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Abstract
We address the problem of comparing multiple genome-wide maps representing nucleosome po-
sitions or specific histone marks. These maps can originate from the comparative analysis of
ChIP-Seq/MNase-Seq/FAIRE-Seq data for different cell types/tissues or multiple time points.
The input to the problem is a set of maps, each of which is a list of genomics locations for
nucleosomes or histone marks. The output is an alignment of nucleosomes/histone marks across
time points (that we call trajectories), allowing small movements and gaps in some of the maps.
We present a tool called ThIEF (TrackIng of Epigenetic Features) that can efficiently compute
these trajectories. ThIEF comes into two “flavors”: ThIEF:Iterative finds the trajectories
progressively using bipartite matching, while ThIEF:LP solves a k-partite matching problem on
a hyper graph using linear programming. ThIEF:LP is guaranteed to find the optimal solution,
but it is slower than ThIEF:Iterative. We demonstrate the utility of ThIEF by providing
an example of applications on the analysis of temporal nucleosome maps for the human malaria
parasite. As a surprisingly remarkable result, we show that the output of ThIEF can be used
to produce a supervised classifier that can accurately predict the position of stable nucleosomes
(i.e., nucleosomes present in all time points) and unstable nucleosomes (i.e., present in at most
half of the time points) from the primary DNA sequence. To the best of our knowledge, this
is the first result on the prediction of the dynamics of nucleosomes solely based on their DNA
binding preference. Software is available at https://github.com/ucrbioinfo/ThIEF

1998 ACM Subject Classification G.2.1 Combinatorics, I.1.2 Algorithms, J.3 Life and Medical
Sciences

Keywords and phrases Nucleosomes, Histone Marks, Histone Tail Modifications, Epigenetics,
Genomics

Digital Object Identifier 10.4230/LIPIcs.WABI.2017.19

∗ This work was partially supported by NSF IIS-1302134 to SL and KLR and NSF III-1526742 to SL.

© Anton Polishko, Md. Abid Hasan, Weihua Pan, Evelien M. Bunnik, Karine Le Roch,
and Stefano Lonardi;
licensed under Creative Commons License CC-BY

17th International Workshop on Algorithms in Bioinformatics (WABI 2017).
Editors: Russell Schwartz and Knut Reinert; Article No. 19; pp. 19:1–19:16

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

https://github.com/ucrbioinfo/ThIEF
http://dx.doi.org/10.4230/LIPIcs.WABI.2017.19
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de


19:2 ThIEF: Finding Genome-wide Trajectories of Epigenetics Marks
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Figure 1 An illustration of the problem of aligning epigenetic features on four maps Q1, Q2, Q3, Q4;
the input is a set of locations for the feature of interest (e.g., CHiP-seq peaks for nucleosome or specific
histone marks) illustrated as circles here; the output is an assignment of features to trajectories, in a
way that most parsimoniously explain the data; dotted circles indicate gaps or “missing features”

1 Introduction

Advancements in high-throughput DNA sequencing technology has enabled life scientists
to carry out increasingly large-scale experiments. In genomics and epigenetics, it is rela-
tively common to run multiple genome-wide experiments: for example, one can use ChIP-
Seq/MNase-Seq/FAIRE-Seq/NOMe-Seq to obtain nucleosome levels or specific histone tail
post-translational modifications (e.g., methylation, acetylation, phosphorylation, ubiquitina-
tion) at different cell types/tissues (which allows to understand cell type-specific marks), or at
different time points for a particular cell process cycle (which allows to explore the dynamics
of epigenetic marks). The ENCODE project [8], modENCODE [10, 41], phychENCODE [1],
and the NIH Roadmap Epigenomics Project [2] are notable examples of these efforts. Similar
comparative analysis of epigenetic marks could be carried out for a set of closely related
organisms (e.g., human-chimp) if the correspondences between the genomes are known (e.g.,
using liftover by [20]).

Epigenetic maps are usually obtained by (i) sequencing a DNA sample enriched for a
feature of interest, (ii) mapping short reads to the reference genome and (iii) running a
peak-calling algorithm (e.g., MACS/MACS2 [50], NOrMAL [37], Puffin [36]). In this paper
we focus on the fundamental question on how to compare multiple genome-wide epigenetic
maps, when features are expected to shift or be missing. Our model allows the possibility
of the nucleosome of physically sliding along the genome or compensate for the noise in
the peak detection process. In the example in Figure 1, the objective is to align four maps.
Circles represent features to align; dashed circle mark the gap; trajectories are indicated
with solid lines, which represent the most “likely” explanation of the data.

We propose to compare epigenetic maps by aligning them in a similar way we align DNA
sequences. We arrange multiple nucleosome/feature maps on top of each other, with the
objective to build a trajectory for each individual nucleosomes/feature across time points or
cell types, in a way that a total cost (i.e., total “traveled distance” in the case of nucleosomes)
is minimized. We call such a set of trajectories an alignment: similarly to multiple sequence
alignment we allow “insertion” or “deletions” of nucleosomes/features at specific time points
or cell types. For instance, Figure 2 illustrates the output of ThIEF in the IGV browser for
a region of chromosome 10 of P. falciparum. ThIEF aligned eight nucleosome maps over
multiple time points, where each trajectory is assigned a unique ID, using alternating colors.
Observe that in some trajectories (e.g., the one with ID 10_4546), nucleosomes are stable,
while in others (e.g., the one with ID 10_4547) nucleosomes are evicted then bind later to



A. Polishko, Md. A. Hasan, W. Pan, E.M. Bunnik, K. Le Roch, and S. Lonardi 19:3

Figure 2 IGV snapshot of nucleosomes (red and blue rectangles – 147bps long) in region [742,356-
747,829] of chromosome 10 of P. falciparum at eight time points; ThIEF assigns nucleosomes
to trajectories which can be identified by an integer ID (zoom in to see them), and displayed in
alternating colors

the same location. We should note that it not easy to tag individual nucleosomes and image
them under microscopes (see, e.g., [47]), so there is no way with current technology to obtain
the “true” trajectories of nucleosomes genome-wide.

2 Problem definition

We define a epigenetic map Q = {f1, . . . , fn} as a set of n epigenetic features fi, where a
feature could be a nucleosome or a specific histone mark. Each feature f ∈ Q is described
by vector f = (µ, a1, . . . , al) where µ is the genomic coordinate of f in the genome (e.g.,
chromosome number and position in the chromosome) and each aj , j = 1, . . . , l is an attribute
of that feature (e.g., confidence score of a nucleosome, strength of a histone mark, p-value,
peak width, “fuzziness” of a nucleosome, etc.). For convenience, we assume that features in
Q are ordered by their position µ.

Given k epigenetic maps Q1, Q2, . . . , Qk, the goal is to align them so that the total
alignment cost is minimized. For instance when k = 2, we either match feature f ∈ Q1 to a
feature g ∈ Q2 so that we minimize a cost ∆(f, g) (e.g., some distance between the vectors
f = (µf , af

1 , . . . , a
f
l ) and g = (µg, ag

1, . . . , a
g
l )) or report that feature f ∈ Q1 has no match in

Q2 (insertion/deletion). In this latter case we will say that we have an alignment gap. For k
maps, the cost function is ∆(q1, q2, . . . , qk) where qi is a feature in the i-th map. Note that
∆(q1, q2, . . . , qk) is supposed to be defined for all combinations of q1, q2, . . . , qk.

While our framework allows features with l ≥ 0 attributes, in the rest of the paper we
only use the genomic coordinate (i.e., l = 0). In that case ∆(q1, q2, . . . , qk) is simply the
absolute deviation, i.e., the sum of absolute distance between the coordinate of each feature
and the mean of those k coordinates. As it is done in sequence alignment, we will not allow
swaps in the order of genomic features. In other words, we do not allow trajectories to cross
each other.

3 Previous work

The comparative analysis of a set of genome-wide epigenetic maps can be challenging, in
particular when the number of maps is large. Some bioinformatic tools are available to help
users make sense of the data. For instance, BEDTools allows users to compares multiple
maps by determining which peaks are overlapping, non-overlapping, or have a minimal
fraction of overlap [40]; Galaxy [12, 3, 11] offers a set tools for working with genomic
intervals under the “Operate on Genomic Intervals” section; ChromHMM can be also used to
summarize multiple epigenetic maps. In ChromHMM, a multivariate hidden Markov Model
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allows users to determine chromatin states (e.g., active enhancer, heterochromatin, repressed
PolyComb, etc.) from multiple histone marks, DNA methylation, DNase I hypersensitive
sites, and gene expression [9]. Similarly, Segway uses a dynamic Bayesian network model to
identify chromatin patterns associated with transcription start sites, gene ends, enhancers,
transcriptional regulator CTCF-binding regions and repressed regions [14, 15]. Recently,
EpiCSeg was introduced to address shortcomings of ChromHMM and Segway [30]. In terms
of motivations, DGW is the closest work to ours. DGW uses dynamic time warping to align
the profiles of ChIP-seq enrichment and to cluster them into groups which share similar
shapes [28].

The problem of aligning genomic features from multiple maps is similar to the multiple
sequence alignment (MSA) problem (see, e.g., [6]). MSA is a central problem in bioinformatics
with a wide range of applications (see, e.g., [42, 39, 23, 31]). A very large corpus of literature
has been published on MSA and its applications. A direct solution for MSA uses dynamic
programming to identify the globally optimal alignment [44, 32]. The majority of efficient
methods employ sophisticated heuristics, since the global optimization problem of aligning
long sequences is computationally costly (the problem is NP-complete [7, 49, 18]). Heuristic
methods include progressive alignment construction [13, 46, 45, 25], iterative methods, hidden
Markov models, genetic algorithms [34, 33], simulated annealing [21, 16], among others. The
major difference between MSA on DNA/proteins and the problem discussed here is that
instead of a substitution matrix, we use a cost function ∆ defined between all possible
combinations of features in the k maps.

The problem of aligning genomic features is also related to the multi-target tracking
problem or data association problem. These latter problems have been known for decades
and are extensively studied. These problems arise when there is a need to track features
on video sequences, radar scans, etc. The main computational challenge is to overcome
scalability when dealing with a large number of snapshots and a relatively small number of
objects to track. In our case, we are interested in dealing with a relatively small number of
maps and a large number of objects.

4 Methods

We first describe the naïve (greedy) approach and explain its limitations, then we provide
two improved algorithms. The first builds iterative approximations of the optimal alignment,
the second computes the solution via integer linear programming [4]. To make the second
approach feasible to real-world-sized data we applied branch-and-bound technique to reduce
the size of the problem. Then, we relax the problem to a linear program, which we solve
using the off-the-shelf solver GLPK [29].

4.1 Naïve (greedy) approach

In the naïve algorithm, we consider each feature (at location µ) in the first map and check
whether we can match it to features on the other maps such that all these features are
located within a window of predefined length w, centered at µ. If a map does not have a
feature in the window [µ−w/2, µ+w/2], we introduce a gap. When a feature is assigned to
a trajectory, we mark it so that it cannot be used for other trajectories. After considering all
the features in the first map, we check whether the next map contains any feature that was
not marked; if any of the feature is still unmatched the same sliding window approach is
employed. We repeat this process until all the features are marked.
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Figure 3 The naïve (greedy) method can create sub-optimal alignments (see text).

The naïve algorithm is fast, but it does not guarantee to produce an optimal solution.
First, it relies on the assumption that the alignment score of three or more features is
decomposable into the combination of pairwise alignments. Second, the algorithm can make
wrong “choices” depending on window size w. Figure 3 illustrates an example of what could go
wrong. Circles represent features to align, where a solid circle means that a feature is present,
dashed circle means that a feature is missing. The black lines represent the trajectories that
we are expected to recover. When the naïve algorithm considers the “red” feature, it will to
match it with features marked with thick-line circles. The resulting alignment is shown in
green, which is sub-optimal globally.

4.2 ThIEF:Iterative

ThIEF:Iterative iteratively constructs alignments by processing input maps pairwise. The
algorithm starts by aligning the first two maps by solving the weighted bipartite matching
problem. Then, ThIEF:Iterative aligns the resulting alignment between the first two
maps to the third map. At each iteration the algorithm solves a bipartite matching problem
between the current alignment and the next epigenetic map.

Each node in the bipartite graph is assigned a genomic location. When a genomic feature
f is mapped to a node vf ∈ V , then its location is µf . Since the algorithm needs to align
alignment to maps, we use the average of the coordinates of the features that belong to an
alignment as the “location” of that alignments. In this way, nodes corresponding to partial
alignments will have a location attribute and the cost function can be evaluated. Each edge
(w, v) is assigned weight |µw − µv|.

The bipartite graph must have an equal number of vertices in each feature map (partition),
so for every vertex in one partition we introduce a “dummy” vertex in the other one. The
presence of dummy nodes also naturally allows gaps: when a feature is matched against a
dummy node we are implicitly introducing a gap. The cost of edges connecting “dummy”
node to features is the gap penalty δ, and edges “dummy”-“dummy” are not allowed. To
solve the n − to − n assignment problem we use the Hungarian algorithm [17], which has
Θ(n3) time complexity.

The total running time of this approach is Θ(km3), where k is the number of maps and m
is an upper bound on the number of alignments. In the worst case, if we align maps such that
features on each map are aligned with corresponding gaps then we could have m ∈ O(2k−1n).
The other disadvantage of this approach is that it does not guarantee optimality, unless the
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cost function ∆ is decomposable into sum of pairwise costs. In general, the order in which
maps are processed can give rise to different (sub-optimal) solutions.

4.3 ThIEF:LP
ThIEF:LP casts the alignment problem as a weighted k-partite matching problem. Our
problem is slightly more general than the k-partite matching problem because we need to
deal with gaps. First ThIEF:LP builds a hyper-graph H = (V,E), where each vertex v ∈ V
represent a genomic feature, and an hyper-edge e ∈ E connects a subset of vertices (i.e.,
e ⊆ V ) representing a possible alignment. By construction, the graph is k-partite: each
hyper-edge contains at most one vertex from each partition (feature map). Hyper-edges can
skip a partition to model gaps in the alignment.

We build the graph H iteratively. First, we create edges between the nodes in the first
two maps (according to the criteria below), then extend them as hyper-edges to the other
maps. Given a current (hyper)edge e ∈ E, in order to limit the size of H we extend it to
a vertex v in the new partition only if (i) v has a position within [−δ,+δ] of the position
of the hyper-edge (computed as the average of the position of the nodes that belong to e)
and (ii) it does not cross other hyper-edges. Once H is built, we solve the weighted k-partite
matching via an integer linear program (ILP) [4], as follows:

minimize
|E|∑
i=1

wixi

subject to
∑
i∈Sj

xi = 1 j = 1, . . . , |V |
xi ∈ {0, 1} i = 1, . . . , |E|

where binary variable xi is associated to hyper-edge ei ∈ E, Sj is the set of hyper-edges
incident to node vj ∈ V , and weight wi is the absolute deviation of hyper-edge ei, i.e., the
sum of absolute distance between the coordinate of each feature in ei and their mean.

The integer program is relaxed to a linear program by allowing each variable to take values
in the interval [0, 1]. The linear program is solved using the off-the-shelf solver GLPK [29].

5 Experimental results on synthetic data

A synthetic dataset can be described by five parameters, namely (i) the number k of maps, (ii)
the number n of features, (iii) the minimum distance d between features, (iv) the probability
p of a gap, and (v) the allowed “movement” σ. We generate first a “master” map Q where
the features are placed at random locations so that the average distance between adjacent
features is uniformly distributed in [d, 2d]. We generate the k maps from the initial map Q,
as follows. We shift the location of each feature f ∈ Q by a random quantity drawn from
Gaussian distribution with parameters (0, σ), then assign f it to a map at the perturbed
location. Finally, we replace a feature with a gap with a small probability p. Observe that
this procedure might produce alignments that do not satisfy the assumption that trajectories
cannot cross.

5.1 Performance analysis
We analyzed the performance of ThIEF:LP and ThIEF:Iterative against the naïve
(greedy) approach on several synthetic datasets. We generated a large number of datasets
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Figure 4 Sensitivity (TOP) and specificity (BOTTOM) of ThIEF:LP and ThIEF:Iterative,
and the naïve for several choices of parameter σ = [15, 65].

consisting of k = 3 maps and n = 1000 features, using different values for minimum distance
d between features, gap probability p and movement variation σ.

We compared the alignments produced by these tools against the “ground-truth” and
measured sensitivity and specificity. Figure 4-LEFT shows the average sensitivity as a
function of parameter σ. Observe that ThIEF:LP outperforms the other approaches and
ThIEF:Iterative’s performance is better then naïve approach (as expected). Also observe
that as σ increases, the performance decreases: this can be explained by the fact that with
more variability in the location of the features it becomes more likely to have crossing of
trajectories, which none of the tools is designed to capture. Specificity analysis shows a
similar behavior (see Figure 4-RIGHT). Here ThIEF:LP and ThIEF:Iterative have almost
identical performance, which is better than the naïve.

5.2 Execution time

To study the speed of the two algorithms we measured the total execution time on a variety
of input datasets. ThIEF:Iterative’s time complexity is Θ(km3), where k is the number of
maps andm is an upper bound on the total number of alignments. The functional dependency
between m and n is data-dependent, specifically on how many new alignments are introduced
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Figure 5 Execution time of ThIEF:Iterative. (LEFT) As a function of the number k = 2, . . . , 7
of maps to align, for different choices of the number n of features (20, 100, 200, 300, 400); (RIGHT)
As a function of the number of features (for k = 5, 6 maps).

at every iteration (instead of extending existing ones). The worst case is m ∈ O(2k−1n). As
a result, the total worst-case time-complexity could be as bad as O(2kn3). Figure 5-LEFT
shows the experimental dependency between the execution time of ThIEF:Iterative and
the number of maps k. Observe that since the Y axis is log-scale, these experiments confirm
that the actual running time is exponential. Figure 5-RIGHT shows the dependency between
the execution time of ThIEF:Iterative and the number of features n, for k = 5 and k = 6
maps. The solid lines are cubic functions of n fitted to the data. These experiments confirm
the cubic dependency on number of features in the input.

ThIEF:LP’s running time is dominated by the cost of solving a linear program, which
in the case of the simplex algorithm, has exponential worst-case running time (although in
practice, for the large majority of the instances the time-complexity of simplex is polynomial).
The size of the linear program depends on the size of the hyper-graph: in our implementation,
the size of the graph can be exponential in k. Figure 6-LEFT shows the dependency between
execution time and the number of maps k. Each curve shows a linear trend (note that Y
axis is in log-scale). The different shape of the blue curve (twenty features per map) could
be explained by the fact that with small inputs the I/O overhead of transferring the data to
the GLPK solver dominates the execution time. When we consider the blue curve for at
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function of the number of features (for k = 5, 6, 7 maps).

least five maps the size of the hyper-graph becomes big enough so that solving the linear
program dominate the execution time. These experiments support the claim of exponential
complexity on the number of maps. Figure 6-RIGHT shows a linear dependency between
the execution time and the number of features to track, as expected from the theoretical
analysis.

6 Experimental results on real data

As mentioned previously, current imaging technology does not allow one to track nucleosomes
or specific histone marks genome-wide over time. Since real data has no “ground-truth”
about trajectories that would allows us to objectively evaluate our tool, nor we have found
other tools that solve the same problem to which we could compare ThIEF, we decided to
demonstrate the utility of ThIEF by developing a supervised classifier that can accurately
predict the position of stable and unstable nucleosomes from the primary DNA sequence.
We define a nucleosome to be stable when it appears in approximately the same position
in the genome at all time points of an experiment. We define a nucleosome to be unstable
when it appears in approximately the same position in at most half of the time points of an
experiment. Nucleosomes in the second category are expected to be the most informative
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for investigating how chromatin structure affects gene expression. While there is significant
amount of work on predicting the binding of nucleosomes from the DNA primary sequence
(e.g., [22, 51, 26, 52, 27, 48, 35, 43]), we are not aware of any work that has addressed the
problem of predicting whether a nucleosome is expected to be stable or unstable from the
DNA sequence.

6.1 Detecting stable and unstable nucleosomes
As an example of application of ThIEF, we analyzed eight nucleosome maps from a study
on the human malaria parasite [19]. In this study, synchronized P. falciparum parasites were
collected at eight different stages of intra-erythrocytic development with five hour intervals
(T5-T40). The eight samples were digested to enrich for nucleosome-bound DNA using
the MNase protocol, then the digested samples were paired-end sequenced on an Illumina
sequencing instrument. Raw reads provided by [19] were mapped to P. falciparum 3D7
genome v13.0 (available from www.plasmoDB.org) using Bowtie2 [24] allowing a maximum
of one mismatch per read. Reads that mapped to multiple locations in the genome, reads
that were PCR duplicates, and reads that mapped to ribosomal RNA or transfer RNA were
discarded. The final datasets contained about 409 M mapped paired-end reads, with an
average read length of 100 bp.

We used PuFFIN [36] to generate nucleosomes positions (for all eight time points) from
the aligned reads. Then, we used ThIEF:LP to produce nucleosome trajectories by solving
14 independent optimization problems (one for each chromosome of P. falciparum). PuFFIN
detected a total of 770,238 nucleosomes, with an average of 96,280 nucleosomes per time
point. Nucleosome positions were consistent with the one reported in [19].

ThIEF:LP reported a total of 141,363 trajectories (average of 10,097 trajectories for
chromosome). A trajectory generated by ThIEF:LP was considered stable if it contained
nucleosomes at each time point (i.e., no missing nucleosomes). Trajectories with no more
than four nucleosomes (out of eight) were considered as unstable (i.e., at least three missing
nucleosomes). According to this definition we detected 43,122 stable trajectories (about
31% of the total) and 50,783 unstable trajectories (about 36% of the total). Trajectories
that were not stable or unstable were not used in the experiments (about 33% of the total).
Chromosomes by chromosomes, the percentage of stable trajectories ranged from 33.23%
to 35.39% of the total number of trajectories. The percentage of unstable trajectories for
all chromosomes ranged from 33.5% to 40.4%. The distribution of stable and unstable
trajectories along the P. falciparum chromosomes is shown in Figure 7. Observe that there
are regions devoid of stable nucleosomes, and regions very enriched for unstable nucleosomes
(e.g., the telomere of chromosome 13).

6.2 A classifier for stable and unstable nucleosomes binding sites
First, we extracted the binding sites from the genome of P. falciparum for each trajectory.
For each trajectory t labeled stable or unstable, we computed the average position of the
nucleosomes in t, then selected 147 bp centered at that position from the malaria genome.
Recall that a nucleosome consists of approximately 146-147 bp of DNA wrapped in superhelical
turns around a histone octamer complex. Using this procedure we produced a training
set composed of 43,122 147bp-long sequences representing stable nucleosomes, and 50,783
147bp-long sequences representing unstable nucleosomes.

We chose a Support Vector Machine (SVM) with radial basis function (RBF) kernel as
our binary classifier. We explored many features to use in the classification, including k-mer

www.plasmoDB.org
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Figure 7 Distribution of stable (TOP) and unstable (BOTTOM) nucleosome trajectories along
the 14 human malaria chromosomes (counts in a sliding window of 50Kbp).

distributions for 2 ≤ k ≤ 5 and other physico-chemical properties of DNA (e.g., purine-
pyrimidine, amino-keto, strong-weak H-bond). By running an extensive set of cross-validation
experiments we determined that the five features described next were the most informative.

The first four features were obtained from the 3-mer distribution. For each sequence
we collected its 3-mer frequencies, then computed the eigenvalues of four 4 × 4 matrices
corresponding to 3-mers that have a middle nucleotide being A, C, G, and T, respectively.
We represented each matrix with its leading eigenvalue, for a total of four features. The
fifth feature was the DNA stability ∆G which is expressed by in terms of free energies of
di-nucleotide stacks ∆GKL, as described in [38]. The stability ∆G is measured by

∆G = x2
GC

4

[∑
A

∆GKL +
∑
B

∆GKL −
∑
C

∆GKL

]

+ xGC

2

[
1
2

∑
C

∆GKL −
∑
B

∆GKL

]
+ 1

4
∑
B

∆GKL (1)

whereA = {GG,CC,GC,CG}, B = {AA, TT,AT, TA} and C = {GA,AG,CT, TC,GT, TG,
CA,AC}; ∆GKL is the standard melting free energy parameter where di-nucleotide stacks
are calculated from stacking free energy parameters ∆GST

KL. Table 1 lists the value of ∆GST
KL

and ∆GKL, obtained from [38]. We z-normalized the feature vectors before training the
SVM.

Table 2 shows the classification results (precision, accuracy, recall, and area under the
ROC curve) when training the SVM on the DNA binding sites of stable/unstable trajectories
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Table 1 (LEFT) Stacking free energy parameters ∆GST
KL, (RIGHT) Standard melting free energy

parameters ∆GKL.

KL A T G C
A -1.11 -1.34 -1.06 -1.81
T -0.19 -1.11 -0.55 -1.43
G -1.43 -1.81 -1.44 -2.17
C -0.55 -1.06 -0.91 -1.44

KL A T G C
A -1.04 -1.27 -1.29 -2.04
T -0.12 -1.04 -0.78 -1.66
G -1.66 -2.04 -1.97 -2.70
C -0.78 -1.29 -1.44 -1.97

Table 2 Classification results on the stable/unstable dataset for P. falciparum, by training the
SVM on the odd-numbered chromosomes, and testing on the even-numbered chromosomes; AUC is
the area under the ROC curve.

γ C precision accuracy recall F-score AUC
0.5 2 91.32% 79.60% 70.50% 0.795687 0.905418
0.5 8 92.48% 79.18% 68.64% 0.787988 0.908831
2 0.125 92.40% 79.97% 70.23% 0.798028 0.91509
2 0.5 92.59% 79.37% 68.91% 0.79015 0.913866
2 2 93.23% 79.28% 68.19% 0.787704 0.91498
8 0.03125 95.17% 80.32% 68.55% 0.797005 0.924962
8 0.125 94.08% 79.33% 67.58% 0.786582 0.921428
8 0.5 93.95% 79.14% 67.32% 0.784348 0.919447
32 0.007812 96.31% 79.79% 66.70% 0.788176 0.926078
32 0.03125 96.10% 79.39% 66.11% 0.7833 0.929091
32 0.125 94.65% 79.27% 67.00% 0.784592 0.92311
128 0.125 94.72% 79.23% 66.88% 0.78399 0.923386
512 0.125 94.71% 79.03% 66.51% 0.781401 0.923546
2048 0.03125 95.26% 79.04% 66.10% 0.780456 0.926556
8192 0.03125 94.99% 79.07% 66.36% 0.781336 0.925219

for even-numbered chromosomes of P. falciparum, and testing it on the odd-numbered
chromosomes, for several choices of the penalty parameter C and kernel parameter γ in
libSVM [5]. If TP, FP, TN and FN are true positive, false positive, true negative, and false
negative, respectively, precision is defined as TP/(TP +FP ), accuracy is (TP +TN)/(TP +
TN + FP + FN), recall is TP/(TP + FN), and the F-Score (also known as the F1-score) is
(2 precision recall)/(precision + recall). Observe that the SVM classifier makes a prediction
for 66%-70% of tested nucleosome binding sites, and the precision of the prediction is very
high. In 91%-95% of the predictions, the classifier can correctly determine solely from the
DNA sequence whether the nucleosome will be stable or unstable. This is a surprisingly
remarkable result.

7 Discussion and conclusion

We described the general problem of aligning multiple genome-wide epigenetic maps. We
proposed two novel algorithms for this problem, namely ThIEF:LP and ThIEF:Iterative.
The former finds a global optimal solution by constructing a hyper-graph representing the
problem and solves it via linear programming. The latter reconstructs the final alignments
by computing pair-wise alignments using the Hungarian algorithm. We determined that
ThIEF:LP has slightly better sensitivity than ThIEF:Iterative, however the latter ap-
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proach is more suitable for aligning a large number of maps. Both tools perform significantly
better than the naïve (greedy) approach.

We have also demonstrated how ThIEF can be used in downstream analyses. In our
example we used ThIEF to generate nucleosome trajectories for a time-course dataset on
P. falciparum. The output of ThIEF can be used directly, and for the first time, to label
nucleosome trajectories as stable or unstable. As proof of utility, we used the nucleosome-
bound DNA sequence (labeled stable or unstable) to train a SVM classifier. Surprisingly,
the classifier was able to predict with high accuracy and precision whether a particular
147 bp-long sequence is likely to contain a stable or unstable nucleosome. To the best of our
knowledge, this is the first result on the prediction of the dynamics of nucleosomes solely
based on their DNA binding preference.
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