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Abstract. We recently proposed a novel clone-by-clone protocol for de
novo genome sequencing that leverages combinatorial pooling design to
overcome the limitations of DNA barcoding when multiplexing a large
number of samples on second-generation sequencing instruments. Here
we address the problem of correcting the short reads obtained from our
sequencing protocol. We introduce a novel algorithm called Scrible that
exploits properties of the pooling design to accurately identify/correct
sequencing errors and minimize the chance of “over-correcting”. Exper-
imental results on synthetic data on the rice genome demonstrate that
our method has much higher accuracy in correcting short reads com-
pared to state-of-the-art error-correcting methods. On real data on the
barley genome we show that Scrible significantly improves the decoding
accuracy of short reads to individual BACs.

1 Introduction

We have recently demonstrated how to take advantage of combinatorial pooling
(also known as group testing) for clone-by-clone de-novo genome sequencing
[1,8,9]. In our sequencing protocol, subsets of non-redundant genome-tiling
BACs are chosen to form intersecting pools, then groups of pools are sequenced
on an Illumina sequencing instrument via standard multiplexing (DNA bar-
coding). Sequenced reads can be assigned to specific BACs by relying on the
structure of the pooling design: since the identity of each BAC is encoded within
the pooling pattern, the identity of each read is similarly encoded within the
pattern of pools in which it occurs. Finally, BACs are assembled individually,
simplifying the problem of resolving genome-wide repetitive sequences.

An unforeseen advantage of our sequencing protocol is the potential to correct
sequencing errors more effectively than if DNA samples were not pooled. This
paper investigates to what extent our protocol enables such error correction.
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Due to obvious needs in applications of high-throughput sequencing technology,
including de-novo assembly, the problem of correcting sequencing errors in short
reads has been the object of intense research. Below, we briefly review some
of these efforts, noting that our approach is substantially different, due to its
original use of the pooling design.

Most error correction methods take advantage of the high sequencing depth
provided by second-generation sequencing technology to detect erroneous base
calls. For instance, Shrec [13] carries out error correction by building a gen-
eralized weighted suffix tree on the input reads, where the weight of each tree
node depends on its coverage depth. If the weight of a node deviates significantly
from the expectation, the substring corresponding to that node is corrected to
one of its siblings. Hitec [4] builds a suffix array of the set of reads and uses the
longest common prefix information to count how many times short substrings
are present in the input. These counts are used to decide the correct nucleotide
following each substring. Hitec was recently superseded by Racer [5], from the
same research group, which improves the time- and space-efficiency by using a
hash table instead of a suffix array.

Several other error-correction methods are based on k-mer decomposition
of the reads, e.g., Sga [14], Reptile [17] and Quake [6]. Sga uses a simple
frequency threshold to separate “trusted”k-mers from “untrusted” ones, then
performs base changes until untrusted k-mers can become trusted. Reptile
builds a k-mer tiling across reads, then corrects erroneous k-mers based on con-
textual information provided by their trusted neighbor in the tiling. Quake uses
a coverage-based cutoff to determine erroneous k-mers, then corrects the errors
by applying the set of corrections that maximizes a likelihood function. The like-
lihood of a set of corrections is defined by taking into account the error model of
the sequencing instrument and the specific genome under study. Other methods
are based on multiple sequence alignments. For example, Coral [12] builds a
multiple alignment for clusters of short reads, then corrects errors by majority
voting.

2 Preliminaries

Our algorithm corrects reads, short strings over the alphabet Σ = {A,C,G, T}.
With r[i] we denote the i-th symbol in read r. A k-mer α is any substring of a
read r such that |α| = k. A BAC (clone) is a 100–150 kb fragment of the target
genome replicated in a E. coli cell.

2.1 Pooling Design

After the selection of the BACs to be sequenced (see [8,9] for more details), we
pool them according to a scheme that allows us to decode (assign) sequenced
reads back to their corresponding BACs.

The design of a pooling scheme reduces to the problem of building a dis-
junctive matrix Φ where columns correspond to BACs to be pooled and rows



164 D. Duma et al.

correspond to pools. Let w be a subset of the columns (BACs) of the design
matrix Φ and p(w) be the set of rows (pools) that contain at least one BAC in
w : the matrix Φ is said to be d-disjunct (or d-decodable) if, for any choice of
w1 and w2 with |w1| = 1, |w2| = d, and w1 �⊂ w2, we have that p(w1) �⊆ p(w2).
Intuitively, d represents the maximum number of positives that are guaranteed
to be identified by the pooling design.

We pool BACs using a combinatorial pooling scheme called Shifted Transver-
sal Design (STD) [16]. STD is a layered design: the rows of the design matrix
Φ are organized into multiple redundant layers such that each pooled variable
(BAC) appears exactly once in each layer, that is, a layer is a partition of the set
of variables. STD is defined by parameters (q, L,Γ ) where L is the number of
layers, q is a prime number equal to the number of rows (pools) in each layer and
Γ is the compression level of the design. To pool n variables, STD uses m = q×L
pools. The set of L pools defines a unique pooling pattern for each variable, and
can be used to retrieve its identity. We call this set the signature of the variable.
The compression level Γ is defined to be the smallest integer such that qΓ+1 ≥ n.
STD has the desirable property that any two variables co-occur in at most Γ
pools, therefore by choosing a small value for Γ one can make STD pooling very
robust to decoding errors. The parameter Γ is also related to the decodability
of the design through the equation d = �(L − 1)/Γ �. Therefore, Γ can be seen
as a trade-off parameter: the larger it is, the more items can be tested, up to
qΓ+1, but fewer positives can be reliably identified, up to �(L−1)/Γ�. For more
details on this pooling scheme and its properties, see [16].

2.2 Read Decoding

As the read decoding problem is presented elsewhere [1,8,9], here we only provide
a brief overview to motivate the necessity of correcting reads before decoding
them. Given a set of pools P and a set of BACs B, the signature for a BAC
b ∈ B is the subset A ⊂ P of pools (|A| = L) to which BAC b is assigned. Given
a set Rp of reads for each pool p ∈ P and the set of all BAC signatures, the read
decoding problem is to determine, for each read r ∈ Rp, the BAC(s) from which
r originated. In [8] we solved the read decoding problem with a combinatorial
algorithm, while in [1] we proposed a compressed sensing approach. In [9] we
further improved the decoding by a “data slicing” approach. A similar slicing
strategy was used in [10] to improve the assembly quality for ultra-deep sequenc-
ing data. In all cases, we first decompose reads into their constituent k-mers and
compute, for each k-mer, the number of times it occurs in each pool (the k-mer
frequency vector).

The problems of decoding and error-correction are mutually dependent: cor-
recting sequencing errors will improve the accuracy of decoding; a more accurate
decoding can help correcting the reads more effectively (as it will become clear
later).
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3 Methods

3.1 Indexing k-mers

We first preprocess all reads r (|r| ≥ k) in each pool p ∈ P by sliding a window of
size k over each read r ∈ Rp to produce |r|−k+1 k-mers. The result of this pre-
processing is encoded in a function poolcount : Σk×P → N, where poolcount(α, p)
is the number of times k-mer α (or its reverse complement) appears in pool p. We
also define three additional functions, namely (i) pools: Σk → N where pools(α)
is the number of distinct pools where k-mer α appears at least once, (ii) count :
Σk → N where count(α) is the total number of times α appears in any of the
pools, and (iii) bacs: Σk → 2B where bacs(α) is the set of BACs corresponding
to pools(α), i.e., the BACs whose signature is included in pools(α). Observe that
pools(α) = |{p ∈ P : poolcount(α, p) > 0}|, count(α) =

∑
p∈P poolcount(α, p),

and that bacs(α) can be determined by matching pools(α) against the set of all
BAC signatures. As a consequence, we only need to explicitly store poolcount
into a hash table.

3.2 Identification and Correction of Sequencing Errors

Taking advantage of the pooling design, we can assume that any k-mer α such
that |pools(α)| < L (i.e., α occurs in a few pools, less than the expected L)
is erroneous. This assumption holds when the sequencing depth is sufficiently
high, so that each genomic location is covered by several correct k-mers possibly
mixed with a few corrupted k-mers. In practice, the depth of sequencing can
vary significantly along the genome. When it is particularly low, it is possible
(although unlikely) for a correct k-mer to appear in fewer than L pools.

We observed that these low-frequency k-mers are responsible for the large
majority of the entries in the hash table for poolcount. To save memory, we do
not store a k-mer in the hash table during the pre-processing phase if it appears
in fewer than l pools, where 1 ≤ l < L is a user-defined parameter. At the other
end, a k-mer α is deemed repetitive if |pools(α)| > h, where h is another user-
defined parameter such that dL < h ≤ qL. Discarding low-frequency k-mers
requires two passes over the data. In the first we only build the hash table for
the function |pools|, and in the second we determine poolcount by discarding any
k-mer such that |pools(α)| < l.

After building the hash table for poolcount, we process the reads one by
one. If a k-mer α in read r is absent from the hash table, it is assumed to be
incorrect. Our algorithm attempts to correct α by changing either its first or its
last nucleotide into the other three possible nucleotides (we discuss below how to
determine which one). The three variants are searched in the hash table: if only
one is present, then it is the correct version of α, assuming that α contains only
one error. If multiple variants of α are found in the hash table, the algorithm
analyzes the read r to which α belongs. For any correct k-mer β in r, we expect
pools(β) to match a single BAC signature or the union of up to d BAC signatures.
Furthermore, any other correct k-mer γ in r either satisfies pools(γ) = pools(β),
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or pools(γ) ∩ pools(β) is equal to a BAC signature. The second condition takes
into account the case when a portion of r originates from the overlapping region
between BACs.

Given a read r, let C = α1, α2, . . . , α|r|−k+1 be the set of its k-mers in left
to right order, i.e., α1 = r[1, k], α2 = r[2, k + 1], etc. We define a correct set
(or c-set) C′ as a maximal contiguous subset of C such that all k-mers in C′ are
either repetitive or all share the same BAC signature or the union of up to d
BAC signatures.

If r has only one non-empty c-set C′, we can use C′ as a starting point to
correct the remaining k-mers. Any c-set C′ contains at least one border k-mer αi

such that αi−1 �∈ C′ when i > 1 (or αi+1 �∈ C′ when i < |r|−k +1). Without loss
of generality, assume αi−1 �∈ C′. The c-set is “interrupted” at position i because
r[i − 1] is a sequencing error. Thus, we can attempt to change r[i − 1] to any
of the other three nucleotides, and search the variant k-mer α′

i−1 in the hash
table. If bacs(α′

i−1) match the shared signature in the c-set C′, we have found
the right correction for nucleotide r[i−1] so we add α′

i−1 to C′ and let it become
the new border k-mer. We then repeat the process of extending C′ by correcting
the k-mer preceding its new border k-mer (of course, the one correction we just
made might actually suffice to correct multiple k-mers, up to k of them, in fact).
This iterative process continues until C′ has been extended to encompass the
whole read r. Note that when correcting a read from pool p, we also update
the hash table: for each k-mer α corrected into α′, we increase poolcount(α′, p)
by one and decrease poolcount(α, p) by one. This process is expected to lead to
erroneous k-mers having all their pool counts drop below l in which case they
are removed from the hash table.

If the read contains multiple c-sets with conflicting signatures, we first assume
that the first c-set is correct and try to correct the entire read accordingly. If
we succeed, we have identified the correct c-set. Otherwise we assume that the
second c-set is correct, and so on. If none of the c-sets leads to a successful
correction of the entire read, we do not correct the read. Figure 1 illustrates an
example with two c-sets.

To deal with an arbitrary number of c-sets, we employ an iterative deepening
depth first search (IDDFS) heuristic strategy [11]. For each read, IDDFS searches
for the correction path with the smallest number of nucleotide changes by start-
ing with a small search depth (maximum number of base changes allowed at the
current iteration) and by iteratively increasing the depth until either a solution
is found or we reach the maximum number of base changes allowed.

Our proposed k-mer based error correction is sketched as Correction
(Algorithm 1). For each read, Correction starts by determining the set of
all repetitive and non-repetitive csets which will be extended one by one from
left to right until all the k-mers of the read are considered. If conflicting c-sets
are detected, they are removed from csets one at a time when attempting cor-
rection. For a given cset, we denote by begin and end its left and right border
k-mers respectively. Also, we denote by bacs the BACs whose signature is shared
by all the k-mers in cset. Starting at line 7, we iteratively call the recursive func-
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Fig. 1. An illustration of our error-correction strategy. C-sets are colored with dark
and light gray. First, we assume that the read belongs to BAC X; in this case, the
read positions corresponding to the first nucleotide of the k-mer starting at a, the last
nucleotide of the k-mer starting at b, the first nucleotide of the k-mer starting at c
and at least one more position in the portion w of the read (because the length of w
is between k and 2k − 1) must be corrected. If we assume that the read belongs to
BAC Y , the read positions corresponding to the first nucleotide of the k-mer starting
at d, the last nucleotide of the k-mer starting at e and at least two more positions in
the portion z of the read (because the length of z is between 2k an 3k − 1) must be
corrected.

tion IDDFSearch with the maximum number of corrections corr allowed at
the current iteration. If we can correct the entire read with exactly corr base
changes, we output the corrected read and stop. Otherwise we increment corr
and repeat the search.

Algorithm 2 sketches the recursive function IDDFSearch. When the entire
read is covered by a single c-set or by several non-conflicting repetitive and non-
repetitive c-sets, the corrected read is produced and the algorithm stops (lines
2-5). Otherwise, the algorithm tries to extend the current cset either to the left
(line 9) or to the right (line 13). If cset is extended to the left, the algorithm
needs to correct the read position errPos corresponding to the first nucleotide
of the k-mer starting at cset.begin − 1 (lines 10–11). If cset is extended to the
right, the algorithm needs to correct the read position errPos corresponding
to the last nucleotide of the k-mer starting at cset.end + 1 (lines 14–15). Line
17 calls the function KmerCorrect (Algorithm 3) with the kmer which is
currently being corrected. KmerCorrect searches for kmer in the hash table
(line 2) and if found, verifies that the BAC(s) associated with it, bacs(kmer),
agree with the shared BAC signature(s) in cset (line 11). If this is the case, kmer
is assumed to be correct and read is updated with the current base change (line
16 or line 21, depending on the direction). The variable cset is also extended
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Algorithm 1. Correction (read-set R, hashtable H)
1 for each read in R do
2 Determine csets, the set of all repetitive and non-repetitive c-sets;
3 if conflicts detected then
4 Remove conflicting c-sets from csets one at a time when attempting correction ;

5 corr ← 0;
6 cset ← leftmost element of csets ;

7 while corr ≤ MaxCorrections do
8 numCorrections ← 0 ;
9 IDDFSearch (corr, numCorrections, read, cset) ;

10 if numCorrections = corr then
11 break;

12 corr ← corr + 1;

13 output read ;

14 update hashtable H by decreasing the counts of erroneous k-mers and increasing the counts of corrected
k-mers;

by one position either to the left or to the right (line 18 or line 23). Line 17
in Algorithm 2 checks the same k-mer as found in read without changing it.
This is necessary after every successful correction, so that, when extending the
current c-set, we know that the k-mers we add contain no further errors. When
all k-mers not initially covered by c-sets are checked and all c-sets are extended
without detecting further errors, we have corrected the entire read, and we return
from the recursive call and produce the solution. If instead we detect additional
errors by checking the k-mers not initially covered by c-sets, the algorithm tries
all three alternative nucleotides at the erroneous position detected, errPos (line
23 in Algorithm 2) and calls KmerCorrect with the modified k-mer. Upon a
successful return from KmerCorrect, we recursively call IDDFSearch (line
31). The nucleotide changes at errPos and the calls to the two functions are
only made if the total number of corrections so far does not exceed corr, the
maximum number of corrections allowed at the current iteration (line 21).

4 Experimental Results

We present an experimental evaluation of our method on short reads derived
from BACs belonging to a Minimum Tiling Path (MTP) of the rice and barley
genomes. As its name suggests, an MTP is a set of BACs which cover the genome
with minimum redundancy. The construction of an MTP for a given genome
requires a physical map but we do not discuss either procedure here (see, e.g.,
[3,8] for details).

The use of an MTP allows us to assume that at most two (or three, to
account for imperfections) BACs overlap each other. This assumption leads to a
3-decodable pooling design. To achieve d = 3 for STD [16], we choose parameters
L = 7, Γ = 2 and q = 13, so that d = �(L − 1)/Γ � = 3, m = qL = 91, and
n = qΓ+1 = 2, 197. With this parameter choices, we can handle up to 2,197
BACs using 91 pools organized in 7 redundant layers of 13 pools each. Since
each layer is a partition of the set of pooled BACs, each BAC is pooled in
exactly 7 pools (which is its signature). In addition, pools are well-balanced, as
each pool contains exactly qΓ = 169 BACs. By the properties of this pooling
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Algorithm 2. IDDFSearch(corr, numCorrections, read, cset)

1 while true do

2 while cset joins its neighbors do
3 cset ← next c-set

4 if exhausted all c-sets then
5 return

6 prevEnd ← end of previous c-set or 0 if none
7 nextBegin ← begin of next c-set or (|r| − |k| + 1) if none
8 if cset.begin − 1 �= prevEnd then
9 direction ← left

10 errKmer ← cset.begin − 1
11 errPos ← errKmer

12 else
13 direction ← right
14 errKmer ← cset.end + 1
15 errPos ← errKmer + kmerSize − 1

16 kmer ← k-mer starting at position errKmer in read

17 corrected ← KmerCorrect (read, cset, direction, kmer, errPos)
18 if not corrected then
19 break

20 numCorrections ← numCorrections + 1
21 if numCorrections > corr then
22 return

23 toTry ← the three alternative nucleotides at errPos
24 for nt ∈ toTry do
25 if direction = left then
26 kmer[1] ← nt

27 else
28 kmer[kmerSize] ← nt

29 corrected ← KmerCorrect (read, cset, direction, kmer, errPos)
30 if corrected then
31 IDDFSearch (corr, numCorrections, read, cset)
32 if numCorrections = corr then
33 break

design, any two BAC signatures share at most Γ = 2 pools and any three BAC
signatures share at most 3Γ = 6 pools [16].

Once the set of MTP BACs has been pooled, we sequenced the resulting
pools and used the read decoding algorithm HashFilter [8,9] to assign the
reads back to their source BACs, and finally assemble each BAC individually.
Error correction is applied prior to read decoding. All experiments were carried
out on an Intel Xeon X5660 2.8 GHz server with 12 CPU cores and 192 GB of
RAM.

For our correction algorithm Scrible, we used parameters k = 31, l = 3,
h = 45, and a maximum of 4 corrections per read, unless otherwise noted. An
analysis of other choices of k is carried out later in Fig. 2. The other methods
corrected all the reads in the 91 pools together (not pool-by-pool).

4.1 Results on Synthetic Reads for the Rice Genome

We tested our error correction method on short reads from the rice genome
(Oryza sativa) which is a fully sequenced 390 Mb genome. We started from an
MTP of 3,827 BACs selected from a real physical map library of 22,474 BACs.
The average BAC length in the MTP was ≈ 150 kB. Overall, the BACs in the
MTP spanned 91 % of the rice genome. We pooled a subset of 2,197 of these
BACs into 91 pools according to the parameters defined above.
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Algorithm 3. KmerCorrect(read, cset, direction, kmer, errPos)
1 correct ← false

2 if kmer /∈ hashtable then
3 return false

4 pools ← pools( kmer) // from hashtable

5 if size (pools) > h then
6 correct ← true

7 if size (pools) ≥ l and size (pools) ≤ h then
8 bacs ← bacs( kmer)
9 if size (bacs) = 0 then

10 return false

11 if bacs agree with cset.bacs then
12 correct ← true

13 if correct then
14 if direction = left then
15 // update read with base change

16 read[errPos] ← kmer[1]
17 // extend cset left

18 cset.begin ← cset.begin − 1;

19 else
20 // update read with base change

21 read[errPos] ← kmer[kmerSize]
22 // extend cset right

23 cset.end ← cset.end + 1;

24 return true

25 return false

Table 1. Percentage of error-corrected reads that map to the rice genome for increasing
number of allowed mismatches; execution times (preprocessing + correction) are per
1M reads; boldface values highlight the best result in each column.

0mm 1mm 2mm 3mm execution time (min) space (GB)

Original reads 14.56% 55.98% 85.43% 96.36% N/A N/A

Sga 62.68% 69.58% 72.31% 73.23% 228.73 + 0.87 6

Racer 87.10% 93.25% 96.00% 97.10% 19.76 + 0.11 120

Scrible 95.00% 97.77% 98.70% 99.11% 600 + 2.76 50

The resulting BAC pools were “sequenced” in silico using SimSeq, which
is a high-quality short read simulator used to generate the synthetic data for
Assemblathon [2]. SimSeq uses error profiles derived from real Illumina data to
inject realistic substitution errors. We used SimSeq to generate ≈1M paired-end
reads per pool with a read length of 100 bases and an average insert size of 300
bases. A total of ≈ 200M bases gave an expected ≈ 8× sequencing depth for a
BAC in a pool. Since each BAC is present in 7 pools, this is an expected ≈ 56×
combined coverage before decoding. The average error distribution for the first
read in a paired-end read is: 48.42% reads with no error, 34.82% with 1 error,
12.96% with 2 errors, 3.14% with 3 errors, 0.57% with 4 errors, 0.08% with 5
errors and 0.01% with 6 errors. For the second read, the error distribution is:
32.85% no errors, 35.71% with 1 error, 20.75 with 2 errors, 7.91% with 3 errors,
2.20% with 4 errors, 0.48% with 5 errors, 0.09% with 6 errors and 0.01% with
7 errors.

We compared the performance of Scrible against the state-of-the-art error-
correction method Racer [5]. The authors of Racer performed extensive exper-
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imental evaluations and determined that Racer is superior in all aspects (per-
formance, space, and execution time) to HiTec, Shrec, Reptile, Quake, and
Coral. We also compare Scrible against Sga [14], as it was not evaluated
in [5] but we had evidence it performs well. For both tools we used their default
parameter setting.

Table 1 reports correction accuracy as well as time and space used by each
method. As it was done in [5], correction accuracy is determined by mapping
the corrected reads to the reference using Bowtie [7] in stringent mode (paired-
end, end-to-end alignment). Columns 2, 3, 4, and 5 report the fraction of reads
mapped when 0, 1, 2, and 3 mismatches were allowed, respectively. The sec-
ond row of Table 1 reports the mapping results for the original set of uncor-
rected reads. The last two columns report time (pre-processing + correction)
and memory requirements for each method. The pre-processing time is method
dependent: in our method it is the time to build the hash table (which currently
is not multi-threaded), for Sga it is the time to build the FM-index, and, for
Racer it is the time to compute witnesses and counters. For Scrible and Sga
we chose a k = 31 because (1) our method performs better with larger k-mer
sizes and (2) this is the default choice for Sga. Racer determines the best k-mer
size from the data.

Fig. 2. Correction accuracy for different k-mer sizes for SGA and Scrible (x-axis:
number allowed mismatches for mapping, y-axis: percentage of reads mapped)

Table 1 shows that Scrible is by far the most accurate. The difference between
Scrible and state-of-the-art Racer on a small number of allowed mismatches
(which is what matters here) is very significant. In this application domain, accu-
racy is much more important than time- and space-complexity (as long as time and
space are reasonable). Also observe in Table 1 that Sga’s corrected reads do not
map as well as uncorrected reads at two and three mismatches. Sga’s results are
puzzling, and currently do not have a good explanation for its behavior. In terms
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of execution time, the bottleneck in Scrible is the preprocessing stage (building
the hash table), which is currently single-threaded.

Figure 2 shows correction accuracy (percentage of mapped reads) for Sga
and our method for other choices of k-mer size. As the k-mer size increases, our
method corrects more reads, whereas the opposite is true for Sga.

An alternative way to assess the performance of error correction is to assemble
the corrected reads, after decoding the reads with HashFilter. For this purpose,
we used Velvet [18] with hash parameter k = 49 (chosen based on our extensive
experience on this dataset). Table 2 reports the averaged results of 2,197 BACs
in each of the four datasets. The table shows average coverage, the percentage
of reads used by Velvet in the assembly, the number of contigs with length of
at least 100 bases, the N50 value, the ratio of the sum of all contigs sizes over
their BAC length, and the coverage of the BAC sequence by the assembly. The
slightly different coverages depend on the ability of HashFilter to decode reads
for each dataset. Despite the fact that Velvet employs its own error-correction
algorithm, assemblies corrected by Scrible have better statistics (except for the
number of contigs) than those obtained using the outputs of the other tools.

Table 2. Assembly statistics for rice BACs on datasets of reads uncorrected and cor-
rected via various methods; all values are an average of 2,197 BACs; boldface values
highlight the best result in each column.

coverage reads used #contigs N50 (bp) sum/size BAC coverage

Velvet (uncorrected) 88.66x 92.40% 52.27 35,846 89.05% 82.22%

Sga+Velvet 88.51x 97.46% 51.90 36,603 90.33% 82.88%

Racer+Velvet 85.48x 98.22% 46.29 29,770 88.59% 81.82%

Scrible+Velvet 88.76x 98.43% 53.92 39,422 91.50% 82.97%

4.2 Results on Real Reads from the Barley Genome

We also tested our method on real sequencing data from the barley (Hordeum
vulgare) genome, which is about 5,300 Mb and not yet fully sequenced [15]. We
started from an MTP of about 15,000 BACs selected from a subset of nearly
84,000 gene-enriched BACs for barley (see [8,9] for more details). We divided
the set of MTP BACs into seven sets of 2,197 BACs and pooled each set using
the STD parameters previously defined. We assessed the performance of error
correction on three of these data sets, namely Hv4, Hv5 and Hv6 (with an average
BAC length of about 116 kb). Each of the 91 pools in Hv4, Hv5 and Hv6 were
sequenced on a flowcell of the Illumina HiSeq2000 by multiplexing 13 pools on
each lane. After each sample was demultiplexed, we quality-trimmed and cleaned
the reads of spurious sequencing adapters and vectors. We ended up with high
quality reads of about 87–89 bases on average. The number of reads in a pool
ranged from 3.37 M to 16.79 M (total of 706 M) in Hv4, from 2.32 M to 15.65 M
(total of 500 M) in Hv5 and from 1.3 M to 6.33 M (total of 280 M) in Hv6.

We then compared Scrible’s ability to decode reads against Hashfilter’s.
In other words, while Hashfilter decodes erroneous reads using the improved



Scrible: Ultra-Accurate Error-Correction of Pooled Sequenced Reads 173

Table 3. Percentage of real barley reads (decoded by HashFilter and error-
corrected/decoded by Scrible) that map to 454-based high-quality BAC assemblies
for increasing number of allowed mismatches; boldface values highlight the best result
in each data set.

dataset 0 mm 1 mm 2 mm 3 mm

HashFilter Hv4 88.41 % 91.66 % 92.54 % 93.25 %

Scrible Hv4 92.04% 93.67% 94.62% 95.23%

HashFilter Hv5 87.37 % 90.45 % 91.61 % 92.63 %

Scrible Hv5 93.26% 94.66% 95.56% 96.14%

HashFilter Hv6 84.72 % 88.46 % 90.05 % 91.38 %

Scrible Hv6 92.13% 93.48% 94.23% 94.73%

method described in [9], Scrible corrects and decodes the reads. Once the reads
were decoded to individual BACs by Hashfilter and Scrible, we mapped them
using Bowtie [7] in stringent mode (paired-end, end-to-end alignment) to the
subset of BACs for which a high-quality 454-based assembly was available (151
high-quality assemblies for HV4, 141 for HV5 and 121 for HV6). Table 3 presents
the results of this comparison (using k = 32). Note that Scrible achieves signif-
icantly higher mapping percentages than Hashfilter. Higher mapping percent-
ages indicate more error-free reads, and higher decoding accuracy.

To assess the impact of error correction on the final assemblies, we cor-
rected/decoded reads using Scrible then assembled them BAC-by-BAC using
Velvet [18]. We compared the resulting assembly against the BAC assem-
blies on uncorrected reads decoded by HashFilter. Table 4 shows the average
assembly statistics over 2,197 BACs in each barley set. Observe that assemblies
obtained from Scrible have consistently lower number of contigs, however the
N50 is not always the highest.

Table 4. Average assembly statistics for barley BACs. All values are averages over
2,197 BACs. Boldface values highlight the best result for each data set.

dataset coverage reads used #contigs N50 (bp) sum/size

Hashfilter+Velvet Hv4 205.9x 93.9 % 56 28,341 114.5 %

Scrible+Velvet Hv4 205.9x 96.7% 44 21,001 110.9%

Hashfilter+Velvet Hv5 155.5x 94.9 % 72 20,863 101.3%

Scrible+Velvet Hv5 155.5x 96.1% 35 19,708 93.4 %

Hashfilter+Velvet Hv6 81.1x 92.9% 44 25,194 89.4%

Scrible+Velvet Hv6 81.1x 89.1 % 34 27,631 87.2 %
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