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Abstract

Motivation: As the invention of DNA sequencing in the 70s, computational biologists have had to

deal with the problem of de novo genome assembly with limited (or insufficient) depth of sequenc-

ing. In this work, we investigate the opposite problem, that is, the challenge of dealing with exces-

sive depth of sequencing.

Results: We explore the effect of ultra-deep sequencing data in two domains: (i) the problem of

decoding reads to bacterial artificial chromosome (BAC) clones (in the context of the combinatorial

pooling design we have recently proposed), and (ii) the problem of de novo assembly of BAC

clones. Using real ultra-deep sequencing data, we show that when the depth of sequencing in-

creases over a certain threshold, sequencing errors make these two problems harder and harder

(instead of easier, as one would expect with error-free data), and as a consequence the quality of

the solution degrades with more and more data. For the first problem, we propose an effective so-

lution based on ‘divide and conquer’: we ‘slice’ a large dataset into smaller samples of optimal size,

decode each slice independently, and then merge the results. Experimental results on over 15 000

barley BACs and over 4000 cowpea BACs demonstrate a significant improvement in the quality of

the decoding and the final assembly. For the second problem, we show for the first time that mod-

ern de novo assemblers cannot take advantage of ultra-deep sequencing data.

Availability and implementation: Python scripts to process slices and resolve decoding conflicts

are available from http://goo.gl/YXgdHT; software Hashfilter can be downloaded from http://goo.gl/

MIyZHs

Contact: stelo@cs.ucr.edu or timothy.close@ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

We have recently introduced in (Lonardi et al., 2013) a novel proto-

col for clone-by-clone de novo genome sequencing that leverages

recent advances in combinatorial pooling design (also known as

group testing). In our sequencing protocol, subsets of non-redundant

genome-tiling bacterial artificial chromosomes (BACs) are chosen

to form intersecting pools, then groups of pools are sequenced on

an Illumina sequencing instrument via low-multiplex (DNA
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barcoding). Sequenced reads can be assigned/decoded to specific

BACs by relying on the combinatorial structure of the pooling de-

sign: since the identity of each BAC is encoded within the pooling

pattern, the identity of each read is similarly encoded within the

pattern of pools in which it occurs. Finally, BACs are assembled in-

dividually, simplifying the problem of resolving genome-wide repeti-

tive sequences.

In (Lonardi et al., 2013), we reported preliminary assembly stat-

istics on the performance of our protocol in four barley (Hordeum

vulgare) BAC sets (Hv3–Hv6). Further analysis on additional barley

BAC sets and two genome-wide BAC sets for cowpea (Vigna ungui-

culata) revealed that the raw sequence data for some datasets was of

significantly lower quality (i.e. higher sequencing error rate) than

others. We realized that our decoding strategy, solely based on the

software HASHFILTER (Lonardi et al., 2013), was insufficient to deal

with the amount of noise in poor quality datasets. We attempted to

(i) trim/clean the reads more aggressively or with different methods,

(ii) identify low quality tiles on the flow cell and remove the corres-

ponding reads (e.g. tiles on the ‘bottom middle swath’), (iii) identify

positions in the reads possibly affected by sequencing ‘bubbles’ and

(iv) post-process the reads using available error-correction software

tools (e.g. QUAKE, REPTILE). Unfortunately, none of these steps ac-

complished a dramatic increase in the percentage of reads that could

be assigned to BACs, indicating that the quality of the dataset did

not improve very much. These attempts to improve the outcome led

however, to a serendipitous discovery: we noticed that when

HASHFILTER processed only a portion of the dataset, the proportion

of assigned/decoded reads increased. This observation initially

seemed counterintuitive: we expected that feeding less data into our

algorithm meant that we had less information to work with, thus de-

crease the decoding performance. Instead, the explanation is that

when data is corrupted, more (noisy) data is not better, but worse.

The study reported here directly addresses the observation that

when dealing with large quantities of imperfect sequencing data,

‘less’ can be ‘more’. More specifically, we report (i) an extensive

analysis of the trade off between the size of the datasets and the abil-

ity of decoding reads to individual BACs; (ii) a method based on

‘slicing’ datasets that significantly improves the number of decoded

reads and the quality of the resulting BAC assemblies; (iii) an ana-

lysis of BAC assembly quality as a function of the depth of sequenc-

ing, for both real and synthetic data. Our algorithmic solution relies

on a divide-and-conquer approach, as illustrated in Figure 1.

2 Methods

2.1 Pooling design
We applied the combinatorial pooling scheme described in (Lonardi

et al., 2013) to BAC clones for (i) a gene-enriched portion of the

genome of H.vulgare L. (barley), and (ii) the whole genome of

V.unguiculata (cowpea). Briefly, in our sequencing protocol we (i)

obtain a BAC library for the target organism; (ii) select gene-

enriched BACs from the library (optional); (iii) fingerprint BACs

and build a physical map; (iv) select a minimum tiling path (MTP)

from the physical map; (v) pool the MTP BACs according to the

shifted transversal design; (vi) sequence the DNA in each pool, trim/

clean sequenced reads; (vii) assign reads to BACs (deconvolution);

(viii) assemble reads BAC-by-BAC using a short-read assembler.

We should first note that a rough draft of the �5300 Mb barley

genome is now available (Stein et al., 2012): our BAC sequencing

work had contributed to that effort, but is distinct. In our work, we

focused on the gene-enriched portion of the genome (Muñoz-

Amatriaı́n et al., 2015). We started with a 6.3� genome equivalent

barley BAC library which contains 313 344 BACs with an average

insert size of 106 kb (Yu et al., 2000). About 84 000 gene-enriched

BACs were identified and fingerprinted using high-information-

content fingerprinting (Luo et al., 2003; Muñoz-Amatriaı́n et al.,

2015). From the fingerprinting data a physical map was produced

(Bozdag et al., 2007; Soderlund et al., 2000) and a MTP of about

15 000 clones was derived (Bozdag et al., 2013; Muñoz-Amatriaı́n

et al., 2015). Seven sets of n¼2197 clones were chosen to be pooled

according to the shifted transversal design (Thierry-Mieg, 2006),

which we called Hv3, Hv4, . . . , Hv9 (Hv1 and Hv2 were pilot ex-

periments). An additional set of n¼1053 clones (called Hv10) was

pooled using the shifted transversal design with different pooling

parameters (see below).

A pooling scheme based on the shifted transversal design

(Thierry-Mieg, 2006), is defined by (P, L, C), where P is a prime

number, L defines the number of layers and C is a small integer. A

layer is one of the classes in the partition of BACs and consists of

exactly P pools: the larger the number of layers, the higher is the

decodability. The decodability of the pooling design determines

what is the largest number of ‘positive’ objects that can be decoded:

in our case, a d-decodable pooling design will handle the overlap of

at most d MTP clones. By construction the total number of pools is

P�L. If we set C to be the smallest integer such that PCþ1�N where

N is the number of BACs that need to be pooled, then the decodabil-

ity of the design is bðL� 1Þ=Cc.
For barley sets Hv3, Hv4, . . . , Hv9, we chose parameters P¼13,

L¼7 and C¼2, so that we could handle PCþ1 ¼ 2197 samples and

make the scheme bðL� 1Þ=Cc ¼ 3-decodable. We expected each

non-repetitive read to belong to at most two BACs if the MTP had

been computed perfectly, or rarely three BACs when considering im-

perfections, so we set d¼3. Each of the L¼7 layers consisted of

P¼13 pools, for a total of 91 BAC pools. In this pooling design,

each BAC is contained in L¼7 pools and each pool contains

PC¼169 BACs. We call the set of L pools to which a BAC is as-

signed, the BAC signature. Any two BAC signatures can share at

most C¼2 pools, and any three BAC signatures can share at most

3C¼6 pools. For sets Hv3–Hv8, Vu1 and Vu2, we manually pooled

2197 BACs thus exhausting all the ‘available’ signature for the pool-

ing design. However, for set Hv9 we only used 1717 signatures. Set

Hv10 was pooled using a different design: we chose pooling param-

eters P¼11, L¼7 and C¼2, for a total of PCþ 1¼1331 BAC signa-

tures, however, we only used 1053 signatures. BAC signatures that

were available but not used in the pooling were called ghosts.

Cowpea’s genome size is estimated at 620 Mb and it is yet to be

fully sequenced. For cowpea we started from a 17�depth of cover-

age BAC library containing about 60 000 BACs from the African

breeding genotype IT97K-499-35 with an average insert size of

150 kb. Cowpea BACs were fingerprinted using high information

Fig. 1. An illustration of the strategy to improve read decoding: (i) a large

dataset of reads to be decoded is “sliced” in n smaller datasets of optimal

size, (ii) each slice is decoded independently and (iii) read-to-BAC assign-

ments for each slice are merged and conflicts are resolved
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content fingerprinting (Ding et al., 2001; Luo et al., 2003). A phys-

ical map was produced from 43 717 fingerprinted BACs with a

depth of 11� genome coverage (Bozdag et al., 2007; Soderlund et

al., 2000), and a MTP comprised of 4394 clones was derived

(Bozdag et al., 2013). The set of MTP clones was split in two sets of

n¼2197 BACs (called hereafter Vu1 and Vu2), each of which was

pooled according to the shifted transversal design (Thierry-Mieg,

2006), with the same pooling parameters used for Hv3–Hv9.

To take advantage of the high throughput of sequencing of the

Illumina HiSeq2000, 13–20 pools in each set were multiplexed on

each lane, using custom multiplexing adapters. After the sequenced

reads in each lane were demultiplexed, we obtained an average of

1764 million reads in each set with a read length of about 92 bases

and an insert size of 275 bases. Reads were quality-trimmed and

cleaned of spurious sequencing adaptors, and then reads affected by

Escherichia coli contamination or BAC vector were discarded. The

percentage of E.coli contamination averaged around 43%: as a con-

sequence, the average number of usable reads after quality trimming

and cleaning decreased to about 824 million, with an average high-

quality read length of about 89 bases. Supplementary Table S1 re-

ports the number of reads, number of bases, average read length and

E.coli contamination for each of the 10 sets (Hv3, Hv4, Hv5, Hv6,

Hv7, Hv8, Hv9, Hv10, Vu1 and Vu2). Raw reads for barley and

cowpea BACs have been deposited in NCBI SRA accession number

SRA051780, SRA051535, SRA051768, SRA073696, SRA051739

(barley); SRA052227 and SRA052228 (cowpea).

2.2 Read decoding analysis
The 91 pools (77 for Hv10) of trimmed reads for barley and cowpea

were processed using our k-mer based algorithm called HASHFILTER,

which is fully described in (Lonardi et al., 2013). Briefly,

HASHFILTER builds a hash table of all distinct k-mers in the 91 (or

77) pools of reads, and records for each k-mer the set of pools where

it occurs. Then it processes each read individually: (i) a read r is

decomposed in its constitutive k-mers; (ii) the set of pools of each

k-mer is fetched from the hash table, and matched against the BAC

signatures (allowing for a small number of missing/extra pools); (iii)

the union of k-mer signatures that match a valid BAC signature de-

termines the BAC assignment for read r. Recall that since our pool-

ing is 3-decodable, each read can be assigned to 0–3 BACs.

For some of the datasets, the percentage of reads decoded using

this procedure was very low. For instance HASHFILTER could decode

only 23.8% of the reads in Hv9. We suspected a higher percentage

of sequencing errors in Hv9 compared with previous datasets, so we

conducted many experiments to improve the decoding performance

on this dataset, including (i) tweaking the parameters and the algo-

rithm in HASHFILTER, (ii) correcting the reads using QUAKE and

REPTILE, (iii) increasing the stringency for quality values in the trim-

ming step, (iv) considering only reads that appeared exactly at least

twice, (v) using on the left or the right read (for paired-end reads).

None of these actions increased the number of decoded reads in

Hv9>36.6%, which was still unsatisfactory. To our initial surprise,

running HASHFILTER on a fraction of the reads yielded higher decod-

ing percentages, which suggested the idea to ‘slice’ the data.

We remind the reader that HASHFILTER has the ability to ignore

k-mers affected by sequencing errors: if the number t of non-zero

counts of a k-mer signature belongs to the interval [Lþ1,

2 L�C�1], HASHFILTER removes from the k-mer signature the t – L

pools with the lowest counts [for details, see Case 4 and 6 of step G

in Lonardi et al., (2013)]. If one assumes that k-mers with sequenc-

ing errors are rarer than error-free k-mers, spurious pools will have

a low k-mer count and will be removed before the reads are

decoded. In addition to this feature, HASHFILTER also has the option

to disregard entirely a k-mer that appears rarely, which is likely to

contain sequencing errors.

The next question was to study the dependency between the size

of the dataset and the performance of the decoding algorithm. To

this end, we took samples of the original 91 (or 77) set of reads in

sizes of 0.5, 1, 2, 3, 4 and 5 M reads (details on the sampling method

can be found in the next section) and computed the percentage of

reads decoded by HASHFILTER on these samples of increasing sizes.

Figure 2A shows the percentages of decoded reads for sets Hv3,

Hv4, Hv5, Hv6 and Hv7; Figure 2B is for Hv8, Hv9, Hv10, Vu1

and Vu2. The x-axis is the number of reads per pool (in millions)

given in input to HASHFILTER (k¼26). The rightmost point on these

graphs corresponds to the full dataset. The datasets used to generate

Figure 2 are available as Supplementary Dataset 1.

Several observations on Figure 2 are in order. First, observe that

when the number of reads per pool is too small (0.5–1 M) the per-

centage of reads decoded by HASHFILTER is low. Similarly, when the

number of reads per pool is large, the percentage of reads decoded

by HASHFILTER can be low for some datasets. We believe that when

the input size is small, there is not enough information in the hash

table of k-mers to accurately decode the reads. However, when the

input size is large, sequencing errors in the data introduce spurious

k-mers in the hash table, which has the effect of deteriorating

HASHFILTER’s decoding performance. Observe that almost all these

curves reach a maximum in the range 1–3 M reads. For datasets

whose ‘optimal number’ of reads is low, we can speculate the

amount of sequencing error to be higher. Also observe the large vari-

ability among these 10 datasets. At one extreme, graphs for Hv3,

Hv10 and Hv5 are very ‘flat’ indicating low sequencing errors; at

the other extreme, graphs for Vu1 and Vu2 degrade very quickly

after the peak, indicating poorer data quality.

We also carried out a simulation study using synthetic reads gen-

erated from the rice genome (Oryza sativa). For this simulation we

started from an MTP containing 3827 BACs with an average length

Fig. 2. The percentage of reads decoded by HASHFILTER (k¼ 26) on dataset

(A) Hv3, Hv4, Hv5, Hv6 and Hv7 (B) Hv8, Hv9, Hv10, Vu1, and Vu2 as a func-

tion of the number of reads given in input (x: number of million of reads

sampled in each dataset)
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of about 150 kb, which spanned 91% of the rice genome (which is

about 390 Mb). We pooled in silico a subset of 2197 BACs from the

set above according to the shifted transversal design [see Lonardi et

al., (2013) for details]. We generated 2 M synthetic reads using

WGSim (github.com/lh3/wgsim) for each of the 91 resulting rice

BAC pools. Reads were 104 bases long with 1% sequencing error

rate (no insertions and deletions errors were allowed). A total of 208

Mbp gave an expected 56� coverage for each BAC. We ran

HASHFILTER on the read datasets in slices of 0.25, 0.5, 1, 1.5 and 2 M

(full dataset). The percentage of decoded reads (see Supplementary

Fig. S1) peaks at 1.5 M, and mirrors the observations made on real

data. Even for synthetic reads, more data does not necessarily imply

improved decoding performance.

2.3 Improved decoding algorithm
Our improved decoding algorithm first executes HASHFILTER on pro-

gressively larger samples of the dataset (e.g. 0.5, 1, 2, 3, 4, 5 M and

full dataset) for a given value of k. Our sampling algorithm selects

reads uniformly at random along the input file: taking a prefix of

the dataset is not a good idea because reads in the file are organized

according to their spatial organization on the flowcell, possibly

introducing biases.

When the sample size is greater than the pool size, the entire

pool is used for decoding. Otherwise, reads in pools larger than the

sample size are uniformly sampled in order to meet the sample size

constraint. As a result of this process, the size of each pool in a ‘slice’

will be at most the sample size, but some of the pools will be smaller.

The objective is to find the sample size that maximizes the number

of reads decoded by HASHFILTER.

We observed that the optimal value of the sample size is some-

what independent from k as long as it is chosen ‘reasonably large’,

say k>20 for large eukaryotic genomes. Supplementary Figure S2

illustrates that running HASHFILTER with k ¼ 20; 23; . . . ;32 gives

rise to parallel curves. One can save time by running HASHFILTER

with smaller values of k in order to find the optimal data size.

Once the optimal sample size n is determined, the algorithm

finds the size m of the largest pool to calibrate d datasets (hereafter

called slices) each one of which has at most n reads per pool. For in-

stance, if the optimal slice size is n¼2 M reads, and the largest pool

has m¼10 M reads, the algorithm will create d ¼ m=n ¼ 5 slices:

each one will be composed of 91 pools, each of which has at most

2 M reads. Observe that the number of reads in each pool can vary

significantly. For instance in Hv3, the largest pool has almost 23 M

reads, and the smallest has about 3 M reads. Smaller pools will con-

tribute their reads to multiple slices. For instance, if there is a pool

of size 2 M in the same example described earlier, these reads will

appear in all five slices. In general, if a pool size is �n, the entire

pool will be used in each slice.

Then, the algorithms run HASHFILTER d times, once on each of the

d slices—which involves creating d individual hash tables. For this

step, we recommend using the largest possible value of k (k¼32), be-

cause the percentage of decoded reads for a given input size increases

with k (see Supplementary Fig. S2). Then, the algorithm merges the d

independent HASHFILTER’s outputs. If a read is decoded in only one

slice, it will be simply copied in the output. If a read is decoded mul-

tiple times in different slices and the independent decodings do not

agree, a conflict resolution step is necessary. In our running example,

reads in the small 2 M-reads pool will be decoded five times: it is pos-

sible that HASHFILTER will assign a read to five different BAC sets. In

order to identify reads decoded multiple times, our algorithm first

concatenates the d text outputs of HASHFILTER, then sorts the reads by

their unique identifier (ID), so that reads with the same ID are con-

secutive in the file. Recall that HASHFILTER assigns each read to a set

composed of 0–3 BACs. A group is the set of all BAC (assignment)

sets for a single-end read. When a read is paired-end, we have a left

group for the left read and a right group for the right read. For in-

stance in Figure 1, single-end read c is decoded by HASHFILTER at least

three times: in slice 1 read c is assigned to BAC3, in slice 2 it is as-

signed to BAC3 and BAC8, and in slice n it is assigned to BAC3. The

set ffBAC3g; fBAC3;BAC8g ; fBAC3gg is the group for read c. If a

read has been decoded at least twice by HASHFILTER and the sets in its

group are not identical, the following algorithm computes the most

likely assignment according to a set of rules which are checked in

order (i.e. the first one that applies is used, and subsequent rules are

not considered).

i. if a read is single-end and its group contains one or more BACs

which have 75%-majority or higher, then the read is assigned to

those majority BAC(s);

ii. if a read is paired-end, and both its left group and its right group

are non-empty, and the union of the left and the right group

contains one or more BACs which have 50%-majority or

higher, then both the left and the right read are assigned to

those majority BAC(s);

iii. if a read is paired-end, and either its left or its right group are

empty, and the non-empty group contains one or more BACs

which have 75%-majority or higher, then both the left and the

right read are assigned to those majority BAC(s);

iv. if a read is paired-end, and its left group is not identical to its

right group, then both the left and the right read are not

assigned.

In the example on read c, since BAC3 is has 100%-majority

(appears in all three assignments) but BAC8 has only 33%-majority

(appears in one of the three assignments), we assign read c to BAC3

but not to BAC8.

3 Results

Once all the decoded reads are assigned to 1–3 BACs using the

procedure above, VELVET (Zerbino and Birney, 2008) is executed to

assemble each BAC individually. As was done in (Lonardi et al.,

2013), we generated multiple assembly for several choices of

VELVET’s l-mer (hash) size (25–79, step of 6). The assembly reported

is the one that maximizes the n50 (n50 indicates the length for

which the set of all contigs of that length or longer contains at least

half of the total size of all contigs).

We employed several metrics to evaluate the improvement in

read decoding and assembly enabled by the slicing algorithm. For

one of the barley sets (Hv10) we executed HASHFILTER using several

choices of k (k ¼ 20;23; 26; 29; 32) on the full 748 M reads dataset

(i.e. with no slicing) as well as with k¼32 using the slicing algo-

rithm described ealrier. The first five rows of Table 1 summarize the

decoding results. First, observe that as we increase k, the number of

decoded reads increases monotonically. However, if one fixes k

(in this case k¼32, which is the maximum allowed by HASHFILTER),

slicing Hv10 in 4 slices of �4 M reads increases significantly the

number of decoded reads (84.60 compared with 77.19%) available

for assembly. Analysis of the number of assignments to ghost BACs

also shows significant improvement in the decoding accuracy when

using slicing: 0.000086% of the reads are assigned to unused BAC

signatures compared with 0.000305–0.001351% when HASHFILTER

is used on the full dataset. We carried out a similar analysis on
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Hv9: when the full dataset was processed with HASHFILTER (k¼26),

the number of reads assigned to ghost BACs was very high, �1.9 M

reads out of 196 M (0.9653%). When the optimal slicing is used

(k¼32), only 19 140 reads out of 516 M are assigned to ghost BACs

(0.0037%). Also, observe in Table 1 how the improved decoding af-

fects the quality of the assembly for Hv10. When comparing no slic-

ing to slicing-based decoding, the average n50 jumps from 12 260 to

42 819 bp (both for k¼32) and the number of reads used by VELVET

in the assembly increases from 86.7 to 90.7%.

For Hv10, we also measured the number of decoded reads that

map (with 0, 1, 2 and 3 mismatches) to the assembly of a subset of

26 BACs that are available from (Stein et al., 2012). Table 2 reports

the average percentage of decoded reads (either from the full dataset

or from the optimal slicing) that BOWTIE can map to the 454-based

assemblies. Observe how the slicing step improves by 6–7% the

number of reads mapped to the corresponding BAC assembly, sug-

gesting a similar improvement in decoding accuracy. Similar im-

provements in decoding accuracy were observed on the other

datasets (data not shown).

On Hv8, we investigated the effect of the slice size on the decod-

ing and assembly statistics: earlier we claimed that the optimal size

corresponds to the peak of the graphs in Figure 2. For instance, no-

tice that the peak for Hv8 is �2 M reads. We decoded and

assembled reads using slicing sizes of 2 M reads as well as (non-opti-

mal) slice size of 3 M reads. The experimental results are shown in

Table 3. Observe that the decoding with 3 M does not achieve the

same decoding accuracy or assembly quality of the slicing with 2 M,

but again both are significantly better than without slicing. Again,

notice in Table 3 how improving the read decoding affects the qual-

ity of the assembly. The average n50 increases from 4126 bp

(k¼26, no slicing) to 34 262 bp (k¼32, optimal slicing) and the

number of reads used by VELVET in the assembly increases from 55.6

to 91.2%, respectively. For Hv8, 207 genes were known to belong

to a specific BAC clone (Lonardi et al., 2013): the assembly using

slicing-based coding recovered at least 50% of the sequence of 187–

190 of them, compared with 178 using no slicing.

Finally, we compared the performance of our slicing method

against the experimental results in (Lonardi et al., 2013), which

were obtained by running HASHFILTER with no data slicing (k¼26).

The basic decoding and assembly statistics when no slicing is used

are reported in Table 4. First, observe the large variability of results

among the 10 sets. Although the average number of decoded reads

for k¼26 is �460 M, there are sets which have less than half that

amount (Hv6 and Hv9) and sets have more than twice the average

(e.g. Hv3). As a consequence, the average fold-coverage ranges from

72� (Hv6) to 528� (Hv10). In general, the assembly statistics

(without slicing-based decoding) are not very satisfactory: the n50

ranges from 2630 (Hv9) to 8190 bp (Hv3); the percentage of reads

used by VELVET ranges from 66.0 (Hv9) to 85.9% (Hv3 and Hv4);

the percentage of known genes covered at least 50% of their length

by the assemblies ranged from 66% (Hv4) to 97% (Hv3).

When we decoded the same 10 datasets using the optimal slice

size (using this time k¼32) the assemblies improved drastically. The

decoding and assembly statistics are summarized in Table 5: note

that each set has its optimal size and the corresponding number of

slices. First observe how the number of decoded reads increased sig-

nificantly for most datasets (e.g. 330–785 M for Hv7, 289–669 M

for Hv8, 209–516 M for Hv9, 369–907 M for Vu1 and 448–695 M

for Vu2). Only for two datasets the number of decoded reads

decreased slightly (by 12 M reads in Hv5, and by 44 M in Hv10).

For all the datasets, the average n50 increased significantly—from

an average of about 5.7 to 30 kbp (see Supplementary Dataset 2 for

detailed assembly statistics on each dataset). Even for datasets for

Table 1. Decoding and assembly statistics for the Hv10 barley set for several choices of k on the full dataset, and for the improved slicing

algorithm

No slicing Slicing

k¼ 20 k¼ 23 k¼ 26 k¼ 29 k¼ 32 k¼ 32

Reads decoded (%) 67.76% 71.07% 73.57% 75.56% 77.19% 84.60%

Reads decoded (M) 511 536 555 570 582 617

Reads assigned to ghost BACs(%) 0.000498% 0.000305% 0.000480% 0.000484% 0.001351% 0.000086%

Reads to be assembled (M) 704 724 739 748 723 695

Coverage (�) 502 502 528 502 517 499

Reads used by VELVET (%) 73.6% 77.9% 80.8% 81.8% 86.7% 90.7%

n50 (bp) 3 634 5 143 7 069 8 877 12 260 42 819

Sum/size (%) 102.8% 102.8% 100.5% 97.9% 89.5% 121.9%

Observed genes (27 expected) 20 20 20 20 20 20

Coverage of observed genes (%) 94.0% 94.0% 94.0% 94.0% 94.1% 94.0%

Table 2. A subset of 26 BACs in Hv10 have a 454-based assembly

available from (Stein et al., 2012)

No slicing Slicing

k¼ 32 k¼ 32

0 mismatches 75.2% 82.4%

1 mismatch 78.7% 85.9%

2 mismatches 80.5% 87.4%

3 mismatches 82.3% 88.7%

The table reports the percentage of the reads for those 26 BACs that can be

mapped (with BOWTIE with 0, 1, 2 and 3 mismatches) to the corresponding

assemblies.

Table 3. Decoding and assembly statistics for Hv8: comparing no

slicing and slicing with two different slice sizes (2 M reads is opti-

mal according to the peak in Fig. 2)

No slicing Slicing

k¼ 26 k¼ 32, 3 M k¼ 32, 2 M

Reads decoded (%) 31.68% 78.98% 82.74%

Reads decoded (M) 270 539 600

Reads to be assembled (M) 289 591 669

Coverage (x) 94 197 223

Reads used by VELVET (%) 69.0% 92.6% 91.6%

n50 (bp) 4126 31 226 34 262

Sum/size (%) 55.6% 97.0% 102.0%

Observed genes (207 expected) 178 190 187

Coverage of observed genes (%) 86.0% 91.1% 91.2%
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which slicing decreased the number reads (Hv5 and Hv10), the n50

increased significantly. The number of reads used by VELVET

increased from an average of 77–92%; the fraction of known genes

that were recovered by the assemblies increased from 81 to 85%.

We recognize that the improvement from Tables 4 to 5 is not just

due to the slicing, but also to the increased k (from 26 to 32). We

have already addressed this point in Tables 1–3, where we showed

that increasing k from 26 to 32 helps the decoding/assembly but the

main boost in accuracy and quality is due to slicing. Recall that the

assemblies in Tables 4 and 5 were carried out using VELVET with l

¼ 25;31; . . . ; 79 and choosing the assembly with the largest n50.

On the Hv3 dataset, we have also tested VELVET with fixed l¼49,

SPADES (Bankevich et al., 2012) with l ¼ 31; 33; . . . ;79, and IDBA-

UD (Peng et al., 2012) with l ¼ 31; 33; . . . ; 79 (see Supplementary

Table S3). VELVET (best n50) and SPADES’ performance were com-

parable, while IDBA-ud achieved lower n50. We also tested VELVET

with l¼49, and SPADES with l ¼ 31; 33; . . . ;79 on all the other

datasets (Supplementary Table S3). Setting l¼49 for VELVET led to

less ‘bloated’ assemblies, somewhat comparable to SPADES’ output.

As a final step, we investigated how the depth of sequencing af-

fects BAC assembly quality. To this end, we multiplexed 16 barley

BACs on one lane of the Illumina HiSeq2000, using custom multi-

plexing adapters. The size of these BACs ranged �70–185 kbp (see

Supplementary Table S2). After demultiplexing the sequenced reads,

we obtained 34.4 M 92-bases paired-end reads (insert size of 275

bases). We quality-trimmed the reads, then cleaned them of spurious

sequencing adaptors; finally reads affected by E.coli contamination

or BAC vector were discarded. The final number of cleaned reads

was 23.1 M, with an average length of �88 bases. The depth of

sequencing for the 16 BACS ranged from �6600� to 27 700� (see

Supplementary Table S2).

Another set of 52 barley BACs was sequenced by the

Department of Energy Joint Genome Institute using Sanger long

reads. All BACs were sequenced and finished using PHRED/PHRAP/

CONSED to a targeted depth of 10�. The primary DNA sequences for

each of these 52 BACs were assembled in one contig, although two

of them were considered partial sequence.

The intersection between the set of 16 BACs sequenced using the

Illumina instrument and the set of 52 BACs sequenced using Sanger

is a set of seven BACs (highlighted in bold in Supplementary Table

S2), but one of these seven BACs is not full-length (052L22). We

used the six full-length Sanger-based BAC assemblies as the ‘ground

truth’ to assess the quality of the assemblies from Illumina read at

increasing depth of sequencing. To this end, we generated datasets

corresponding to 100, 250, 500, 1000, 2000, 3500, 5000, 6000,

7000 and 8000� depth of sequencing (for each of the six BACs), by

sampling uniformly short reads from the high-depth datasets. For

each choice of the depth of sequencing, we generated 20 different

datasets, for a total of 1200 datasets. We assembled the reads on

each dataset with VELVET v1.2.09 (with hash value k¼79 to minim-

ize the probability of false overlaps) and collected statistics for the

resulting assemblies. Figure 3 shows the value of n50 (A), the size of

Table 4. Decoding and assembly statistics for the 10 datasets using k¼ 26 on the full dataset (no slicing)

Decoding Velvet assembly (l¼ 25, 31, . . . 79, best n50)

Reads (M) Coverage (�) n50 (bp) Reads used (%) Sum/size (%) Observed/expected genes (%)

Hv3 1099.0 431.0 8190 85.9 96.7 1 433/1 471(97.42)

Hv4 393.2 135.5 5718 85.9 85.9 312/473(65.96)

Hv5 483.0 158.9 8048 84.5 93.2 194/226(85.84)

Hv6 218.0 72.0 6032 83.2 79.9 208/244(85.25)

Hv7 330.0 110.0 5352 75.9 63.7 201/228(88.16)

Hv8 289.0 94.2 4126 69.0 55.6 178/207(85.99)

Hv9 208.0 95.8 2630 66.0 38.5 262/361(72.58)

Hv10 739.0 528.0 7069 80.8 100.5 20/27(74.07)

Vu1 369.0 88.5 4150 67.6 49.5 461/612(75.33)

Vu2 448.0 126.0 5670 75.1 56.1 406/503(80.72)

Average 457.6 184.0 5699 77.4 72.0 (81.13%)

Table 5. Decoding and assembly statistics for the 10 datasets using k¼ 32 and optimal slicing

Slicing Decoding Velvet assembly (l¼ 25, 31, . . . 79, best n50)

(No. Slices� size) Reads (M) Coverage (�) n50 (bp) Reads used (%) Sum/size (%) Observed/expected genes (%)

Hv3 (11� 2 M) 1156.0 460.0 28 477 90.4 123.0 1437/1471(97.69%)

Hv4 (8� 2 M) 595.6 205.9 28 341 93.9 114.5 319/473(67.44%)

Hv5 (4� 4 M) 471.0 155.5 31 038 93.6 101.0 196/226(86.73%)

Hv6 (6� 1.5 M) 243.0 81.1 25 194 92.9 89.4 206/244(84.43%)

Hv7 (15� 3 M) 785.0 264.0 39 742 91.1 104.0 204/228(89.47%)

Hv8 (12� 2 M) 669.0 223.0 34 262 91.6 102.0 187/207(90.34%)

Hv9 (14� 1.25 M) 516.0 246.0 32 634 94.3 103.2 309/361(85.60%)

Hv10 (4� 5 M) 695.0 499.0 42 819 90.7 121.9 20/27(74.07%)

Vu1 (12� 1.5 M) 907.0 232.0 16 388 89.7 89.7 510/612(83.33%)

Vu2 (14�1.5 M) 970.0 283.0 20 748 91.5 93.6 446/503(88.67%)

Average 700.8 265.0 29 964 92.0 104.2 (84.78%)
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the largest contig (B), the percentage of the target BAC not available

in the assembly (C) and number of assembly errors (D) for increas-

ing depth of sequencing. Each point in the graph is the average over

the 20 datasets, and error bars indicate the SD. In order to compute

the number of assembly errors we used the tool developed for the

GAGE competition (Salzberg et al., 2011). According to GAGE, the

number of assembly errors is defined as the number of locations

with insertion/deletions of at least six nucleotides, plus the number

of translocations and inversions.

A few observations on Figure 3 are in order. First, note that both

the n50 and the size of the longest contig reach a maximum in the

500–2000� range, depending on the BAC. Also observe that in

order to minimize the percentage of BAC missed by the assembly

one needs to keep the depth of sequencing below 2500� (too much

depth decreases the coverage of the target). Finally, it is very clear

from (D) that as the depth of sequencing increases so do the number

of assembly errors (with the exception of one BAC).

We have also investigated whether similar observations could be

drawn for other assemblers. In Figure 4, we report the same assembly

statistics, namely (A) the value of n50, (B) the size of the largest con-

tig, (C) the percentage of the target BAC not available in the assembly

and (D) number of assembly errors for increasing depth of sequencing

for one of the BACs. This time we used three assemblers, namely

VELVET, SPADES v3.1.1 (Bankevich et al., 2012) and IDBA-UD (Peng

et al., 2012) (statistics for all BACs are available in Supplementary

Figs S3–6). Although there are performance differences among the

three assemblers, the common trend is that as the coverage increases,

the n50 and the size of the largest contig decreases, while the percent-

age of the BAC missing and the number of assembly errors increases.

Among the three assemblers, SPADES appears to be less affected by

high coverage. SPADES was run with hash values k¼25, 45, 65 and

option careful (other parameters were default). IDBA-UD was run

with hash values k¼25, 45, 65 (other parameters were default). The

reported assembly is the one chosen by IDBA-UD.

Independently from us, the authors of (Desai et al., 2013) made

similar observations on assembly degratadation. In their study, the

authors assembled E.coli (4.6 MB), Saccharomyces kudriavzevii

(11.18 MB) and Caenorhabditis. elegans (100 MB) using

SOAPDENOVO, VELVET, ABYSS, MERACULOUS and IDBA-UD at increas-

ing sequencing depths up to 200�. Their analysis showed that the

optimum-sequencing depth for assembling these genomes is about

100�, depending on the specific genome and assembler.

Finally, we analyzed the performance of IDBA-UD, SPADES and

VELVET on simulated reads. We generated 100 bp�2 paired-end reads

from the Sanger assembly of BAC 574B01 using the read simulator

WGSIM (github.com/lh3/wgsim) at 100, 250, 500, 1000, 2000, 3500,

5000, 6000, 7000 and 8000�depth of sequencing. Insert length was

250 bp, with a standard deviation of 10bp. For each depth of sequenc-

ing, we generated simulated reads at 0, 0.5, 1 and 2% sequencing error

rate (substitutions). Insertions and deletions were not allowed.

IDBA-UD was executed with hash values k¼25, 45, 65 (other par-

ameters were default). VELVET was run with k¼49. We repeated the

simulations 20 times for IDBA-UD and 10 times for VELVET and

SPADES. In Supplementary Figures S7–9, we report the usual assembly

statistics, namely n50, largest contig, percentage missing, and number

of assembly errors for VELVET, IDBA-UD and SPADES on these datasets.

Observe that with ‘perfect’ reads (0% error rate), ultra-deep coverage

does not affect the performance of IDBA-UD and VELVET. With higher

and higher sequencing errors, however, similar behaviors to the as-

sembly of real data can be observed for IDBA-UD and VELVET: n50 and

longest contig rapidly decrease, and missing portions of the BAC and

number of mis-assemblies increase. Surprisingly, SPADES seems to be

immune to higher sequencing error rates.

4 Discussion

Because the introduction of DNA sequencing in the 70s, scientists

had to come up with clever solutions to deal with the problem of

Fig. 3 VELVET assembly statistics as a function of the depth of sequencing coverage: (A) n50, (B) longest contig, (C) percentage of the target BAC not covered by

the assembly, (D) number of assembly errors; each point is an average over 20 samples of the reads, errors bars indicate standard deviation among the samples
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de novo genome assembly with limited depth of sequencing. As the

cost of sequencing keeps decreasing, one can expect that computa-

tional biologists will have to deal with the opposite problem: exces-

sive amount of sequencing data. The Lander-Waterman-Roach

theory (Lander and Waterman, 1988; Roach, 1995) has been the

theoretical foundation to estimate gap and contig lengths as a func-

tion of the depth of sequencing. We do not have a theory that would

explain why the quality of the assembly starts degrading when the

depth is too high. Possible factors include the presence (in real data)

of chimeric reads, sequencing errors, and read duplications, or their

combination thereof.

In this study, we report on the de novo assembly of BAC clones,

which are relatively short DNA fragments (100–150 kbp). With cur-

rent sequencing technology it is very easy to reach depth of sequencing

in the range of 1000–10 000� and study how the assembly quality

changes as the amount of sequencing data increases. Our experiments

show that when the depth of sequencing exceeds a threshold the over-

all quality of the assembly starts degrading (Fig. 3). This appears to be

a common problem for several de novo assemblers (Fig. 4). The same

behavior is observed for the problem of decoding reads to their source

BAC (Fig. 2), which is the main focus of this article.

The important question is how to deal with the problem of excessive

sequencing depth. For the decoding problem we have presented an

effective ‘divide and conquer’ solution: we ‘slice’ the data in subsamples,

decode each slice independently, then merge the results. In order to han-

dle conflicts in the BAC assignments (i.e. reads that appear in multiple

slices that are decoded to different sets of BACs), we devised a simple

set of voting rules. The question that is still open is what to do for the

assembly problem: one could assemble slices of the data independently,

but it is not clear how to merge the resulting assemblies. In general, we

believe that the problem of de novo sequence assembly must be revisited

from the ground up under the assumption of ultra-deep coverage.
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