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Abstract 
The increasing interest in time series data mining in the last 
decade has resulted in the introduction of a variety of similarity 
measures, representations and algorithms.  Surprisingly, this 
massive research effort has had little impact on real world 
applications. Real world practitioners who work with time series 
on a daily basis rarely take advantage of the wealth of tools that 
the data mining community has made available. In this work we 
attempt to address this problem by introducing a simple 
parameter-light tool that allows users to efficiently navigate 
through large collections of time series. Our system has the 
unique advantage that it can be embedded directly into the any 
standard graphical user interface, such as Microsoft Windows, 
thus making deployment easier. Our approach extracts features 
from a time series of arbitrary length, and uses information 
about the relative frequency of its features to color a bitmap in a 
principled way. By visualizing the similarities and differences 
within a collection of bitmaps, a user can quickly discover 
clusters, anomalies, and other regularities within their data 
collection. We demonstrate the utility of our approach with a set 
of comprehensive experiments on real datasets from a variety of 
domains. 
Keywords: Time Series, Chaos Game, Visualization. 

1  Introduction  
The increasing interest in time series data mining in the 
last decade has resulted the introduction of a variety of 
similarity measures/ representations/ definitions/ indexing 
techniques and algorithms (see, e.g., 
[1][2][4][6][17][21][22][24]). Surprisingly, this massive 
research effort has had little impact on real world 
applications. Examples of implemented systems are rare 
exceptions [25]. Cardiologists, engineers, technicians and 
others who work with time series on a daily basis rarely 
take advantage of the wealth of tools that the data mining 
community has made available. While it is difficult to 
firmly establish the reasons for the discrepancy between 
tool availability and practical adoption, the following 
reasons suggested themselves after an informal survey. 
• Time series data mining tools often come with a 

bewildering number of parameters. It is not obvious 
to the practitioner how these should be set [23]. 

• Research tools often require (relatively) specialized 
hardware and/or software, rather than the ubiquitous 
desktop PC/windows environment that prevails. 

• Many tools have a steep learning curve, requiring the 
user to spend many unproductive hours learning the 
system before any possibility of useful work. 

In this work we attempt to address this problem by 
introducing a simple parameter-light tool that allows users 
to efficiently navigate through large collections of time 
series. Our approach extracts features from a time series 
of arbitrary length, and uses information about the relative 
frequency of these features to color a bitmap in a 
principled way. By visualizing the similarities and 
differences within a collection of these bitmaps, a user 
can quickly discover clusters, anomalies, and other 
regularities within their data collection.  
While our system can be used as an interactive tool, it 
also has the unique advantage that it can be embedded 
directly into the any standard graphical user interface, 
such as Windows, Aqua, X-windows, etc. Since users 
navigate through files by looking at their icons, we 
decided to employ the bitmap representation as the icon 
corresponding to each time series. Simply by glancing at 
the icons contained in a folder of time series files, a user 
can quickly identify files that require further 
investigation. In Figure 1 we have illustrated a simple 
example1.  

 

Figure 1: Four time series files represented as time series 
bitmaps. While they are all examples of EEGs, 
example_a.dat is from a normal trace, whereas the others 
contain examples of spike-wave discharges. The fact that 
there is some difference between one dataset and all the rest 
is immediately apparent from a casual inspection of the 
bitmap representation.   

                                                           
1 This figure, and many others that follow in this work, suffer 
from monochromatic printing. We encourage the interested 
reader to visit [19] to view full color examples. 



The utility of the idea shown in Figure 1 can be further 
enhanced by arranging the icons within the folder by 
pattern similarity, rather than the typical choices of 
arranging them by size, name, date, etc. This can be 
achieved by using a simple multidimensional scaling or a 
self-organizing map algorithm to arrange the icons. 
Unlike most visualization tools which can only be 
evaluated subjectively, we will perform objective 
evaluations on the amount of useful information contained 
within a time series bitmap. More precisely, we will 
analyze the loss of accuracy of classification 
/clustering/anomaly detection algorithms when the input 
is based solely the information contained in the bitmap. 
As we will show, the experiments strongly confirm the 
utility of our approach.  
The rest of the paper is organized as follows. In Section 2, 
we report on the related literature and review the SAX 
representation, which is a cornerstone of our approach. In 
Section 3 we introduce our general visualization 
technique called Time Series Bitmaps, and in Section 4 we 
consider Time Series Thumbnails, a special representation 
that can be tightly integrated into a standard graphical 
user interface. Section 5 sees a comprehensive empirical 
evaluation, and lastly, Section 6 offers conclusions and 
directions for future work. 

2 Background and Related Work 
We begin this section with a brief description of the 
classic time series data mining tasks. We review some of 
the relevant data visualization methods as part of the 
previous related work in this domain. Finally, we 
conclude this section by reviewing SAX, a symbolic 
representation which is a cornerstone to our scheme. 

2.1 Time Series Data Mining Tasks 

Until recently, the bulk of the time series data mining 
research was focused on the tasks of indexing 
[17][21][24], clustering [1][4][23] and classification [23]. 
In contrast, there has been relatively little work on time 
series visualization, in spite of the fact that the usefulness 
of visualization is well documented [27]. The few works 
on time series visualization tend to limit their attention to 
small datasets [25][32][14]. However, data visualization 
becomes of crucial importance when the size of the data is 
large.  Because we claim that our visualization tool can be 
used in conjunction with some of the classic data mining 
tasks, we will briefly review them below. 

2.1.1 Classification 

The ability to predict the class of a previously unknown 
instance with the help of a training database is called 
classification. For example, imagine a scenario in which a 
patient visits a doctor because of chest pain and his/her 
ECG looks irregular. The doctor might want to search a 
database to find similar ECGs, in the hope that he/she will 
be able to offer clues about the patient’s condition. The 

notion of similarity clearly depends on the particular 
measure chosen. For short time series, Euclidian distance 
[22] and Dynamic Time Warping (DTW) [1][20][30] are 
known to work exceptionally well. However for longer 
time series, the choice of the appropriate measure of 
similarity for classification tasks is still somewhat of an 
open question. 

2.1.2 Clustering 

Clustering is the problem of organizing data into classes 
such that there is high intra-class similarity and low inter-
class similarity. It differs from classification in that the 
class labels are obtained directly from the data (cf. 
supervised vs. unsupervised learning). More informally, 
clustering finds a natural grouping among the objects 
according to the similarity measure chosen.  Once again, 
for short time series such as gene expression data, 
Euclidian distance and DTW work very well, but for long 
time series, some model-based technique is typically used 
[11][18][34].   

2.1.3 Anomaly Detection 

The task of finding anomalies or irregularities in data has 
been an area of active research, which has long attracted 
the attention of researchers in biology, physics, 
astronomy, and statistics, in addition to the more recent 
work by the data mining community [23]. While the word 
“anomaly” implies that a radically different subsection of 
the data has been detected, we are interested in more 
subtle deviations in the data. The possibility of such 
subtle deviations from normality are reflected by the 
terms which are often used as synonyms for anomaly 
detection, such as interestingness/ deviation/ surprise/ 
deviation/ novelty detection, etc.  

2.2   Related Work 

There has been relatively little work done on visualizing 
massive time series data sets. We will briefly review some 
of the algorithms proposed in the literature and we will 
explain why they are not well suited to the task at hand. 

The human eye is often heralded as the ultimate data-
mining tool [27]. The ubiquitous time series plot is used 
to help visualize data in many aspects of human life such 
as medicine (ECG), finance (changes in stock market), 
business (profit-and-loss history of a company), aerospace 
(satellite data), meteorology (fluctuations in air 
temperature or pressure on a daily, monthly, or yearly 
basis), entertainment (music, movies), etc. However many 
real world time series data sets are massive, and plots are 
limited by the resolution of the output device (screen, 
printer, etc.). Below we discuss some of the techniques 
used to mitigate the poor scalability of time series plots. 
These algorithms allow a greater scalability to larger 
datasets while leveraging off the human visual system to 
address the time series data mining tasks addressed above. 



2.2.1 Arc Diagrams 

Wattenberg introduced a visualization technique called 
Arc Diagrams [31] that exploits the fact that “sequences 
often contain significant repeated subsequences”. Many 
datasets come in the form of strings over  finite alphabet 
(text, DNA, music, etc.). Datasets containing real-valued 
data points can be easily converted to a string using a 
discretization technique [26]. Once the input is available 
in the form of a string, translucent arcs are drawn between 
repeated substrings (as shown in the Figure 2).  

 

 

Figure 2: Arc diagram for a musical composition. The 
repetitive patterns are represented by translucent arcs.  

The arc diagram allows the user to observe the 
occurrences of repeated patterns with a bird’s eye view of 
the sequence’s structure. However, this visualization 
technique is of less useful when there are many small 
repeated subsequences, which cause an uninformative 
jumble. This is often the case when the cardinality of the 
alphabet is small (e.g., DNA).  

2.2.2 Spiral 

Weber et al. presented an approach to visualize time 
series data based on a spiral representation [32]. The work 
in inspired by the observation that “often, time series data 
such as temperature, radiation of light and economic 
cycles exhibit periodic structures”. Each periodic 
structure of the time series is mapped on to a spiral ring to 
reveal the periodic behavior of the underlying process. 
The attributes are mapped to the properties of the spiral 
such as its color, texture and line thickness. A typical 
spiral diagram is shown in Figure 3. 
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Figure 3: A spiral visualization of a power demand dataset. 

Although Weber’s technique is simple and intuitive, it is 
only useful for identifying patterns the time series that are 
periodic. Although spiral are more space effective than 
simple linear plots, scalability remains as an issue.  

2.2.3 Viz-Tree 

Lin et al. employed a visualization technique called Viz-
Tree to discover patterns using a tree structure [25]. The 
time series data is first discretized to symbols using SAX 
(see below for a review of SAX). Then, the symbolic 
representation is encoded into a modified suffix tree 
wherein each branch of the tree represents one 
subsequence pattern. The frequencies of the various 
patterns are encoded as the line thickness of the suffix 
tree, so frequently occurring patterns show up as dense 
regions and rarely occurring patterns (possibly anomalies) 
show up as sparse lines. A screen shot of the Viz-Tree is 
shown in Figure 4. 

 

Figure 4: The Viz-Tree for an exhaust emissions dataset. 
Similar real valued time series (bottom left) tend to map to 
the same region of the tree (middle left) allowing a constant 
space summary of an arbitrarily long time series.  



While the Viz-Tree is scalable to large data sets, it 
performs well only for certain data mining tasks like 
anomaly detection and motif discovery. In addition, it is 
demanding in terms of user training and computer 
resources. 

2.3   Chaos Game Representations 
Our visualization technique is partly inspired by an 
algorithm to draw fractals called the Chaos game [4]. The 
parameters of the game are defined by a set of pairs of 
linear equations (i.e., an affine map), each of which is 
associated with a probability. Each affine map wi is 
defined by six parameters 
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Formally, the set {w1,w2,…,wk} and the associated 
probabilities defines an iterated function system (IFS). By 
changing the parameters of the IFS different fractals can 
be obtained (Sierpinski triangle, Dragon curve, Devil’s 
staircase, etc). 

As said, the chaos game is used to compute the fractal 
from the IFS. The game starts from a random point in the 
square [0,1]×[0,1]. At each step, a map is chosen at 
random according to its probability. The next point is 
obtained by applying the map to the previous point. 
Repeating this step thousands of times and plotting the 
trajectory of the points can visualize the fractal. 

The chaos game representation has been used extensively 
to study DNA sequences (see, e.g., [3],[10],[12],[16]). 
Since DNA has a four letters alphabet, the most natural 
IFS is: 

w a b C d e f prob 

1 .5 0 0 .5 0 0 .25 

2 .5 0 0 .5 0 .5 .25 

3 .5 0 0 .5 .5 0 .25 

4 .5 0 0 .5 .5 .5 .25 

If one runs the chaos game on this IFS using a truly 
random sequence, eventually all the points in [0,1]×[0,1] 
will be visited. In fact, the fractal associated with this IFS 
is the square [0,1]×[0,1]. 

If instead of using the random number generator, one uses 
the sequence under study to drive the selection of the 
maps, the Chaos Game Representation (CGR) of the 
sequence is obtained [16],[17]. In Figure 5, we associated 
w1 with the symbol “A”, w2 with C, w3 with G and w4 
with T. When the choice of the map is driven by the 
sequence, it is easy to realize that each point in the square 

[0,1]×[0,1] is in a one-to-one correspondence to a 
particular substring in the sequence. 

Since we are limited by finite arithmetic, suppose that the 
square [0,1]×[0,1] is divided in 2q×2q pixels. Then, each 
pixel is uniquely identified by a substring of size q (see 
Figure 5). This representation is also called quadtree 
representation. 

Based on the Suffix Theorem [16], it is easy to prove the 
following fundamental corollary (see also [3]). 

Corollary. The number of occurrences of a substring in 
the original sequence is equal to the number of times the 
Chaos Games visits the pixel associated with that 
substring. 

The method can produce a representation of DNA 
sequences, in which both local and global patterns are 
displayed. For example, a biologist can recognize that a 
particular substring, say in a bacterial genome, is rarely 
used. This would suggest the possibility that the bacteria 
have evolved to avoid a particular restriction enzyme site, 
which means that he might not be easily attacked by a 
specific bacterio-phage. 

From our point of view, the crucial observation is that the 
CGR representation of a sequence allows the investigation 
of the patterns in sequences, giving the human eye a 
possibility to recognize hidden structures 
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Figure 5:  The quad-tree representation of a sequence over 
the alphabet {A,C,G,T} at different levels of resolution 

We can get a hint of the potential utility of the approach 
if, for example, we take the first 16,000 symbols of the 
mitochondrial DNA sequences of four familiar species 
and use them to create their own file icons. Figure 6 
below illustrates this. Even if we did not know these 
particular animals, we would have no problem 
recognizing that there are two pair of highly related 
species being considered.   

With respect to the non-genetic sequences, Joel Jeffrey 
noted, “The CGR algorithm produces a CGR for any 
sequence of letters”[17]. However it is only defined for 
discrete sequences, and most time series are real valued.   



 

Figure 6: The gene sequences of mitochondrial DNA of four 
animals, used to create their own file icons using a chaos 
game representation. Note that Pan troglodytes is the 
familiar Chimpanzee, and Loxodonta africana and Elephas 
maximus are the African and Indian Elephants respectively. 
The file icons show that humans and chimpanzees have 
similar genomes, as do the African and Indian elephants. 

This encouraged us to try a similar technique on time 
series data and investigate the utility of such 
representation on the classic data mining tasks of 
clustering, classification and visualization. Since CGR 
involves treating a data input as an abstract string of 
symbols, a discretization method is necessary to transform 
continuous time series data into discrete domain. For this 
purpose, we used the Symbolic Aggregate approXimation 
(SAX) [26], which we review below.  

2.4   Symbolic Time Series Representations 
While there are at least 200 techniques in the literature for 
converting real valued time series into discrete symbols 
[9], the SAX technique of Lin et. al. [26] is unique and 
ideally suited for data mining. SAX is the only symbolic 
representation that allows the lower bounding of the 
distances in the original space. The ability to efficiently 
lower bound distances is at the heart of hundreds of 
indexing algorithms and data mining techniques 
[2][8][20][22][26][30]. While we do not directly exploit 
the lower bounding property in this work, we note that if a 
representation is tightly lower bounding the original data, 
it must be representing it with great fidelity. It is this 
implicit property we are exploiting. We can be sure that 
the SAX representation is accurately summarizing the 
time series, and as we will show, a minor modification of 
the chaos game can accurately summarize the SAX 
sequences. 

The SAX representation is created by taking a real valued 
signal and dividing it into equal sized sections. The mean 
value of each section is then calculated. By substituting 
each section with its mean, a reduced dimensionality 
piecewise constant approximation of the data is obtained. 

This representation is then discretized in such a manner as 
to produce a word with approximately equi-probable 
symbols. Figure 7 shows a short time series being 
converted into the SAX word baabccbc. 
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Figure 7: A real valued time series can be converted to the 
SAX word baabccbc. Note that all three possible symbols 
are approximately equally frequent.    

The time and space complexity to convert a sequence to 
its SAX representation is linear in the length of the 
sequence.  

It is very common to process very long time series. In that 
case, it is not necessarily a good idea to convert the entire 
time series into a single SAX word. For example, let us 
assume we have a time series that is composed of several 
sine waves. We would expect the SAX representation to 
be repetitive, something like abcbabcbabcbabcba… . 
However if we add a small linear trend to the entire 
sequence, the SAX representation would drastically 
change to something like aaaaaaaabbbbbbbcc… .  In 
other words, the apparently local features of the sequence 
depend on the global structure. This is an undesirable 
property.  

Therefore, for long time series, we slide a shorter window 
across it, and obtain a set of shorter SAX words. In the 
case of the sine waves example, we would expect to 
obtain a set of SAX words something like 

abcba 
  bcbab 
    cbabc 
       …. 

Note that such a list is a global summary of local shapes. 
In the case above, consecutive rows only differ at the 
endpoints. For example, the c in the third place in the first 
word, moves to the second place in the second word, and 
the first place in the third word. In general, this is not 
always true. Because we are normalizing the contents of 
the sliding window at each step, a region that maps to one 
letter at the beginning of a word, may map to a different 
letter at the end of a word etc. 

Although there is some redundancy between rows, only 
two bits are required per symbol (for an alphabet size 
four) and therefore this representation is much smaller 
than the original data. 



Note that the user must choose both the length of the local 
sliding window N, and the number n of equal sized 
sections in which to divide it (as we will see, there is no 
choice to be made for alphabet size). A good choice for N 
should reflect the natural scale at which the events occur 
in the time series. For example, for ECGs this is about the 
length of one or two heartbeats. For traffic patterns, a 24-
hour window makes sense. A good value for n depends of 
the complexity of the signal.  Intuitively one would like to 
achieve a good compromise between fidelity of 
approximation and dimensionality reduction. Two groups 
of researchers have independently suggested using 
Minimum Description Length MDL to set these 
parameters [23][29]. As we shall see, the proposed 
technique is not too sensitive to parameter choices. 
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The SAX representation has been successfully used by 
various groups of researchers for indexing, classification, 
clustering [26], motif discovery [7][8][29], rule discovery, 
[28], visualization [25] and anomaly detection [23].  

3   Time Series Bitmaps 
 
At this point the connection between the two 
“ingredients” for the time series bitmaps should be 
evident. We have seen in Section 2.3 that the Chaos game 
[4] bitmaps can be used to visualize discrete sequences, 
and we have seen in Section 2.4 that the SAX 
representation is a discrete time series representation that 
has demonstrated great utility for data mining. It is natural 
to consider combining these ideas. 

The Chaos game bitmaps are defined for sequences with 
an alphabet size of four. It is fortuitous that DNA strings 
have this cardinality. SAX can produce strings on any 
alphabet size. As it happens, a cardinality of four (or 
three) has been reported by many authors as an excellent 
choice for diverse datasets on assorted problems 
[7][8][23][25][26] [28][29].  

We need to define an initial ordering for the four SAX 
symbols a, b, c, and d. We use simple alphabetical 
ordering as shown in Figure 8. 
After converting the original raw time series into the SAX 
representation, we can count the frequencies of SAX 
“subwords” of length L, where L is the desired level of 
recursion. Level 1 frequencies are simply the raw counts 
of the four symbols. For level 2 we count pairs of 
subwords of size 2 (aa, ab, ac, etc). Note that we only 
count subwords taken from individual SAX words. For 
example, in the SAX representation in Figure 8 middle 
right, the last symbol of the first line is a, and the first 
symbol of the second word is b. However we do not count 
this as an occurrence of ab. 

 

Figure 8: Top) The four possible SAX symbols are mapped 
to four quadrants of a square, and pairs, triplets etc are 
recursively mapped to finer grids.  Middle) We can extract 
counts of symbols from a SAX representation and record 
them in the grids. Bottom)  The recorded values can be 
linearly mapped to colors, thus creating a square bitmap.  

Once the raw counts of all subwords of the desired length 
have been obtained and recorded in the corresponding 
pixel of the grid, a final step is required. Since the time 
series in a data collection may be of various lengths, we 
normalize the frequencies by dividing by the largest 
value. The pixel values thus range from 0 to 1. The final 
step is to map these values to colors. In the example 
above we mapped to grayscale, with 0 = white, 1 = black. 
However, it is generally recognized that grayscale is not 
perceptually uniform [33]. A color space is said to be 
perceptually uniform if small changes to a pixel value are 
approximately equally perceptible across the range of that 
value. For all images produced in this paper we use 
Matlab’s “jet” color space, which is a linearization of a 
large fraction of all possible colors and which is designed 
to be perceptually uniform. 

Note that unlike the arbitrarily long, and arbitrarily shaped 
time series from which they where derived, for a fixed L, 
the bitmaps have a constant space and structure. 

We do not suggest any utility in viewing a single time 
series bitmap. The representation is abstract, and we do 
not expect a user to be able imagine the structure of time 
series given the bitmap. The utility of the bitmaps comes 
from the ability to efficiently compare and contrast them.  



4   Time Series Thumbnails 
 
A unique advantage of the time series bitmap 
representation is the fact that we can transparently 
integrate it into the user graphical interface of most 
standard operating systems. 

Since most operating systems use the ubiquitous square 
icon to represent a file, we can arrange for the icons for 
time series files to appear as their bitmap representations. 
Simply by glancing at the contents of a folder of time 
series files, a user may spot files that require further 
investigation, or note natural clusters in the data. 

The largest possible icon size varies by operating system. 
All modern versions of Microsoft Windows2 support 32 
by 32 pixels, which is large enough to support a bitmap of 
level 5. As we will see, level 2 or 3 seems adequate for 
most tasks/datasets.  

To augment the utility of the time series bitmaps, we can 
arrange for their placement on screen to reflect their 
structure. Normally, file icons are arranged by one of a 
handful of common criteria, such as name, date, size etc.    

We have created a simple modification of the standard 
Microsoft Windows (98 or later) file browser by 
introducing the concept of Cluster View. If Cluster View 
is chosen by the user, the time series thumbnails arrange 
themselves by similarly. This is achieved by performing 
Multi-Dimensional Scaling (MDS) of the bitmaps, and 
projecting them into a 2 dimensional space. For aesthetic 
reasons, we “snap” the icons to the closest grid point.  

Figure 9 displays an example of Cluster View in 
Microsoft Windows XP Operating System.  

In this example the Cluster View is obtained for five MIT-
BIH Arrhythmia Database files. It is evident in the figure 
that eeg1.dat, eeg2.dat and eeg3.dat belong to one cluster 
whereas eeg6.dat and eeg7.dat belongs to another cluster. 
In this case, the grouping correctly reflects the fact that 
latter two files come from a different patient to first three. 

To optimize the Cluster View, a cache (cluster.db) can be 
made to contain all relevant information required to 
generate the bitmaps and display their clustering, so that 
all the files do not have to be processed every time 
viewing the folder. However, even on a large screen full 
of small icons, an efficient MDS implementation can 
dynamically adjust the position of the icons in real time as 
the user changes the aspect ratio of the file browser. 

                                                           
2 Actually, Windows systems support icons of size 48 by 48 
pixels, however we require a size that is an integer power of 
two. 

 

Figure 9: A snapshot of a folder containing cardiograms 
when its files are arranged by “Cluster” option. Five 
cardiograms have been grouped into two different clusters 
based on their similarity. 

  

5   Experimental Evaluation 
In this section, we test our proposed approach with a 
comprehensive set of experiments. In Section 5.1 we will 
show a simple experiment which require subjective 
evaluation, but which strongly hint at the value of our 
approach. In Section 5.2 we will show some experiments 
that objectively measure the utility of our approach on 
classification, clustering and anomaly detection. We note 
once again that the quality of illustrations here suffers 
from monochromic printing and small-scale reproduction. 
We urge the interested reader to consult [19] for large-
scale color reproductions and additional details.  
 
5.1 Subjective Demonstration 
First, we used the tool to browse the hundreds of datasets 
in the UCR archive. One such dataset, known as 
Kalpakis_ECG, contains 70 ECGS used to test an 
ARIMA based clustering technique [18]. When we 
glanced at this dataset with our tool we noticed something 
interesting. While ECGs (and therefore the thumbnails 
derived from them) can have great variability, five of the 
70 thumbnails had radically different thumbnails. Figure 
11 illustrates this on a subset of the full database.  
It was natural to ask why this should be, so we further 
examined the original raw data, and noticed that the 5 
relevant time series had radically different structure to all 
the rest. 
 



 

Figure 10:  The two thumbnails in the first row are radically 
different from others. Whereas normal2.txt, normal4.txt, 
normal6.txt and normal8.txt are actually ECGs, normal14.txt 
and normal16.txt turned out to be the action potential of a 
pacemaker cell. 

We asked a cardiologist to explain these findings. She 
informed us that the 5 recordings in question are not 
ECGs! They are in fact examples of the action potential of 
a normal pacemaker cell (not to be confused with the 
electronic man-made devices which mimic them, and are 
named after them). 
 

 

Figure 11: Top) Four snippets from randomly chosen ECGs 
from the Kalpakis_ECG dataset. Note that ECGs can have 
great variability. Bottom) A snippet from the normal18 
“ECG” from the Kalpakis_ECG dataset. In fact, this is not 
an ECG, but an example of the action potential of a normal 
pacemaker cell.  The fact that this time series did not belong 
with the others was discovered by a casual glance with our 
time series thumbnail tool (See Figure 10). 

Once the time series is plotted, it becomes obvious that 
these data are not ECGs. However, neither the original 

s noted in Section 3, our time series bitmap 
feature among visualization 

forcefully 

clustering and anomaly detection, we 

eriment, we examined the UCR Time 
or datasets that come in pairs. For 

r level of the tree, 

1] and ARIMA models 

authors [18] nor the other researchers who have published 
on this data [] seem to have noticed this. This suggests the 
utility of our approach a simple sanity check for 
practitioners working with large datasets. 
 
5.2 Objective Experiments 
A
representation has a unique 
techniques in that it allows the calculation of distance 
between two time series. This ability is particularly 
attractive because it allows very efficient comparison. 
Once the bitmap is created (in time linear in the length of 
the sequence) the time complexity for comparison is only 
O(L), since L is a small constant, this is O(1).   

Note that we are mostly interested in relatively long time 
series here. For short time series, it has been 
shown that Euclidean distance and DTW are very hard to 
beat [22][30]. In any case, since short time series can be 
visualized directly, there is less motivation to use 
visualization techniques on them. It is difficult to define 
“short” and “long” formally. Intuitively, short time series 
would include things like a gene expression profiles (10 to 
40 datapoints) and individual heartbeats (100 to 1,000 
datapoints). In contrast long time series include things like 
a 5-minute trace of an ECG or 10-days worth of a 
telemetry sensor.  

Since a distance/similarity measure is all that is required 
for classification, 
will compare time series thumbnails to classic solutions to 
these problems below.  

5.2.1 Clustering 
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For our first exp
Series Archive f
example, in the Buoy Sensor dataset, there are two time 
series, North Salinity and East Salinity, and in the 
Exchange Rate dataset, there are two time series, 
German Marc and Swiss Franc. We were able to identify 
fifteen such pairs, from a diverse collection of time series 
covering the domains of finance, science, medicine, 
industry, etc. Although our method is able to deal with 
time series of different lengths, we truncated all time 
series to length 1,000 for visual clarity. 

While the correct hierarchical clustering at the top of the 
tree is somewhat subjective, at the lowe
we would hope to find a single bifurcation separating each 
pair in the dataset. Our metric, Q, for the quality of 
clustering is therefore the number of such correct 
bifurcations divided by fifteen, the number of datasets. 
For a perfect clustering, Q = 1. 

We compared to two well-known and highly referenced 
techniques, Markov models [1
[18][34]. For each technique we spent one hour searching 
over parameter choice and reported only the best 



performing result. To mitigate the problem of overfitting, 
we set the parameters on a different, but similar dataset. 

The results for the three approaches are given in Table 1. 
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Table 1: The quality of clustering obtained by 
the 3 algorithms under consideration.  

Algorithm  Q 
Thumbnails 0.93 
Markov Model 6 0.4
ARMA models  0.40 

 
Figure esult endrogram for our 
pproach. The dendrograms for the other approaches are 

 

proach with different parameter settings. 

12 shows the r ing d
a
omitted here for brevity, but may be viewed at [19].  
We wished to test whether our approach was sensitive to 
its parameters, so we randomly changed them and
reevaluated the quality of the clustering. Table 2 contains 
the results. 

Table 2: The quality of clustering obtained by 
our ap

N n Q 
64 8 0.86 
77 11 3 0.7
54 9 0.86 

 
These re s suggest that our app  is not overly 

nsitive to parameter choices.  

CG clustering problem, 

sult roach
se

We repeated the experiment with a homogenous datasets. 
We considered a four-class E
where each class corresponds to a different patient. Figure 
13 shows the clustering obtained with level 3 bitmaps, 
using parameters N = 50, n = 10. The results are correct, 
in that each time series from a given patient is assigned to 
it own sub-tree. For this problem we found that we could 
vary the N amd n parameters by a factor of 4 (N > n) and 
still obtain the correct clustering. 

ee. For this problem we found that we could 
vary the N amd n parameters by a factor of 4 (N > n) and 
still obtain the correct clustering. 

  

Figure 12: The clustering obtained by the time series 
thumbnail approach on a heterogeneous data collection. 
Bold lines denote incorrect subtrees. A key the data appears 
in Appendix A. 

Figure 12: The clustering obtained by the time series 
thumbnail approach on a heterogeneous data collection. 
Bold lines denote incorrect subtrees. A key the data appears 
in Appendix A. 

  
  



 

Figure 13: The clustering obtained by the time series 
thumbnail approach on a homogeneous data collection. 

 
5.2.2 Classification 
For classification we considered an ECG classification 
problem, and a video surveillance problem. Our ECG 
dataset is a four-class problem derived from BIDMC 
Congestive Heart Failure Database of four patients.  Each 
instance consists of 3,200 contiguous data points (about 
20 heartbeats) randomly extracted from a long (several 
hours) ECG signal.  Twenty instances are extracted from 
each class (patient). 

The video surveillance dataset is a time-series dataset 
extracted from video sequences of two actors either 

aiming a gun or simply pointing at a target. We randomly 
extracted twenty instances of 1,000 contiguous data points 
from each of the following long time series: 
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A. Male Actor 1 with gun 
B. Male Actor 1 without gun (point) 
C. Female Actor 2 with gun 
D. Female Actor 2 without gun (point) 

The problem is therefore a four-class problem of 
differentiating each of the acts independently – A vs. B 
vs. C vs. D.  In total, each dataset contains eighty 
instances. 

We compared to the ubiquitous Euclidean distance [21] 
[22][24] and DTW [20][30]. 

For both datasets we measure the error rates, using the 
one-nearest-neighbor with leaving-one-out evaluation 
method. The results are summarized in Table 3. 

Table 3: Classification error rates for two datasets. 
 Euclidean DTW Bitmaps 

ECG 42.25 % 16.25 % 7.50 % 

Surveillance 37.50 % 12.5 % 8.75 % 

We also considered a Normal vs Arrhythmia problem that 
appeared in [11]. Using Markov models, the authors 
reported an error rate of 2%. With our technique, under 
virtually any parameter settings we achieve 0% error.  We 
can achieve perfect classification using one nearest 
neighbor as above, or we can use MDS to project the data 
into 2 dimensional space and achieve perfect 
classification using a simple linear classifier, a decision 
tree or SVD. Figure 14 shows the data projected into 2D 
space, and the linear classifier learned.  
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Figure 14: The MIT ECG Arrhythmia dataset projected into 
2D space using only the information from a level 2-time 
series bitmap. The two classes are easily separated by a 
simple linear classifier (gray line). 



 
5.2.3 Anomaly detection  
The time series bitmap distance measure allows the 
creation of a simple anomaly detection algorithm. 
We can create two concatenated windows, and slide them 
together across the sequence. At each time instance we 
build a time series bitmap for the two windows, and 
measure the distance between them. This distance we 
report as an anomaly score. Figure 15 illustrates the idea 
on some annotated ECG data.  

 

Figure 15: Using time series bitmaps as anomaly detectors. 
Top) A subsection of an ECG dataset. A cardiologist 
annotated an anomaly at approximately the 22-second mark. 
Bottom) The score for our approach shows a strong peak for 
the duration of the anomaly. 

This approach easily detects the single anomaly shown, 
and the rest of the annotated anomalies in this dataset (not 
shown). At each “step” of the sliding window we can 
incrementally ingress a new data point, and egress an old 
data point (updating only two pixels of the each 
thumbnail), so the time complexity is linear in the length 
of the time series. 

In the simple example above, both sliding windows are of 
the same length. More generally, one may wish for the 
trailing window to be larger, so that it retains more of a 
“memory” of the previous data. We leave such 
considerations for future work. 

6  Conclusions and Future Work. 
In this work, we have introduced a new framework for 
visualization of time series. Our approach is unique in that 
it can be directly embedded into any standard GUI 
operating system. We demonstrated the effectiveness of 
our approach on a variety of tasks and domains. Future 
work includes an extensive user study, and investigating 
techniques to automatically set the system parameters.   
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Appendix A: Key to Datasets 
 
Table A: The datasets used in the Experiments in Section 5.1.1 
1  MotorCurrent1:   17  Exchange Rate: Swiss Franc        
2  MotorCurrent2:    18  Exchange Rate: German Mark    
3  Video Surveillance: Ann, gun      19  Furnace: heating input     
4  Video Surveillance: Ann, no gun    20  Furnace: cooling input            
5  Video Surveillance: Eamonn, gun      21  Reel 2: angular speed       
6  Video Surveillance: Eamonn, no gun 22  Reel 2: tension      
7  Power Demand: Jan-March (Italian)      23  Balloon1     
8  Power Demand: April-June (Italian)    24  Balloon2 (lagged) 
9  Great Lakes (Erie) 25  Evaporator: feed flow   
10  Great Lakes (Ontario) 26  Evaporator: vapor flow      
11  Buoy Sensor:  North Salinity   27  Shuttle Inertia Sensor X    
12  Buoy Sensor   East Salinity        28  Shuttle Inertia Sensor X 
13  Koski ECG: slow 1      29  Shuttle Inertia Sensor Z 
14  Koski ECG: slow 2        30  Shuttle Inertia Sensor Z 
15  Koski ECG: fast 1     
16  Koski ECG: fast 2      
 

 

 

 



Appendix B: Additional Anomaly Detection 
Results 
Note that these results do not appear in the SIAM paper. 

 

 A: Using time series bitmaps as an anomaly detector. 
Top) A subsection of an ECG dataset. A cardiologist 
annotated a premature ventricular contraction at 
approximately the 1.4 mark. Bottom) The score for our 
approach shows a strong peak for the duration of the 
anomalous heartbeat. 

 

B: A cardiologist annotated two premature ventricular 
contractions at approximately the 0.4 and 1.1 mark 
respectively, and a supraventricular escape beat at about 
the 1.0 mark. Our approach easily detects all the three 
anomalies. Top) A subsection of an ECG dataset. Bottom) 
The score for our approach shows three strong peaks for 
the duration of the anomalous heartbeat. 

 C: This figures shows a very complex and noisy ECG. 
But according to a cardiologist, there is only one abnormal 
heart beat at approximately the 0.23 mark. Our tool easily 
finds it. 

 

 


