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Abstract. We introduce a novel algorithm to cluster and order markers on a ge-
netic linkage map, which is based on several theoretical observations. In most
cases, the true order of the markers in a linkage group can be efficiently computed
from the minimum spanning tree of a graph. Our empirical studies confirm our
theoretical observations, and show that our algorithm consistently outperforms
the best available tool in the literature, in particular when the genotyping data is
noisy or in case of missing observations.

1 Introduction

Genetic linkage mapping dates back to the early 20th century when scientists began
to understand the recombinational nature and cellular behavior of chromosomes. In his
landmark paper published in 1913, Sturtevant studied the first genetic linkage map of
chromosome X of Drosophila melanogaster [19]. Ever since its introduction, genetic
linkage mapping has been a cornerstone of a variety of applications in biology, includ-
ing map-assisted breeding, disease association analysis and map-assisted gene cloning,
just to name a few.

Genetic linkage maps historically began with just a few to several tens of phenotypic
markers obtained one by one by observing morphological and biochemical variations of
an organism, mainly following mutation. During the past few decades the introduction
of DNA-based markers such as RFLPs, RAPDs, SSRs and AFLPs caused genetic maps
to become much more densely populated, generally into the range of several hundred to
more than 1,000 markers per linkage map. Most recently, the accumulation of sequence
information has led to a further leap in marker density, principally driven by very high
throughput and highly accurate genotyping that can accommodate thousands, or even
hundreds of thousands, of simultaneous genotyping reactions by one person in a single
day. In plants, one of the most densely populated maps is that of Brassica napus [20],
which consists of 13,551 markers. High density genetic maps do not require complete
genome sequencing but rather are a critical step in the study of organisms for which the
whole genome sequence is unlikely to be available in the near future.

A genetic map is a linear ordering of markers (also called loci) along the chromo-
some. The map is built using input data typically composed of the states of the loci on
a set of individuals obtained from controlled crosses. When an order of the markers is
computed from the data, the genetic distance between nearby markers can be relatively
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easily estimated. In order to characterize the quality of an order, various objective func-
tions have been proposed in the literature, e.g., minimum Sum of Square Errors [18],
minimum number of recombination events [16], Maximum Likelihood [11], maximum
Sum of adjacent LOD scores [21], minimum Sum of Adjacent Recombination Fractions
[3], minimum Product of Adjacent Recombination Fractions [22].

Searching for an optimal order with respect to any of the objective functions men-
tioned above is computationally difficult. Enumerating all the possible orders quickly
becomes infeasible since the total number of distinct orders is proportional to n!, which
is too large even if n is rather small. With the exception of SSE, the rest of the objec-
tive functions listed above can be decomposed into a simple sum of terms involving
only pairs of markers. Liu [14] first observed the connection between the marker or-
dering problem and the traveling salesman problem. Various searching heuristics that
were originally developed for the TSP problem, such as simulated annealing [12], ge-
netic algorithms [8], tabu search [6,7], ant colony optimization, and iterative heuristics
such as K-opt and Lin-Kernighan heuristic [13] have been applied to the genetic map-
ping problem in various computational packages. For example, JOINMAP [11] imple-
ments simulated annealing, CARTHAGENE [17,2] uses a combination of Lin-Kernighan
heuristic, tabu search and genetic algorithms, ANTMAP [10] exploits the ant colony
optimization heuristic, [5] is based on genetic algorithms, and [15] takes advantage of
evolutionary algorithms. Finally, RECORD [16] implements a combination of greedy
and Lin-Kernighan heuristic.

Most of the algorithms proposed in the literature for genetic linkage mapping find
reasonably good solutions. Nonetheless, they fail to identify and exploit the combinato-
rial structures hidden in the data. Some of them simply start to explore the space of the
solutions from a purely random order (see, e.g., [17,15,11,10]), while other start from a
simple greedy solution (see, e.g., [16,18]). In this paper, we will show both theoretically
and empirically, that when the data quality is high, the optimal order can be identified
via the simple minimal spanning tree algorithm. We will also show that when the data is
noisy or data is missing, our algorithm consistently constructs better genetic maps than
the best available tools in the literature.

2 Basic Concepts and Notations

First we introduce some basic concepts of genetics and establish a common notation.
A single nucleotide polymorphism (SNP) is a variation on a chromosome where a sin-
gle nucleotide (A, C, G, T) differs between members of a species or between paired
chromosomes in an individual. SNP sites can be used as genetic markers.

The organisms considered here are an ideal case of fully homozygous (or nearly so)
diploids derived from two highly inbred (fully homozygous) parents. In this system,
for every locus there is one maternal and one paternal allele and with rare exception
each locus exists in only two possible fully homozygous states distinguished by two
alternative nucleotides. By convention, the two states are denoted as A or B. A genetic
marker is said to be homozygous if the two alleles at a given locus have the same state,
and it is said to be heterozygous otherwise.

Various population types have been studied in association with the genetic mapping
problem, which includes BackCross (BC1), Doubled Haploid (DH), Haploid (Hap),
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Recombinant Inbred Line (RIL), etc. Our algorithm can handle Hap, advanced RIL
(low heterozygosity) and BC1 populations in addition to DH’s. In what follows, we
will concentrate on the DH population, but the extension to the Hap, advanced RIL and
BC1 populations is straightforward.

Briefly, a DH population for genetic map construction is prepared as follows. Let M
be the set of markers of interest. Pick two highly inbred (fully homozygous) parents
p1 and p2. We assume that the parents p1 and p2 are homozygous on every markers
in M (those markers that are heterozygous in either p1 or p2 are simply excluded from
consideration), and the same marker always has different allelic states in the two parents
(those markers having the same allelic state in both parents are also excluded from M ).
By convention, we use symbol A to denote the allelic states appearing in p1 and B to
denote the allelic states appearing in p2. Parent p1 is crossed with parent p2 to produce
the first generation, called F1. The individuals in the F1 generation are heterozygous
for every marker in M , with one chromosome being all A and the other chromosome
being all B.

In the DH system, gametes produced by meiosis from the F1 generation are fixed
in a homozygous state by doubling the haploid chromosomes to produce a doubled
haploid individual (hence the name doubled haploid). The doubled haploid individuals,
denoted by N , are then genotyped on the set M of markers, i.e., the state of each
marker is determined in a wet lab experiment. The genotypes are either homozygous A
or homozygous B.

The genotyping data which will be fed into our algorithm is collected into a matrix A

of size m×n, where m = |M | and n = |N |. Each row of A corresponds to a marker in
M , and each column of A corresponds to an individual in N . Given a marker li ∈ M ,
we use A[i, ] to refer to the row corresponding to li. Given an individual ck ∈ N , we
use A[, k] to refer to the column corresponding to ck. Each entry in the matrix can be
either A (i.e., the same allelic state of its parent p1) or B (i.e., the same allelic state of its
parent p2). For the time being, we assume there is no missing observation in the matrix.
The case where there is missing data will be discussed later in the paper.

Building a genetic map from the matrix A is a two-step process. First, one has to par-
tition the markers in A into groups, each of which corresponds to a chromosome. More
specifically, one needs to determine which markers are from the same linkage group1.
This problem is essentially a clustering problem. Second, given a set of markers in the
same linkage group, one needs to determine their correct order on the chromosome.

For a pair of markers l1, l2 ∈ M and an individual c ∈ N , we say that c is a re-
combinant with respect to l1 and l2 if c has genotype A on l1 and genotype B on l2 (or
vice versa). If l1 and l2 are in the same linkage group, then a recombinant is produced
if an odd number of crossovers occurred between the paternal chromosome and the
maternal chromosome within the region spanned by l1 and l2 during meiosis. We de-
note with Pi,j the probability of a recombinant event with respect to a pair of markers
(li, lj). Pi,j varies from 0.0 to 0.5 depending on the distance between li and lj . At one

1 A linkage group is group of loci known to be physically connected, that is, they tend to act
as a single group (except for recombination of alleles by crossing-over) in meiosis instead of
undergoing independent assortment. Ideally, each linkage group corresponds to one chromo-
some, but sometimes multiple LGs can reside on the same chromosome if they are too far
apart.



398 Y. Wu et al.

extreme, if li and lj belong to different LGs, then Pi,j = 0.5 because alleles at li and
lj are passed down to next generation independently from each other. At the other ex-
treme, when the two markers li and lj are so close to each other that no recombination
can occur between them, then Pi,j = 0.0.

Let (li, lj) and (lp, lq) be two pairs of markers from the same linkage group. We say
that (li, lj) is enclosed in (lp, lq) if the region of the chromosome spanned by li and lj
is fully contained in the region spanned by lp and lq. A fundamental law in Genetics is
that if (li, lj) is fully contained in (lp, lq) then Pi,j ≤ Pp,q .

The total number of recombinants in N with respect to the pair (li, lj) can be easily
determined by computing the Hamming distance di,j between row A[i, ] and row A[j, ].
It is easy to prove that di,j/n the maximum likelihood estimate (MLE) for Pi,j .

3 Some Theoretical Observations

Our first observation is that when two markers li and lj belong to two different linkage
groups, then di,j will be large with high probability. This is formally captured in the
following theorem. Recall that in this case, Pi,j = 0.5.

Theorem 1. Let li and lj be two markers that belong to two different LGs, and let di,j

be the Hamming distance between A[i, ] and A[j, ]. Then,

E(di,j) = n/2 and P(di,j < δ) ≤ e
2(n/2−δ)2

n

where δ < n/2.

Proof. Let ck ∈ N and let Xk
i,j be a random indicator variable which is equal to 1 if

ck is a recombinant with respect to li and lj and to 0 otherwise. Clearly E(Xk
i,j) = 1

2 ,
and di,j =

∑
k Xk

i,j . The family of random variables {Xk
i,j : 1 ≤ k ≤ n} are i.i.d.

According to linearity of expectation, E(di,j) = n/2. The bound P(di,j < δ) ≤
e

2(n/2−δ)2

n derives directly from Hoeffding’s inequality [9]. �

Theorem 1 allows us to partition the markers into linkage groups fairly easily. The al-
gorithmic details will be presented in the next section. In the following, we will assume
that the markers have been successfully clustered into linkage groups, and we will focus
on the ordering problem only.

Let us assume now that all the markers in M belong to the same linkage group. Let
G(M, E) be an edge-weighted complete graph on the set of vertices M . The weight
of an edge (li, lj) ∈ E is set to Pi,j , which is the pairwise recombinant probability
between the corresponding markers. A traveling salesman path (TSP path) Γ in G is
a path that visits every marker/vertex once and only once2. The weight w(Γ ) of a TSP
path Γ , is simply the sum of the weights of the edges on Γ . Since each TSP path Γ
defines an order Π of the markers (and vice versa), we define the weight of an order Π
as the weight of the corresponding TSP path Γ in G. A linear ordering of the markers
is also called a map of the markers.

2 Note the difference between a traveling salesman path and a traveling salesman tour. A tour is
a cycle (i.e., the salesman returns back to the origin).
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Lemma 1. Let Π0 be the true order of markers (according to their positions on the
chromosome). Then, the weight of Π0 is minimum among all the possible orders of M .

Proof. Let l1, l2, . . . ,lmbe the markers in M in true order Π0, and letΠ1 = li1 , li2 , . . . ,lim

be any order. We have w(Π0) =
∑

2≤i≤m Pi−1,i and w(Π1) =
∑

2≤j≤m Pij−1,ij . Let
S0 = {Pi−1,i|2 ≤ i ≤ m} and S1 = {Pij−1,ij |2 ≤ j ≤ m}. Now observe that there
is a one to one correspondence between the elements in S0 and the elements in S1, such
that if Pi−1,i ∈ S0 is mapped to Pij−1,ij ∈ S1 then the pair of markers (li−1, li) is fully
contained in the pair (lij−1 , lij ), and hence Pi−1,i ≤ Pij−1,ij . Therefore, we conclude
that w(Π0) ≤ w(Π1). �
According to Lemma 1, in order to determine the correct order of the markers, one
has to find the minimum weight TSP path in G. Although the problem of finding the
minimum weight TSP path in a general graph is NP-complete [4], in our case it is
rather easy, as shown next. Recall that a minimum (weight) spanning tree (MST) of G
is a subgraph of G which is a tree that spans all the vertices of G and has minimum total
weight. To be technically accurate, we assume that the graph G has only one minimum
weight spanning tree.

Lemma 2. Let Γ0 be the MST of G. Then, Γ0 is also the minimum weight TSP path.

Proof. Let l1, l2, . . . , lm be the markers in their true order. Let us run Prim’s minimum
spanning tree algorithm [1] on G starting from the first marker in the linkage group, i.e.,
l1. Prim’s algorithm iteratively adds node (and edges) to a partially discovered tree until
all the nodes are included. The next node to be added is the closest one to the partially
discovered tree. Let li−1 be the node added in the previous step of Prim. Due to the way
the edge weights are assigned in G, the next marker to be added will be li. Therefore,
the MST is also a TSP path in G. �
Theorem 2. The true order of the markers in M can be determined by computing the
MST in G.

Proof. Follows directly from Lemma 1 and 2. �
Theorem 2 claims that the true order of the markers in a linkage group can be identified
by simply running Prim’s MST algorithm (or any other MST algorithms) on the graph
G, which would take quadratic time in the number of markers. Unfortunately, we do
not known the exact pairwise recombinant probabilities Pi,j . What we have are their
maximum likelihood estimates di,j/n for those probabilities. Thus, we replace Pi,j by
di,j as the edge weights in G, and we call H the resulting graph.

Our objective is to find a minimum weight TSP path in the graph H (which turns out
to be the same objective function as used in [16]). When n → ∞, the max likelihood
estimates converge to the true probabilities Pi,j . According to Lemma 1, the minimum
weight TSP path will reveal the true order of the markers. Thus, we run Prim’s algorithm
on H to compute the optimum spanning tree. If the MLEs are accurate, according to
Lemma 2, the MST will be a TSP path. In practice, due to noise in the genotyping data
or due to an insufficient number of individuals, the spanning tree may not be a path –
but hopefully “very close” to a path. As we will show in Section 5, this is exactly what
we observed when running our algorithm on both real data and simulated data – the
MST produced is “almost” a path. In any case, when a tree is not yet a path, we will try
to transform it into a path, as explained next.
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4 Algorithmic Methods

The construction of a genetic linkage map consists of two steps. In the first step, one
clusters the markers into linkage groups. In the second, one determines the order of the
markers in each LG.

4.1 Clustering Markers into Linkage Groups

In order to cluster the markers into linkage groups, we construct a complete graph
H(M, E) over the set of markers to be clustered. The weight of an edge (li, lj) ∈ E
is equal to the pairwise distance di,j between li and lj . As shown in Theorem 1, if two
markers belong to different LGs, then the distance between them will be large with high
probability. Once a small probability ε is chosen by the user (the default is ε=0.000001),
we can determine δ by solving the equation 2(n/2 − δ)2/n = loge ε. We then remove
all the edges from H(M, E) whose weight is larger than or equal to δ. The resulting
graph will break up into connected components, each of which is assigned to a linkage
group.

The parameter ε should be chosen according the quality of the data. In practice, this
is not such a critical issue since the recombinant probability between nearby markers
on the same linkage group is usually very small (less than 0.05). According to our
experience, our algorithm is capable of determining the correct number of LGs for a
fairly large range of values for ε.

4.2 Ordering Markers in Each Linkage Groups

Before ordering the markers in each linkage groups we preprocess the data by collecting
cosegregating markers3 into bins. Each bin is uniquely identified by one of its members.
Given one of the linkage groups obtained by the step above, we first construct a com-
plete graph H(B, E), where B corresponds to the bins in that linkage group, and the
weight on the edges is the pairwise distance between the corresponding representative
markers.

As mentioned earlier, in order to find a good TSP path in H(B, E), we start by
constructing an MST. If the MST turns out to be a path, we are done. Otherwise, we
need to transform the MST into a path, in a way so that the ordering captured by the tree
is maintained as much as possible. We proceed as follows. First, we find the longest path
in the MST, hereafter referred to as the backbone. The bins/vertices that do not belong
to the path will be first disconnected from it. Then, the disconnected bins/vertices will
be re-inserted into the backbone one by one at the position where the resulting backbone
has the minimum total weight. The path resulting at the end of this process is our initial
solution, which might not be locally optimal.

Once the initial solution is computed, we apply two heuristics that iteratively perform
local perturbations to it in an attempt to improve its quality. First, we use the commonly-
used K-opt (K = 2 in this case) heuristic. We cut the current path into three pieces, and
try all the possible rearrangements of the three pieces. If any of the resulting paths
has a less total weight, it will be saved. This procedure is repeated until no further
improvement is possible. In the second heuristic, we try to relocate each node in the

3 Cosegregating markers are those markers for which the pairwise distances is 0.
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path to all the other possible positions. If this relocation reduces the weight, the new
path will be saved. We apply the 2-opt heuristic and the relocation heuristic iteratively
until none of them can further reduce the weight of the path. The resulting TSP path
represents our final solution.

4.3 Dealing with Missing Data

In our discussion so far, we assumed no missing data. This assumption is, however,
not very realistic. As it turns out in practice, it is rather common to have missing data
about the state of a marker. In fact, as we will show in our experimental results, missing
observations do not have as much negative impact on the accuracy of the final map
as genotype errors. Thus, it appears beneficial to leave uncertain genotypes as missing
observations than arbitrarily calling them one way or the other.

We deal with missing observations via an Expectation Maximization (EM) algorithm.
Observe that if we knew the order of the markers (or, bins, if we have cosegregating
markers), the process of imputing the missing data would be relatively straightforward.
For example, suppose we knew that marker l3 immediately follows marker l2, and that
l2 immediately follows marker l1. Let us denote with P̂1,2 the estimate of the recombi-
nant probabilities between markers l1 and l2, and with P̂2,3 the recombinant probability
between markers l2 and l3. Let us assume that for an individual c the genotype at locus
l2 is missing, but the genotypes at loci l1 and l3 are available. Without loss of generality,
let us suppose that they are both A. Then, the posterior probability for the genotype at
locus l2 in individual c is

P{genotype in c at l2 is A} =
(1 − P̂1,2)(1 − P̂2,3)

(1 − P̂1,2)(1 − P̂2,3) + P̂1,2P̂2,3

and P{genotype in c at l2 is B} = 1−P{genotype in c at l2 is A}. This posterior prob-
ability is the best estimate for the genotype of the missing observation. Similarly, one
can compute the posterior probabilities for different combinations of the genotypes at
loci l1 and l2.

In order to deal with uncertainties in the data, we replace each entry in the genotype
matrix A that used to contain symbols A/B with a probability. The probability A[i, j]
represents the confidence that we have about marker li in individual cj of being in
state A. For the known observations the probabilities are fixed to be 1 or 0 depending
whether the genotypes observed is A or B, respectively. The probabilities for the missing
observations will be initially set to 0.5. Given that now A contains probabilities, the
pairwise distance between two markers li and lj can computed as follows

di,j =
∑

1≤k≤n

A[i, k](1 − A[j, k]) + (1 − A[i, k])A[j, k] (1)

Our iterative algorithm works as follows. First, given the input matrix A, we com-
pute the pairwise distance according to (1). Then, we run our MST-based algorithm
to find the most probable order of the markers. This constitutes the M step in the EM
framework. Given the new marker order, we can adjust the estimatate for a missing
observation from marker i2 on individual j as follows

A[i2, j] =
∑

a∈{A,B},c∈{A,B}
La,A,c/

∑

a∈{A,B},b∈{A,B},c∈{A,B}
La,b,c (2)
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where i1 is the marker immediately preceding i2 in the most recent ordering, i3 is the
marker immediately following i2, and La,b,c is the likelihood of the event (l1 = a, l2 =
b, l3 = c) at the three consecutive loci. The quantity La,b,c is straighforward to compute.
For example, LA,A,A = A[i1, j](1−P̂i1,i2)(1−P̂i2,i3)A[i3, j], where P̂i1,i2 = di1,i2/n,
P̂i2,i3 = di2,i3/n are the MLEs for Pi1,i2 and Pi2,i3 respectively, and di1,i2 and di2,i3

are as computed according to (1) in the most recent M step. In the case where the
missing observation is at the beginning or the end of the map, the above estimates will
have to be adjusted slightly. The new estimation of the probabilities corresponds to the
E step in the EM framework.

An E-step is followed by another M-step, and this iterative process continues until
the marker order converges. In our experimental evaluations, the algorithm converges
pretty quickly, usually in less than ten iterations. The pseudo-code of our algorithm,
called MSTMAP, is presented in the Appendix.

5 Experimental Results

We implemented our algorithm in C++ and carried out extensive evaluations on both
real data and simulated data.

The real data comes from our ongoing genetic mapping project for Hordeum vulgare
(barley) at University of California, Riverside. In total there are three mapping popula-
tions being studied, all of which are DH populations. The first mapping population is
the result of crossing Oregon Wolfe Barley Dominant with Oregon Wolfe Barley Re-
cessive (see http://barleyworld.org/oregonwolfe.php), and from here
on, we will refer to it as the OWB data set. The OWB data set consists of 1,020 markers
genotyped on 93 individuals. The second mapping population is the result of a cross
of Steptoe with Morex (see http://wheat.pw.usda.gov/ggpages/SxM/),
which consists of 800 markers genotyped on 149 individuals. It will be referred to
as SM data set from here on. The third mapping population is the result of a cross of
Morex with Barke recently developed by Nils Stein and colleagues at the Leibniz Insti-
tute of Plant Genetics and Crop Plant Research (IPK), which contains 1,068 markers on
93 individuals. This data set will be referred to as MB in our discussion. The genotypes
of SNPs for the above data sets were determined via the Illumina GoldenGate Assay.
These three barley data sets were expected to contain seven LGs, one for each of the
seven barley chromosomes.

We generate the simulated data set according to the following procedure (which is
the same as that used in [16]). First we decide how many markers to place on the
genetic map, how many individuals to genotype, what is the error rate and what is
the missing rate. We then produce a “skeleton” map, according to which the genotypes
for the individuals will be generated. The markers on the skeleton map are spaced at a
distance of 0.5 centimorgan plus a random distance according to a Poisson process. On
average, the adjacent markers are 1 centimorgan apart from each other. We generate the
genotypes for the individuals as follows. The genotype at the first marker is generated
at random with probability 0.5 of being A and probability 0.5 of being B. The genotype
at the next marker depends upon the genotype at the previous marker and the distance
between them. If the distance between the current marker and the previous marker is x
centimorgans, then with probability x%, the genotype at the current locus is the opposite

http://barleyworld.org/oregonwolfe.php
http://wheat.pw.usda.gov/ggpages/SxM/
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Table 1. Summary of the clustering results for the barley data sets. ρ̄ is the average ρ of the seven
largest LGs in each population.

Data set # markers # LGs Sizes of the LGs ρ̄
OWB 1,020 7 105,178,165,132,146,129,165 0.9948
SM 800 8 149,105,147,73,85,147,93,1 0.9972
MB 1,068 8 150,198,136,162,96,130,194,2 0.9950

of that at the previous locus, and with probability (1-x%) the two genotypes are the
same. Finally, according to the specified error rate and missing rate, we flip the current
genotype to purposely introduce an error or simply delete it to introduce a missing
observation. Following this procedure, we generated various datasets on a wide range
of choices for n, m, error rate and missing rate.

5.1 Evaluation of the Clustering Algorithm

First, we evaluated the effectiveness of our clustering algorithm. We ran our clustering
algorithm on the datasets for barley. Since the genome of barley consists of seven chro-
mosome pairs, we expected the clustering algorithm to produce seven linkage groups.
Using the default value for ε, our algorithm produced seven linkage groups for the OWB
data set, and eight linkage groups for the MB and SM data set. The same results can be
obtained in a rather wide range of values of ε. For example, for ε ∈ [0.000001, 0.0001]
the OWB data set is always clustered into seven LGs. The smallest linkage group in
the MB data set contains only two markers, whereas the smallest linkage group in the
SM data set is a singleton. The explanation for these exceptions is not yet certain, but
we conjectured some problems with the Illumina data. The result of the clustering al-
gorithm is summarized in Table 1. We also compared the clusters produced by our
algorithm against the ones produced by JOINMAP, which is a commercial software
for linkage analysis. The clusters turned out to be identical. However, since JOINMAP

implements a hierarchical clustering algorithm based on pairwise LOD score, the help
of an expert is needed in order to decide where to cut in the dendrogram in order to
produce the meaningful clusters. Our algorithm is conceptually much simpler.

5.2 Evaluation of the Quality of the Minimum Spanning Trees

Second, we verified that on real and simulated data, the MSTs produced by MSTMAP

are indeed very close to TSP paths. This experimental evaluation corroborates the fact
that the MST produces very good initial solution. Here, we computed the fraction ρ of
the total number of bins/vertices in the graph that belong to the longest path (backbone)
of the MST. The closer is ρ to 1, the closer is the MST to a path.

Table 1 shows that on the barley datasets, the average ρ for the seven linkage groups
(not including the smallest ones in the SM and MB dataset) is always very close to 1.
Indeed, 16 of the 21 MSTs are paths. The remaining 5 MSTs are all very close to paths,
with just one node hanging off the backbone. When our algorithm generates MSTs
which are paths we are guaranteed that they are optimal, thus increasing the confidence
in the correctness of the order obtained.
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On the simulated dataset with no genotyping errors, ρ is again close to one (see Fig-
ure 1-LEFT) for both n = 100 and n = 200 individuals. When the error rate is 1%,
the ratio drops sharply to about 0.5. This is due to the fact that the average distance
between nearby markers is only one centimorgan. One percent error introduces an ad-
ditional distance of two centimorgans which is likely to move a marker around in its
neighborhood. We computed ρ for several values of error rate, up to 15%. At 15% error
rate, the backbone contains only about 1/4 of the markers. However, this short back-
bone is still very useful in obtaining a good map since it can be thought as a sample of
the markers in their true order. Also, observe that increasing the number of individuals
will slightly increase the length of the backbone. However, the ratio remains the same
irrespective of the number of markers we include on a map (data not shown).

5.3 Evaluation of the Accuracy of the Ordering

In the third and final evaluation, we used the simulated data to compare the accuracy
of the maps produced by MSTMAP against the ones generated by RECORD [16]. We
selected RECORD because, to the best of our knowledge, it is the best tool available
for genetic mapping. RECORD is a recent software tool which, according to the authors
and based on our experience, outperforms JOINMAP. JOINMAP is another widely-used
commercial software for linkage analysis. RECORD is also rather fast . The algorithm
implemented in RECORD runs in time quadratic in the total number of markers, which
is the same as in MSTMAP. Last but not least, RECORD is command line based, which
allows us to run more extensive tests without too much human intervention. All the other
tools we are aware of (e.g., CARTHAGENE, ANTMAP, JOINMAP) are GUI-based.

We used the Kendall’s concordance correlations to evaluate the quality of the maps.
Kendall’s metric, denoted by τ , is commonly used in statistics to measure the corre-

lation between two rankings. This metric is given by τ = 4(# concordant pairs)
m(m−1) − 1,

where a pair of markers is concordant if the relative order between them is the same in
the two maps (one is the true map and the other is the map generated by either MSTMAP

or RECORD), where m is the total number of markers. The value of τ ranges from -1 to
1. τ = 1 when the two maps are identical; τ = −1 when one map is the reverse of the
other. Since the orientation of the map is not important in this context, whenever τ is
negative, we flip one of the map and we recompute τ . In our case, τ ∈ [0, 1]. The higher
the value of τ , the closer is the map produced to the true map. Note that τ is more sen-
sitive to global reshuffle than local reshuffle. For example, assume that the true order is
the identity permutation. τ for the following order n

2 , n
2 +1, n

2 +2, ..., n, 1, 2, 3, ..., n
2 −1

is 0, whereas τ for the order 2, 1, 4, 3, 6, 5, ..., n, n − 1 is (1 − 2/n) which is still close
to 1 when n is large. The fact that τ is more sensitive to global reshuffle is a desired
property since biologists are more interested in the correctness of the global order of
the markers than the local order.

The results of the evaluation based on τ for n = 100 individuals are summarized in
Figures 1-RIGHT, 2-LEFT, and 2-RIGHT. Four observations are in order. First, Fig-
ure 1-RIGHT shows that when the error rate is low, both MSTMAP and RECORD

perform equally well. However, when the error rate gets higher, MSTMAP consistently
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Fig. 1. Average ρ (LEFT) and τ (RIGHT) for thirty runs on simulated data for several choices
of the error rates (and no missing data). n is the number of individuals, and m is the number of
markers.
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Fig. 2. Average τ for thirty runs on simulated data. LEFT: various choices of missing rates (error
rate=0); RIGHT: various choices of error/missing rates (missing rate=error rate).

builds much more accurate maps than RECORD. Second, observe in Figure 2-LEFT that
the missing data rate does not have too much of a negative impact on the quality of the
maps assembled as the error rate. Even at the missing rate of 15%, the maps assembled
are still very accurate (τ is larger than 0.99). Third, Figures 1-RIGHT and 2-RIGHT
show that when the data is noisy, the performance of MSPMAP improves as the number
of markers m increases. Forth, we observe that if number n of individuals increases, the
quality of the maps constructed by both algorithms also improves (data not shown).

6 Conclusions

We presented a novel method to cluster and order genetic markers based on genotyping
data. Our method is based on solid theoretical foundations, is computationally very
efficient, handles gracefully missing observation, and performs as well as the best tool
in the scientific literature. Additionally, in the presence of noisy data, our method clearly
outperforms the other tools.
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