained following the protocol in
Benveniste et al. (2014). We extracted the sequence =2000 bp up-
stream and downstream of each TSS. Then, we computed 6-mer
counts for these 4000 bp-long sequences. We combined counts of 6-
mers which are the reverse-complement of each other, ending up
with 2080 6-mer counts. As result of this process, the DNA sequence
dataset was represented by 29 828 vectors of dimension 2080. Each
vector had a positive or negative label for a particular pair of (his-
tone PTM, cell line) according to the presence of a corresponding
ChIP-Seq peak around the TSS (as described above).

The transcription factor (TF) dataset was obtained following the
protocol in Benveniste ef al. (2014). First, ChIP-Seq data from the
ENCODE project was filtered to remove proteins that lacked
sequence-specific DNA-binding transcription factor activity.
Overall, 30 TFs were assayed in H1 cells, 45 in K562 and 51 in
GM12878. Among these, 17 TFs were assayed in all three cell lines.
ChIP-Seq reads were aligned to the human genome, then the number
of reads mapped within 2000 bp of the TSS were counted. Raw read
counts were normalized by dividing the counts by the total number
of reads from the control dataset. For the H1 cell line, we considered
29 828 TSS and 30 normalized read counts. For the K562 cell line,
we had 45 normalized read counts. For the GM12878 cell line, we
considered 51 normalized read counts. Again, each vector had a
positive or negative label for a particular pair of (histone PTM, cell

line) according to the presence of a corresponding ChIP-Seq peak
around the TSS (as described above).

DNA hypersensitivity data, in the form of DNase-Seq normal-
ized read counts, was obtained from ENCODE in bigwig format
(ENCODE Project Consortium, 2004). Binary bigwig data were
converted to textual BedGraph using bigWigToBedGraph.

2.2 Neighborhood cleaning rule

To gain insights into the structural properties of the training exam-
ples, we generated 2D projections for the feature vectors in the
training set. For the transcription factor binding sites obtained from
ChIP-Seq data, k-dimensional vectors and their respective labels for
all histone PTMs (k =30 for the H1 cell line, k=45 for the K562
cell line and k= 51 for the GM12878 cell line) were processed using
t-SNE (van der Maaten and Hinton, 2008) with default settings
(n_components=2,  perplexity=30.0, learning_rate =200.0,
n_iter=1000, etc.). Figure 1 shows the results for cell line H1.
Observe that positive examples (green) and negative examples (red)
are not well separated. The same lack of separation can be observed
on t-SNE plots for H3K9ac in cell line K562, H3K4me3 and
H3K9ac in cell line GM12878 (Supplementary Fig. S1). Similarly,
the t-SNE plots for the DNA sequence features for H3K4me3 in H1
cells, H3K9ac in K562 cells and H3K27ac in GM12878 cells, show
that positive and negative examples are equally not-well separated
(Supplementary Fig. S2). Based on these observations, we decided to
discard a limited number training examples that could hamper the
learning inference.

We employed the neighborhood cleaning rule (NCL) introduced
in Laurikkala (2001). NCL is a method that is expected to remove
noisy training samples from the majority class. For a two-class prob-
lem, the algorithm works as follows. For each example, E; in the
training set, identify its three nearest neighbors. If E; belongs to the
majority class and its three nearest neighbors contradicts the label of
E;, then E; is removed. If E; belongs to the minority class and its
three nearest neighbors contradict the label of E;, then the nearest
neighbors that belong to the majority class are removed. Figure 2
shows a portion of the t-SNE projection of the data before and after
applying NCL. Observe how the data is much better separated after
NCL. The positive/negative ratio in the training set after NCL are
reported in Supplementary Tables S2 (TF-data) and S3 (DNA se-
quence data).

2.3 Choice of the classifier and training

The authors of Benveniste ez al. (2014) chose to use a logistic regres-
sion (LR) classifier because it produced interpretable weights that
were used to verify that their method recapitulated known relation-
ships between TF and histone PTMs.

Here, for modeling of the DNA sequence data, we have consid-
ered (i) a CNN-LSTM architecture and (ii) feed-forward fully con-
nected neural network. The CNN-LSTM was fed the DNA sequence
upstream and downstream of each TSS, as it was done (Quang and
Xie, 2016). Instead, the input to the fully connected neural network
was the 2080-dimensional vector composed of the 6-mer counts as
explained in Section 2.1. We determined that the fully connected
model performed better than the CNN when trained on the ‘clean’
data after Neighborhood Cleaning Rule. Henceforth, the feed-
forward fully connected model was used in all the experiments
below. An additional advantage of the feed-forward fully connected
neural network is that it used exactly the same set of features that
were used in Benveniste et al. (2014), which allows us to isolate the
impact of the cleaning step and the type of classifier in our conclu-
sions. The AUPR comparative analysis for the CNN-LSTM model
and fully connected neural network is shown in Supplementary
Figure S3.

The classifier for TF binding data is a feed-forward fully con-
nected neural network because it vastly improved the prediction ac-
curacy compared to LR and Gradient Boosted Classifier (GBC), as
shown in the experimental results in Section 2.7. Instead, a GBC
was used to determine the minimal sets of TFs (Section 3.1) because
it provides interpretable weights (i.e. Gini importance).
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Fig. 1. Two-dimensional projection using t-SNE for H1-H3K4me3, H1-H3K9ac, H1-H3K27ac and H1-H3K27me3 (left to right) on TF-ChIP-Seq data for cell line H1; red

points are negative examples; greens points are positive examples

Fig. 2. Two-dimensional projection using t-SNE for H3K4me3 data before (A) and after NCL (B) and for H3K9ac data before (C) and after NCL (D) for cell line H1; red

points are negative examples; greens points are positive examples

The training/testing procedure for both neural networks (TF
ChIP-Seq data and DNA sequences) is as follows.

1. Let A be the input dataset (unbalanced).
Split A uniformly at random into a training set A’ (80% of A),
validation set B (10% of A) and a test set C (10% of A).
3. Let D the dataset after the Neighborhood Cleaning Rule on A’.
Train the model on D and validate on B.

>

5. Evaluate on C.

It is important to note that NCL can be applied only on the train-
ing set, and not on the test set because during testing one is not sup-
posed to know the true labels (thus one cannot carry out NCL).

2.4 Model architecture for DNA sequences

To determine the optimal feed-forward fully connected architecture
for DEepPTM to learn from the DNA sequence dataset we consid-
ered 1-5 hidden layers, each with a number of hidden units between
50 and 550. For dropout (Srivastava et al., 2014), we considered
three values, namely, 0.3 corresponding to a weak dropout, 0.5 (me-
dium dropout) and 0.7 (strong dropout). We evaluated batch sizes
of 4,8,16,...,128. The learning rate was chosen from the interval
[1e=3,1e~!] evenly spaced in log scale. The optimal architecture for
DNA sequences used three hidden layers (with 512, 180 and 70 hid-
den units, respectively), with a dropout of 0.5, a batch size of 128
and an initial learning rate of 1e™*.

2.5 Model architecture for TF data

To determine the optimal feed-forward fully connected architecture
to learn from the TF ChIP-Seq dataset, we carried out the same pro-
cedure described in the previous subsection. For the TF dataset, the
optimal architecture of DEEPPTM has three hidden layers (with 256,
180 and 60 hidden units, respectively), with a dropout of 0.3, a
batch size of 16 and an initial learning rate of 1e~#. The architecture
DeepPTM for the TF dataset is illustrated in Figure 3.

In both architectures (DNA and TF), we used the procedure in
Glorot and Bengio (2010) to initialize the weights, ReLU as the acti-
vation function for the hidden layers (LeCun et al., 2015), a sigmoid
activation function in the output layer, binary cross entropy
(Equation 1 below) as the loss function and Adam as the optimizer

Input Hidden Qutput
layer layer layer

1|

0:0:0:0:0:
. 3

. “I.“I.-‘I.-‘I.-‘I.-(I

.1.

F1sy

@:

Fig. 3. The proposed architecture for DEepPTM for the TF ChIP-Seq dataset: one in-
put layers, three hidden layers, one output layer

(Kingma and Ba, 2014). We allowed up to 90 epochs for training,
with the possibility of early stopping when the value of loss function
did not improve over ten iterations. For model architecture selection
and hyper-parameter tuning, we followed (Alipanahi et al., 2015;
Bergstra and Bengio, 2012; Angermueller, 2017; Quang and Xie,
2016; Singh et al., 2016). As said, the loss function used in
DeepPTM is

1 N
L(y,y) = =55 2_ ¥ilog(y)) + (1 = yi) log(1 - ¥)) (1)
)

where y is 1 for a positive example and 0 for a negative example, y'
is classifier’s predicted label/probability and N is the total number of
examples in the training set.

2.6 Prediction of histone PTMs from DNA sequence

To evaluate the prediction quality of our classifier, we computed
the Area Under Precision-Recall curve (AUPR), the Area under
ROC curve (AUROC) and accuracy. To quantify the stability of
these predictions, we repeated each training/testing experiment
five times and recorded the mean of each performance metric.
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Table 1. Histone PTM prediction performance (mean over five iterations) of DeePPTM (after NCL on the training set) versus the logistic re-

gression classifier (no NCL on the training set) on DNA sequence data

Cell line PTM AUPR AUROC Accuracy
DeepPTM LR DeepPTM LR DeepPTM LR

H1 H3K4me3 0.904 0.848 0.955 0.918 0.923 0.856
H1 H3K9ac 0.729 0.649 0.920 0.867 0.827 0.825
H1 H3K27ac 0.653 0.447 0.880 0.828 0.825 0.861
H1 H3K27me3 0.417 0.332 0.887 0.806 0.908 0.902
K562 H3K4me3 0.858 0.751 0.918 0.865 0.891 0.814
K562 H3K9%ac 0.836 0.735 0.923 0.865 0.831 0.822
K562 H3K27ac 0.823 0.705 0.907 0.853 0.852 0.821
GM12878 H3K4me3 0.831 0.693 0.911 0.845 0.825 0.800
GM12878 H3K9%ac 0.823 0.700 0.925 0.855 0.860 0.814
GM12878 H3K27ac 0.780 0.647 0.901 0.827 0.830 0.806

Table 2. Histone PTM prediction performance (mean over five iterations) of DeePPTM (after NCL on the training set) versus the logistic re-

gression classifier (no NCL on the training set) on TF ChIP-Seq data

Cell line PTM AUPR AUROC Accuracy
DeepPTM LR DeepPTM LR DeepPTM LR

H1 H3K4me3 0.913 0.885 0.962 0.950 0.909 0.888
H1 H3K9%ac 0.795 0.729 0.952 0.921 0.867 0.844
H1 H3K27ac 0.685 0.545 0.944 0.909 0.898 0.878
H1 H3K27me3 0.668 0.447 0.902 0.877 0.914 0.922
K562 H3K4me3 0.922 0.901 0.969 0.961 0.915 0.913
K562 H3K9%ac 0.921 0.906 0.972 0.969 0.919 0.919
K562 H3K27ac 0.905 0.887 0.967 0.965 0.904 0.912
GM12878 H3K4me3 0.898 0.829 0.958 0.942 0.902 0.883
GM12878 H3K9%ac 0.915 0.873 0.988 0.962 0.930 0.906
GM12878 H3K27ac 0.889 0.855 0.971 0.956 0.906 0.901

We compared the performance of DeepPTM to the logistic re-
gression classifier (LR) described in Benveniste et al. (2014).

First, we investigated the impact of the Neighborhood
Cleaning Rule (NCL) on the performance of LR and DeepPTM.
Supplementary Table S4 shows that LR performs better after
NCL in predicting all histone PTMs except H3K9ac. DeepPTM
also performs better after NCL for all histone PTM predictions
(see Supplementary Table S5). In all experiments below (unless
otherwise noted) NCL was used to clean the training set.

Table 1 shows AUPR, AUROC and accuracy for DEepPPTM and
LR when trained and tested on DNA sequence data (represented by
the 2080 6-mer counts). Here, NCL was used as a pre-processing
step for DEepPTM, but not for LR. Observe that the AUPR for
DeepPTM ranges from 0.417 (for H3K27me3 on cell line H1) to
0.904 (for H3K4me3 on cell line H1). DEepPTM’s predictions out-
perform LR on all histone PTMs. DEepPTM’s AUPR improvement
over LR ranges from 6.83% (for H3K4me3 on cell line H1) to
25.60% (for H3K27me3 on cell line H1).

To make a fair comparison we have also used NCL on the train-
ing set for the LR classifier. Supplementary Table S6 shows AUPR,
AUROC and accuracy for DEepPTM and LR when trained and
tested on DNA sequence data. Observe that AUPR for LR ranges
from 0.412 (for H3K27me3 on cell line H1) to 0.850 (for H3K4me3
on cell line H1). DEepPTM’s predictions outperform LR on all his-
tone PTMs. DEepPTM’s AUPR improvement over LR ranges from
7.75% (for H3K27ac on cell line H1) to 19.05% (for H3K4me3 on
cell line GM12878).

2.7 Prediction of histone PTMs from TF binding data
As we did in the previous section, we recorded mean for AUPR,
AUROC and accuracy over five iterations of each experiment. First,

we investigated the impact of NCL on TF ChIP-Seq data. Both
DeepPTM and LR performed better on cleaned data than on raw
data for all histone PTM predictions (Supplementary Table S7 for
LR, and Supplementary Table S8 for DEepPTM).

Table 2 reports these performance metrics for DEEPPTM and LR
when trained and tested on TF binding data, which is represented as
normalized ChIP-Seq read counts. As we did in the previous section,
we compared the performance of DEePPTM on the test set without
NCL.

Observe that the AUPR for DeepPTM ranges from 0.668 (for
H3K27me3 on cell line H1) to 0.913 (for H3K4me3 on cell line
H1). DeepPTM’s predictions outperform LR on all histone PTMs.
DeepPTM’s AUPR improvement over LR ranges from 1.56% (for
H3K9%ac on cell line K562) to 49.44% (for H3K27me3 on cell line
H1).

As we did in the previous section, we also used NCL on the train-
ing set for LR. Supplementary Table S9 shows AUPR, AUROC and
accuracy for DEePPTM and LR when trained and tested on TF-
ChIP-Seq data. Observe that AUPR for LR ranges from 0.520 (for
H3K27me3 on cell line H1) to 0.890 (for H3K4me3 on cell line
H1). Here, DEepPTM’s predictions outperform LR on all histone
PTMs. DeepPTM’s AUPR improvement over LR ranges from 1.54%
(for H3K9ac on cell line K562) to 28.46% (for H3K9ac on cell line
H1).

We tested the impact of the choice of the window size used
to assign PTMs to a particular TSS (the default window size was
100 bp). Supplementary Table S10 shows very minor difference in
DeepPTM’s AUPR for other choices of the window size (500 bp,
1 kbp and 2 kbp).

We then compared the predictive performance of DeepPTM
trained on TF ChIP-Seq binding data (Table 2) against its perform-
ance when trained on DNA sequence data (Table 1). Observe that
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Table 3. Gradient Boosted classifier's prediction performance ® .
(mean AUPR, AUROC and accuracy over five iterations) using TF ® ® =
binding data for the H1 cell line (NCL on the traning set) @ : o
L : L ] @
Cell line PTM AUPR AUROC Accuracy @ : @ 5‘9,%
® "3
H1 H3K4me3 0.905 0.951 0.912 : [ ] %’@. o
o L Logistic
H1 H3K9ac 0.781 0.929 0.848 ® 1 Regression '.
H1 H3K27ac 0.646 0.921 0.887 ® ‘fé
H1 H3K27me3 0.585 0.892 0.896 e e ® &
® - @ £
et ® ® ®
° o
@
Table 4. DeerPTM'’s prediction performance (mean AUPR, AUROC @

and accuracy over five iterations) using DNase-seq for cell line H1
(NCL on the traning set)

PTM AUPR AUROC Accuracy
H3K4me3 0.903 0.974 0.938
H3K9%ac 0.719 0.901 0.820
H3K27ac 0.554 0.860 0.810
H3K27me3 0.240 0.725 0.875

DeepPTM performed better when trained on TF ChIP-Seq data for
all histone marks and on all cell lines.

As mentioned in Section 2.3, we justified the choice of a
feed-forward fully connected network over either a Gradient
Boosted classifier (GBC) or an LR model based on a comparative
analysis of these classifiers’ performance on TF ChIP-Seq data.
To test the GBC, we used Python sklean library. We evaluated
several choices for the two key GBC parameters, namely n_esti-
mator = 40,60, 80,...,100, max_depth= 3,4,5,...,10. The GBC
learning rate was chosen in the interval [1e~, 1e™!] evenly spaced
in log scale. We found that n_estimator=100, max_depth= 3
and learning rate of le™! were optimal for GBC on the H1 data-
set. The performance of GBC on predicting PTMs on cell line
H1 is shown in Table 3 and Supplementary Figure S6.
Experimental results in Tables 2 and 3 show that DEepPTM per-
forms better than the GBC.

2.8 Prediction of histone PTMs from DNA

hypersensitivity data

As demonstrated by comparing Tables 1 and 2, transcription factor
data enables DEEPPTM to achieve a higher accuracy in predicting
PTMs than the DNA sequence. An important question is whether
DNA accessibility (i.e. DNase I hypersensitivity data) at the TF
binding sites would allow a similar predictive performance, as it is
done in DeepHistone (Yin et al., 2019). To answer this question, we
used the same feed-forward fully connected neural network model
that we designed for TF binding data and trained it on DNase-Seq
data for cell line H1. DNase-Seq normalized read counts were col-
lected as explained in Section 2.1, then fed into DEepPTM for pre-
dicting histone PTMs. Experimental results are shown in Table 4
and Supplementary Figure S7. By comparing Tables 2 and 4, we
concluded that TF binding data allows a more accurate prediction
of PTMs than DNA hypersensitivity data.

2.9 Prediction of histone PTMs from the DNA sequence
and TF binding data (combined)

Here, we combined the two neural networks for DNA sequence and
TF binding data into one Ensemble classifier by feeding their predic-
tion scores into a Logistic Regression classifier (see Fig. 4). The pre-
diction provided by the Logistic Regression is the outcome of the
combined model. For the Logistic Regression classifier, we have
used the sklearn library with default settings (i.e. C=1, Penalty =
12, etc).

Fig. 4. The proposed architecture for the Ensemble classifier; the architecture on the
top deals with the DNA sequence features; the architecture at the bottom deals with
the TF binding data; the outputs of the two models are combined using a Logistic
Regression classifier

Table 5. DeepPTM ensemble classifier's prediction performance
(AUPR, AUROC and accuracy over five iterations) using both DNA
sequence and TF binding data (NCL on the traning set) on cell line
H1; DeepHistone’s AUPR and AUROC were obtained from Tables 2
and 3in Yin et al. (2019)

PTM DeepPTM DeepHistone

AUPR  AUROC Accuracy AUPR  AUROC

H3K4me3 0.961 0.974 0.938 0.843 0.9459
H3K9%ac 0.865 0.963 0.892 0.727 0.9039
H3K27ac 0.822 0.955 0.907 0.771 0.9137
H3K27me3 0.765 0.925 0.922 0.666 0.8896

The prediction performance of the Ensemble classifier on cell
line H1 using both DNA sequence and TF binding data is shown in
Table 5. Supplementary Figure S8 shows the individual precision/re-
call curves of the Ensemble classifier for each PTMs. By comparing
these experimental results to the results in Tables 1 and 2, we
observed that DeepPTM’s performance using Ensemble classifier
using both features is higher than its performance using either DNA
sequence or TF binding data. Also observe that DEepPTM outper-
forms DeepHisTONE, with the caveats that (i) DeepHISTONE uses
DNase-Seq data while DEepPTM employs TF ChIP-Seq data (both
use the DNA sequence) and (ii) DeepHisTONE employs one CNN to
predict seven histone PTMs simultaneously, whereas DeepPTM
trains one network for each histone PTM.

2.10 Prediction of histone PTMs across different cell
lines using TF binding data

Given the excellent performance of DEepPTM, we tested its perform-
ance across cell lines, i.e. we trained DEePPTM on one cell line and
tested on another. For this purpose, we selected as features the 17
TFs which are common to all cell lines. Observe in Table 6 that the
prediction performance (AUPR) of DEepPTM for H3K4me3 across
cell lines is lower than the prediction performance on the same cell
line. The same is true for H3K9ac (Table 7) and for H3K27ac
(Table 8). This suggests that cell type specific TFs are responsible for
determining histone PTM profiles, which recapitulate the finding in
Benveniste et al. (2014). Observe however, that the prediction per-
formance of DEEPPTM using the common 17 TFs is almost the same
as using all the TFs. This is not the case for the logistic regression
classifier. Finally, observe that DeepPTM significantly outperforms
LR on all cross cell line predictions. Precision/recall curves for cross
cell line prediction for H3K4me3 are shown in Supplementary
Figure S9. Experimental results for H3K9ac and H3K27ac are
shown in Supplementary Figures $10 and S11, respectively.
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Table 6. DeerPTM's predictive performance (mean AUPR) across
cell lines for H3K4me3 (NCL on the traning set)

Test on H1 Test on K562  Test on GM 12878

DeepPTM LR DeepPTM LR DeepPTM LR

Train on H1 0.904 0.878 0.855 0.777 0.746  0.651
Train on K562 0.871 0.793 0.901 0.882 0.670  0.479
Train on GM12878 0.882 0.848 0.871 0.825 0.878  0.790

Table 7. DeepPTM's predictive performance (mean AUPR) across
cell lines for H3K9ac (NCL on the traning set)

Test on H1 Test on K562  Test on GM 12878

DeepPTM LR DeepPTM LR DeepPTM LR

Train on H1 0.851 0.681 0.850 0.7638 0.720 0.661
Train on K562 0.801 0.606 0.901 0.879 0.582  0.453
Train on GM12878 0.750 0.596 0.852 0.799 0.881  0.803

Table 8. DeerPTM's predictive performance (mean AUPR) across
cell lines for H3K27ac (NCL on the traning set)

Test on H1 Test on K562  Test on GM 12878

DeepPTM LR DeepPTM LR DeepPTM LR

Train on H1 0.680 0.480 0.810 0.719 0.670  0.604
Train on K562 0.587 0.416 0.901 0.850 0.530 0.423
Train on GM12878 0.480 0.376 0.823 0.758 0.863  0.735

3 Interpretability analysis of DeepPTM

Understanding the reasons behind a classifier’s performance is as
critically important as optimizing the classifier’s accuracy.
Unfortunately, deep learning models are notoriously challenging to
interpret. In this section, we propose two methods that can provide
some insights into DEePPTM’s predictive performance. First, we
used the concept of Gini importance to identify minimal sets of TFs
(which are histone-PTM- and cell-type-specific) that can provide al-
most the same prediction accuracy of the full dataset of TFs.
Second, we used the SHAP framework to determine which TFs are
the most influential for the prediction, and which TF are directly (or
inversely) correlated with the prediction of a particular histone
PTM.

3.1 Minimal Sets of TFs using Gini importance

To obtain the minimal feature set on the TF binding data, we com-
puted the Gini importance on the feature set. The Gini importance
depends on the number of times a feature is used to split a node in a
decision tree, weighted by the number of samples it splits (Breiman,
2001). We computed the minimal feature set of features as follows.

Sort features by Gini importance in descending order.

Let S be the top feature.

Train and test DEEPPTM on the set S.

If the prediction accuracy of the classifier using S is within 1% of

e

the prediction accuracy based on all features then STOP, else
add the next feature to S and repeat from (3).

Supplementary Figure S12 illustrates the process of producing
minimal sets. The Gini importance for each TF over all pairs of
(PTM, cell line) are shown in Supplementary Tables S11-520.

Table 9 shows the minimal sets for each pair of cell type and his-
tone PTM. Recall that the TFs in each minimal set provides almost
the same prediction performance of the entire available set of TFs.

Table 9. Minimal sets of TFs for cell specific histone PTM

Cell line PTM Minimal set

H1 H3K4me3 SIN3A, MAX

H1 H3K9ac SIN3A, TCF12, NRSF, CREB1, YY1, SP4,
SIXS

H1 H3K27ac YY1, SIN3A, ATF2, CREB1, TCF12, SP4,
NRSE, SP1, CTCF

H1 H3K27me3 TCF12, SIN3A, E2F6, ATF2, GABP, NRSF,

SIXS, TEAD4, SP4, MAX, BACHI, SP1,
CMYC, CREB1, YY1
K562 H3K4me3  E2F6, MAX, TEAD4, ATF3, GATA2,
ZNF263, CREB1, E2F4
K562 H3K9ac E2F6, MAX, CMYC, TEAD4, CTCF, ATF3
K562 H3K27ac  MAX, CMYC, TEAD4, E2F6, CTCF
GM12878 H3K4me3  ATF2, BATF, BCL3, BHLHE40, CFOS,
E2F4, EBF1, ELF1, ELK1, ERRA, ETS1,
FOXM1, IKZF1, IRF3, IRF4
SP1, NFATC1, CREB1, TCF3, STAT3,
BATF, ELF1, RUNX3, POU2F2
NFATC1, SP1, CREB1, ELF1, CTCF,
TCF3, BCL3

GM12878 H3K9ac

GM12878 H3K27ac

For example, SIN3A and MAX alone provide a prediction accuracy
for H3K4me3 on the H1 cell line within 1% of the accuracy
obtained using all thirty TFs.

Figure 5 shows Venn diagrams for the minimal sets of each his-
tone PTM for a particular cell line. Observe that H3K4me3 can be
predicted by only two TF for cell line H1; the other PTMs require
significantly more TFs. In contrast, the minimal set for H3K4me3 is
the largest for cell line GM12878. Observe that (i) SIN3A is shared
by all the histone PTMs for cell line H1, (ii) TEAD4, E2F6, MAX
are shared by all the histone PTMs for cell line K562 and (iii) ELF1
is shared by all the histone PTMs for cell line GM12878.

Figure 6 shows Venn diagrams for the minimal sets of each cell
lines for a particular histone PTM. Observe that there are no TFs for
H3K4me3 and H3K9ac that are shared by all three cell lines, i.e. the
minimal set for H3K4me3 and H3K9ac are highly specific to that
cell-line. Also observe that there is only one TF for H3K27ac shared
by all three cell lines, namely CTCF.

3.2 Importance analysis of TFs using SHAP

We used the SHAP framework (Lundberg and Lee, 2017) to identify
what TFs contribute the most in DEPPTM’s prediction, and whether
they are positively or negatively correlated with the prediction of a
particular histone PTM. The idea proposed in Lundberg and Lee
(2017) is to devise a simpler explanation model that is interpretable
and that can approximate well the original (complex) model.

For the interpretability analysis of DeepPTM, we have used
DeepSHAP which is an efficient approximation algorithm for SHAP
for deep learning models that relies on DeepLIFT (Shrikumar et al.,
2016), as described in Lundberg and Lee (2017). The implementa-
tion we used here differs from the original DeepLIFT because (i) it
uses a distribution of background samples instead of a single refer-
ence value, and (ii) it uses Shapley’s equations to linearize non-linear
components such as max, softmax, products, divisions, etc.
DeepLIFT approximates SHAP values under the assumption that
the input features are independent of one another and the deep
learning model is linear. The back-propagation rules that define
how each component is linearized are heuristically chosen. Since
DeepLIFT is an additive feature attribution method that satisfies
local accuracy and missingness, the Shapley values represent the
only attribution values that satisfy consistency (Lundberg and Lee,
2017). This motivates our choice in using DeepLIFT as a compos-
itional approximation for SHAP values.

We have used the Python library shap that implements the
method in Lundberg and Lee (2017). The method DeepExplainer
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Fig. 7. Feature importance plot for TF binding data for the prediction H3K4me3 in
cell line H1

was used to explain DEePPTM. The function summaryplot produces
the feature importance plot that illustrates the features’ contribu-
tions to DEepPTM’s prediction.

H3K2Tac H3K27ac

H3K27ac

Kksez  H1

GM12878 GM12878

The feature importance plot of DEepPTM for the prediction of
H3K4me3 from TF binding data in cell line H1 is shown in
Figure 7. Features (in this case, transcription factors) are ranked in
descending order. Features at the top contribute more to the model
prediction than the features at the bottom, while the scatter plot on
the horizontal axis illustrates whether a feature is directly (red) or
inversely (blue) correlated with the prediction. For example, a high
normalized read count of the transcription factor SIN3A has a
strong positive impact on the prediction of H3K4me3 for the H1
cell line. Similarly, USF2 has the 6th strongest impact on the predic-
tion, but it is negatively correlated with the prediction of H3K4me3,
that is, the higher is the binding, the less likely one should observe
H3K4me3. Observe that SP1, MAX, CREB1, TR4, BHLHE40,
NFE2, POU2F2, SIXS, IRF4, NFATC1, TCF12, NFIC and GABP
are positively correlated with H3K4me3 PTM for H1 while STAT3,
NFE2, TCF3, NFYA BCL3 are negatively correlated.

We carried out similar analysis for other cell lines and histone
PTMs. Supplementary Figure S13-521 show the corresponding fea-
ture importance plot obtained via SHAP. We also listed the top five
positively and negatively correlated TFs for each PTM and each cell
line in Table 10. Observe that transcription factor MAX is almost
always positively correlated with these histone PTMs.

4 Conclusions

We proposed a deep learning architecture to predict histone PTMs
from TF binding and DNA sequence data. We determined that (i)
histone PTM can be predicted more accurately from TF ChIP-Seq
binding data than from DNA sequence, (ii) histone PTMs can be
predicted more accurately from TF ChIP-Seq binding data than
from DNase-Seq data, (iii) histone PTMs can be predicted more ac-
curately by combining DNA sequence and TF ChIP-seq binding
data, (iv) DEePPTM’s prediction accuracy is substantially higher
than the logistic regression model proposed in Benveniste et al.
(2014) and DeepHistone (with the caveats listed in Section 2.9). The
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Table 10. Positively and Negatively Correlated TFs for cell specific histone PTM

Cell line PTM Positively correlated TFs Negatively correlated TFs

H1 H3K4me3 SP1, MAX, CREB1, TR4, BHLHE40 STAT3, NFE2, TCF3, NFYA, BCL3
H1 H3K9ac SIN3A, YY1, MAX, CREB1, SP1 TCF12, USF2, CJUN, ATE3

H1 H3K27ac YY1, SIN3A, SP1, CREB1, ATE2 USE2, TCF12, ATF3, NANOG

H1 H3K27me3 TCF12, E2F6, GABP, MAX, BACH1 SIN3A, ATF2, SIXS, SP1, SP4

K562 H3K4me3 MAX, E2F4, HCFC1, CREB1, SP1 GATA2, GATA1, ETS1, ATF3, USF2
K$S62 H3K9%ac E2F6, MAX, E2F4, CMYC, GABP GATA2, ATF3, GATAI1, ETS1, ZNF274
K562 H3K27ac MAX, E2F6, CMYC, GABP, E2F4 ATF3, GATA2, ETS1, CTCF, ZNF274
GM12878 H3K4me3 SP1, MAX, ELF1, CREB1, TR4 STAT3, NFE2, TCF3, NFYA, BCL3
GM12878 H3K9%ac ELF1, SP1, CREB1, MAX, POU2F2 STAT3, NFYA, NFYB, TCF3
GM12878 H3K27ac ELF1, SP1, CREB1, POU2F2, NFIC STAT3, NFYA, FOXM1, NFE2, ZEB1

competitive advantage of DEEPPTM lies in synergistic use of deep
learning combined with an effective data cleaning pre-processing
step. Our framework has also enabled the discovery that the know-
ledge of a small subset of transcription factors (which are histone-
PTM- and cell-type-specific) can provide almost the same prediction
accuracy that can be obtained using all the transcription factors.
The SHAP-based importance analysis showed which TF are most in-
fluential for the prediction, and which TFs are directly (or inversely)
correlated with the prediction of a particular histone PTM.
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