
Time-series Bitmaps: A Practical Visualization Tool for working with Large
Time Series Databases

 Nitin Kumar Nishanth Lolla Eamonn Keogh Stefano Lonardi Chotirat Ann Ratanamahatana
University of California - Riverside

Computer Science & Engineering Department
Riverside, CA 92521, USA

{nkumar, vlolla, eamonn, stelo, ratana}@cs.ucr.edu

Abstract
The increasing interest in time series data mining in the last
decade has resulted in the introduction of a variety of similarity
measures, representations and algorithms. Surprisingly, this
massive research effort has had little impact on real world
applications. Real world practitioners who work with time series
on a daily basis rarely take advantage of the wealth of tools that
the data mining community has made available. In this work we
attempt to address this problem by introducing a simple
parameter-light tool that allows users to efficiently navigate
through large collections of time series. Our system has the
unique advantage that it can be embedded directly into the any
standard graphical user interface, such as Microsoft Windows,
thus making deployment easier. Our approach extracts features
from a time series of arbitrary length, and uses information
about the relative frequency of its features to color a bitmap in a
principled way. By visualizing the similarities and differences
within a collection of bitmaps, a user can quickly discover
clusters, anomalies, and other regularities within their data
collection. We demonstrate the utility of our approach with a set
of comprehensive experiments on real datasets from a variety of
domains.
Keywords: Time Series, Chaos Game, Visualization.

1 Introduction
The increasing interest in time series data mining in the
last decade has resulted the introduction of a variety of
similarity measures/ representations/ definitions/ indexing
techniques and algorithms (see, e.g.,
[1][2][4][6][17][21][22][24]). Surprisingly, this massive
research effort has had little impact on real world
applications. Examples of implemented systems are rare
exceptions [25]. Cardiologists, engineers, technicians and
others who work with time series on a daily basis rarely
take advantage of the wealth of tools that the data mining
community has made available. While it is difficult to
firmly establish the reasons for the discrepancy between
tool availability and practical adoption, the following
reasons suggested themselves after an informal survey.
• Time series data mining tools often come with a

bewildering number of parameters. It is not obvious
to the practitioner how these should be set [23].

• Research tools often require (relatively) specialized
hardware and/or software, rather than the ubiquitous
desktop PC/windows environment that prevails.

• Many tools have a steep learning curve, requiring the
user to spend many unproductive hours learning the
system before any possibility of useful work.

In this work we attempt to address this problem by
introducing a simple parameter-light tool that allows users
to efficiently navigate through large collections of time
series. Our approach extracts features from a time series
of arbitrary length, and uses information about the relative
frequency of these features to color a bitmap in a
principled way. By visualizing the similarities and
differences within a collection of these bitmaps, a user
can quickly discover clusters, anomalies, and other
regularities within their data collection.
While our system can be used as an interactive tool, it
also has the unique advantage that it can be embedded
directly into the any standard graphical user interface,
such as Windows, Aqua, X-windows, etc. Since users
navigate through files by looking at their icons, we
decided to employ the bitmap representation as the icon
corresponding to each time series. Simply by glancing at
the icons contained in a folder of time series files, a user
can quickly identify files that require further
investigation. In Figure 1 we have illustrated a simple
example1.

Figure 1: Four time series files represented as time series
bitmaps. While they are all examples of EEGs,
example_a.dat is from a normal trace, whereas the others
contain examples of spike-wave discharges. The fact that
there is some difference between one dataset and all the rest
is immediately apparent from a casual inspection of the
bitmap representation.

1 This figure, and many others that follow in this work, suffer
from monochromatic printing. We encourage the interested
reader to visit [19] to view full color examples.

The utility of the idea shown in Figure 1 can be further
enhanced by arranging the icons within the folder by
pattern similarity, rather than the typical choices of
arranging them by size, name, date, etc. This can be
achieved by using a simple multidimensional scaling or a
self-organizing map algorithm to arrange the icons.
Unlike most visualization tools which can only be
evaluated subjectively, we will perform objective
evaluations on the amount of useful information contained
within a time series bitmap. More precisely, we will
analyze the loss of accuracy of classification
/clustering/anomaly detection algorithms when the input
is based solely the information contained in the bitmap.
As we will show, the experiments strongly confirm the
utility of our approach.
The rest of the paper is organized as follows. In Section 2,
we report on the related literature and review the SAX
representation, which is a cornerstone of our approach. In
Section 3 we introduce our general visualization
technique called Time Series Bitmaps, and in Section 4 we
consider Time Series Thumbnails, a special representation
that can be tightly integrated into a standard graphical
user interface. Section 5 sees a comprehensive empirical
evaluation, and lastly, Section 6 offers conclusions and
directions for future work.

2 Background and Related Work
We begin this section with a brief description of the
classic time series data mining tasks. We review some of
the relevant data visualization methods as part of the
previous related work in this domain. Finally, we
conclude this section by reviewing SAX, a symbolic
representation which is a cornerstone to our scheme.

2.1 Time Series Data Mining Tasks

Until recently, the bulk of the time series data mining
research was focused on the tasks of indexing
[17][21][24], clustering [1][4][23] and classification [23].
In contrast, there has been relatively little work on time
series visualization, in spite of the fact that the usefulness
of visualization is well documented [27]. The few works
on time series visualization tend to limit their attention to
small datasets [25][32][14]. However, data visualization
becomes of crucial importance when the size of the data is
large. Because we claim that our visualization tool can be
used in conjunction with some of the classic data mining
tasks, we will briefly review them below.

2.1.1 Classification

The ability to predict the class of a previously unknown
instance with the help of a training database is called
classification. For example, imagine a scenario in which a
patient visits a doctor because of chest pain and his/her
ECG looks irregular. The doctor might want to search a
database to find similar ECGs, in the hope that he/she will
be able to offer clues about the patient’s condition. The

notion of similarity clearly depends on the particular
measure chosen. For short time series, Euclidian distance
[22] and Dynamic Time Warping (DTW) [1][20][30] are
known to work exceptionally well. However for longer
time series, the choice of the appropriate measure of
similarity for classification tasks is still somewhat of an
open question.

2.1.2 Clustering

Clustering is the problem of organizing data into classes
such that there is high intra-class similarity and low inter-
class similarity. It differs from classification in that the
class labels are obtained directly from the data (cf.
supervised vs. unsupervised learning). More informally,
clustering finds a natural grouping among the objects
according to the similarity measure chosen. Once again,
for short time series such as gene expression data,
Euclidian distance and DTW work very well, but for long
time series, some model-based technique is typically used
[11][18][34].

2.1.3 Anomaly Detection

The task of finding anomalies or irregularities in data has
been an area of active research, which has long attracted
the attention of researchers in biology, physics,
astronomy, and statistics, in addition to the more recent
work by the data mining community [23]. While the word
“anomaly” implies that a radically different subsection of
the data has been detected, we are interested in more
subtle deviations in the data. The possibility of such
subtle deviations from normality are reflected by the
terms which are often used as synonyms for anomaly
detection, such as interestingness/ deviation/ surprise/
deviation/ novelty detection, etc.

2.2 Related Work

There has been relatively little work done on visualizing
massive time series data sets. We will briefly review some
of the algorithms proposed in the literature and we will
explain why they are not well suited to the task at hand.

The human eye is often heralded as the ultimate data-
mining tool [27]. The ubiquitous time series plot is used
to help visualize data in many aspects of human life such
as medicine (ECG), finance (changes in stock market),
business (profit-and-loss history of a company), aerospace
(satellite data), meteorology (fluctuations in air
temperature or pressure on a daily, monthly, or yearly
basis), entertainment (music, movies), etc. However many
real world time series data sets are massive, and plots are
limited by the resolution of the output device (screen,
printer, etc.). Below we discuss some of the techniques
used to mitigate the poor scalability of time series plots.
These algorithms allow a greater scalability to larger
datasets while leveraging off the human visual system to
address the time series data mining tasks addressed above.

2.2.1 Arc Diagrams

Wattenberg introduced a visualization technique called
Arc Diagrams [31] that exploits the fact that “sequences
often contain significant repeated subsequences”. Many
datasets come in the form of strings over finite alphabet
(text, DNA, music, etc.). Datasets containing real-valued
data points can be easily converted to a string using a
discretization technique [26]. Once the input is available
in the form of a string, translucent arcs are drawn between
repeated substrings (as shown in the Figure 2).

Figure 2: Arc diagram for a musical composition. The
repetitive patterns are represented by translucent arcs.

The arc diagram allows the user to observe the
occurrences of repeated patterns with a bird’s eye view of
the sequence’s structure. However, this visualization
technique is of less useful when there are many small
repeated subsequences, which cause an uninformative
jumble. This is often the case when the cardinality of the
alphabet is small (e.g., DNA).

2.2.2 Spiral

Weber et al. presented an approach to visualize time
series data based on a spiral representation [32]. The work
in inspired by the observation that “often, time series data
such as temperature, radiation of light and economic
cycles exhibit periodic structures”. Each periodic
structure of the time series is mapped on to a spiral ring to
reveal the periodic behavior of the underlying process.
The attributes are mapped to the properties of the spiral
such as its color, texture and line thickness. A typical
spiral diagram is shown in Figure 3.

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Jan 1

Dec 23
M onday 00:01

Friday 23:59

Figure 3: A spiral visualization of a power demand dataset.

Although Weber’s technique is simple and intuitive, it is
only useful for identifying patterns the time series that are
periodic. Although spiral are more space effective than
simple linear plots, scalability remains as an issue.

2.2.3 Viz-Tree

Lin et al. employed a visualization technique called Viz-
Tree to discover patterns using a tree structure [25]. The
time series data is first discretized to symbols using SAX
(see below for a review of SAX). Then, the symbolic
representation is encoded into a modified suffix tree
wherein each branch of the tree represents one
subsequence pattern. The frequencies of the various
patterns are encoded as the line thickness of the suffix
tree, so frequently occurring patterns show up as dense
regions and rarely occurring patterns (possibly anomalies)
show up as sparse lines. A screen shot of the Viz-Tree is
shown in Figure 4.

Figure 4: The Viz-Tree for an exhaust emissions dataset.
Similar real valued time series (bottom left) tend to map to
the same region of the tree (middle left) allowing a constant
space summary of an arbitrarily long time series.

While the Viz-Tree is scalable to large data sets, it
performs well only for certain data mining tasks like
anomaly detection and motif discovery. In addition, it is
demanding in terms of user training and computer
resources.

2.3 Chaos Game Representations
Our visualization technique is partly inspired by an
algorithm to draw fractals called the Chaos game [4]. The
parameters of the game are defined by a set of pairs of
linear equations (i.e., an affine map), each of which is
associated with a probability. Each affine map wi is
defined by six parameters

i i i
i

i i i

a b ex x
w

c d fy y
⎡ ⎤ ⎡⎡ ⎤ ⎡ ⎤

= +⎢ ⎥ ⎢⎢ ⎥ ⎢ ⎥
⎣ ⎦ ⎣ ⎦⎣ ⎦ ⎣

⎤
⎥
⎦

Formally, the set {w1,w2,…,wk} and the associated
probabilities defines an iterated function system (IFS). By
changing the parameters of the IFS different fractals can
be obtained (Sierpinski triangle, Dragon curve, Devil’s
staircase, etc).

As said, the chaos game is used to compute the fractal
from the IFS. The game starts from a random point in the
square [0,1]×[0,1]. At each step, a map is chosen at
random according to its probability. The next point is
obtained by applying the map to the previous point.
Repeating this step thousands of times and plotting the
trajectory of the points can visualize the fractal.

The chaos game representation has been used extensively
to study DNA sequences (see, e.g., [3],[10],[12],[16]).
Since DNA has a four letters alphabet, the most natural
IFS is:

w a b C d e f prob

1 .5 0 0 .5 0 0 .25

2 .5 0 0 .5 0 .5 .25

3 .5 0 0 .5 .5 0 .25

4 .5 0 0 .5 .5 .5 .25

If one runs the chaos game on this IFS using a truly
random sequence, eventually all the points in [0,1]×[0,1]
will be visited. In fact, the fractal associated with this IFS
is the square [0,1]×[0,1].

If instead of using the random number generator, one uses
the sequence under study to drive the selection of the
maps, the Chaos Game Representation (CGR) of the
sequence is obtained [16],[17]. In Figure 5, we associated
w1 with the symbol “A”, w2 with C, w3 with G and w4
with T. When the choice of the map is driven by the
sequence, it is easy to realize that each point in the square

[0,1]×[0,1] is in a one-to-one correspondence to a
particular substring in the sequence.

Since we are limited by finite arithmetic, suppose that the
square [0,1]×[0,1] is divided in 2q×2q pixels. Then, each
pixel is uniquely identified by a substring of size q (see
Figure 5). This representation is also called quadtree
representation.

Based on the Suffix Theorem [16], it is easy to prove the
following fundamental corollary (see also [3]).

Corollary. The number of occurrences of a substring in
the original sequence is equal to the number of times the
Chaos Games visits the pixel associated with that
substring.

The method can produce a representation of DNA
sequences, in which both local and global patterns are
displayed. For example, a biologist can recognize that a
particular substring, say in a bacterial genome, is rarely
used. This would suggest the possibility that the bacteria
have evolved to avoid a particular restriction enzyme site,
which means that he might not be easily attacked by a
specific bacterio-phage.

From our point of view, the crucial observation is that the
CGR representation of a sequence allows the investigation
of the patterns in sequences, giving the human eye a
possibility to recognize hidden structures

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TT

CA CG TA TC

AC AT GC GT

AA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TC

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

CC CT TC TTCC CT TC TT

CA CG TA TCCA CG TA TG

AC AT GC GTAC AT GC GT

AA AG GA GGAA AG GA GG

C T

A G

C T

A G

CCC CCT CTC

CCA CCG CTA

CAC CAT

CAA

Figure 5: The quad-tree representation of a sequence over
the alphabet {A,C,G,T} at different levels of resolution

We can get a hint of the potential utility of the approach
if, for example, we take the first 16,000 symbols of the
mitochondrial DNA sequences of four familiar species
and use them to create their own file icons. Figure 6
below illustrates this. Even if we did not know these
particular animals, we would have no problem
recognizing that there are two pair of highly related
species being considered.

With respect to the non-genetic sequences, Joel Jeffrey
noted, “The CGR algorithm produces a CGR for any
sequence of letters”[17]. However it is only defined for
discrete sequences, and most time series are real valued.

Figure 6: The gene sequences of mitochondrial DNA of four
animals, used to create their own file icons using a chaos
game representation. Note that Pan troglodytes is the
familiar Chimpanzee, and Loxodonta africana and Elephas
maximus are the African and Indian Elephants respectively.
The file icons show that humans and chimpanzees have
similar genomes, as do the African and Indian elephants.

This encouraged us to try a similar technique on time
series data and investigate the utility of such
representation on the classic data mining tasks of
clustering, classification and visualization. Since CGR
involves treating a data input as an abstract string of
symbols, a discretization method is necessary to transform
continuous time series data into discrete domain. For this
purpose, we used the Symbolic Aggregate approXimation
(SAX) [26], which we review below.

2.4 Symbolic Time Series Representations
While there are at least 200 techniques in the literature for
converting real valued time series into discrete symbols
[9], the SAX technique of Lin et. al. [26] is unique and
ideally suited for data mining. SAX is the only symbolic
representation that allows the lower bounding of the
distances in the original space. The ability to efficiently
lower bound distances is at the heart of hundreds of
indexing algorithms and data mining techniques
[2][8][20][22][26][30]. While we do not directly exploit
the lower bounding property in this work, we note that if a
representation is tightly lower bounding the original data,
it must be representing it with great fidelity. It is this
implicit property we are exploiting. We can be sure that
the SAX representation is accurately summarizing the
time series, and as we will show, a minor modification of
the chaos game can accurately summarize the SAX
sequences.

The SAX representation is created by taking a real valued
signal and dividing it into equal sized sections. The mean
value of each section is then calculated. By substituting
each section with its mean, a reduced dimensionality
piecewise constant approximation of the data is obtained.

This representation is then discretized in such a manner as
to produce a word with approximately equi-probable
symbols. Figure 7 shows a short time series being
converted into the SAX word baabccbc.

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

0 20 40 60 80 100 120

-1.5

-1

-0.5

0

0.5

1

1.5

b

a
a

b

c c

b

c

Figure 7: A real valued time series can be converted to the
SAX word baabccbc. Note that all three possible symbols
are approximately equally frequent.

The time and space complexity to convert a sequence to
its SAX representation is linear in the length of the
sequence.

It is very common to process very long time series. In that
case, it is not necessarily a good idea to convert the entire
time series into a single SAX word. For example, let us
assume we have a time series that is composed of several
sine waves. We would expect the SAX representation to
be repetitive, something like abcbabcbabcbabcba… .
However if we add a small linear trend to the entire
sequence, the SAX representation would drastically
change to something like aaaaaaaabbbbbbbcc… . In
other words, the apparently local features of the sequence
depend on the global structure. This is an undesirable
property.

Therefore, for long time series, we slide a shorter window
across it, and obtain a set of shorter SAX words. In the
case of the sine waves example, we would expect to
obtain a set of SAX words something like

abcba
 bcbab
 cbabc
 ….

Note that such a list is a global summary of local shapes.
In the case above, consecutive rows only differ at the
endpoints. For example, the c in the third place in the first
word, moves to the second place in the second word, and
the first place in the third word. In general, this is not
always true. Because we are normalizing the contents of
the sliding window at each step, a region that maps to one
letter at the beginning of a word, may map to a different
letter at the end of a word etc.

Although there is some redundancy between rows, only
two bits are required per symbol (for an alphabet size
four) and therefore this representation is much smaller
than the original data.

Note that the user must choose both the length of the local
sliding window N, and the number n of equal sized
sections in which to divide it (as we will see, there is no
choice to be made for alphabet size). A good choice for N
should reflect the natural scale at which the events occur
in the time series. For example, for ECGs this is about the
length of one or two heartbeats. For traffic patterns, a 24-
hour window makes sense. A good value for n depends of
the complexity of the signal. Intuitively one would like to
achieve a good compromise between fidelity of
approximation and dimensionality reduction. Two groups
of researchers have independently suggested using
Minimum Description Length MDL to set these
parameters [23][29]. As we shall see, the proposed
technique is not too sensitive to parameter choices.

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

aa ab ba bb

ac ad bc bd

ca cb da db

cc cd dc dd

aa ab ba bbaa ab ba bb

ac ad bc bdac ad bc bd

ca cb da dbca cb da db

cc cd dc ddcc cd dc dd

a b

c d

a b

c d

aaa aab aba

aac aad abc

aca acb

acc

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

5 7

3 3

0 2 3 0

0 1 2 1

1 1 0 3

0 1 0 0

0 2 3 00 2 3 0

0 1 2 10 1 2 1

1 1 0 31 1 0 3

0 1 0 00 1 0 0

5 7

3 3

5 7

3 3

abcdba
bdbadb

cbabca

3

7

Level 1 Level 2 Level 3

The SAX representation has been successfully used by
various groups of researchers for indexing, classification,
clustering [26], motif discovery [7][8][29], rule discovery,
[28], visualization [25] and anomaly detection [23].

3 Time Series Bitmaps

At this point the connection between the two
“ingredients” for the time series bitmaps should be
evident. We have seen in Section 2.3 that the Chaos game
[4] bitmaps can be used to visualize discrete sequences,
and we have seen in Section 2.4 that the SAX
representation is a discrete time series representation that
has demonstrated great utility for data mining. It is natural
to consider combining these ideas.

The Chaos game bitmaps are defined for sequences with
an alphabet size of four. It is fortuitous that DNA strings
have this cardinality. SAX can produce strings on any
alphabet size. As it happens, a cardinality of four (or
three) has been reported by many authors as an excellent
choice for diverse datasets on assorted problems
[7][8][23][25][26] [28][29].

We need to define an initial ordering for the four SAX
symbols a, b, c, and d. We use simple alphabetical
ordering as shown in Figure 8.
After converting the original raw time series into the SAX
representation, we can count the frequencies of SAX
“subwords” of length L, where L is the desired level of
recursion. Level 1 frequencies are simply the raw counts
of the four symbols. For level 2 we count pairs of
subwords of size 2 (aa, ab, ac, etc). Note that we only
count subwords taken from individual SAX words. For
example, in the SAX representation in Figure 8 middle
right, the last symbol of the first line is a, and the first
symbol of the second word is b. However we do not count
this as an occurrence of ab.

Figure 8: Top) The four possible SAX symbols are mapped
to four quadrants of a square, and pairs, triplets etc are
recursively mapped to finer grids. Middle) We can extract
counts of symbols from a SAX representation and record
them in the grids. Bottom) The recorded values can be
linearly mapped to colors, thus creating a square bitmap.

Once the raw counts of all subwords of the desired length
have been obtained and recorded in the corresponding
pixel of the grid, a final step is required. Since the time
series in a data collection may be of various lengths, we
normalize the frequencies by dividing by the largest
value. The pixel values thus range from 0 to 1. The final
step is to map these values to colors. In the example
above we mapped to grayscale, with 0 = white, 1 = black.
However, it is generally recognized that grayscale is not
perceptually uniform [33]. A color space is said to be
perceptually uniform if small changes to a pixel value are
approximately equally perceptible across the range of that
value. For all images produced in this paper we use
Matlab’s “jet” color space, which is a linearization of a
large fraction of all possible colors and which is designed
to be perceptually uniform.

Note that unlike the arbitrarily long, and arbitrarily shaped
time series from which they where derived, for a fixed L,
the bitmaps have a constant space and structure.

We do not suggest any utility in viewing a single time
series bitmap. The representation is abstract, and we do
not expect a user to be able imagine the structure of time
series given the bitmap. The utility of the bitmaps comes
from the ability to efficiently compare and contrast them.

4 Time Series Thumbnails

A unique advantage of the time series bitmap
representation is the fact that we can transparently
integrate it into the user graphical interface of most
standard operating systems.

Since most operating systems use the ubiquitous square
icon to represent a file, we can arrange for the icons for
time series files to appear as their bitmap representations.
Simply by glancing at the contents of a folder of time
series files, a user may spot files that require further
investigation, or note natural clusters in the data.

The largest possible icon size varies by operating system.
All modern versions of Microsoft Windows2 support 32
by 32 pixels, which is large enough to support a bitmap of
level 5. As we will see, level 2 or 3 seems adequate for
most tasks/datasets.

To augment the utility of the time series bitmaps, we can
arrange for their placement on screen to reflect their
structure. Normally, file icons are arranged by one of a
handful of common criteria, such as name, date, size etc.

We have created a simple modification of the standard
Microsoft Windows (98 or later) file browser by
introducing the concept of Cluster View. If Cluster View
is chosen by the user, the time series thumbnails arrange
themselves by similarly. This is achieved by performing
Multi-Dimensional Scaling (MDS) of the bitmaps, and
projecting them into a 2 dimensional space. For aesthetic
reasons, we “snap” the icons to the closest grid point.

Figure 9 displays an example of Cluster View in
Microsoft Windows XP Operating System.

In this example the Cluster View is obtained for five MIT-
BIH Arrhythmia Database files. It is evident in the figure
that eeg1.dat, eeg2.dat and eeg3.dat belong to one cluster
whereas eeg6.dat and eeg7.dat belongs to another cluster.
In this case, the grouping correctly reflects the fact that
latter two files come from a different patient to first three.

To optimize the Cluster View, a cache (cluster.db) can be
made to contain all relevant information required to
generate the bitmaps and display their clustering, so that
all the files do not have to be processed every time
viewing the folder. However, even on a large screen full
of small icons, an efficient MDS implementation can
dynamically adjust the position of the icons in real time as
the user changes the aspect ratio of the file browser.

2 Actually, Windows systems support icons of size 48 by 48
pixels, however we require a size that is an integer power of
two.

Figure 9: A snapshot of a folder containing cardiograms
when its files are arranged by “Cluster” option. Five
cardiograms have been grouped into two different clusters
based on their similarity.

5 Experimental Evaluation
In this section, we test our proposed approach with a
comprehensive set of experiments. In Section 5.1 we will
show a simple experiment which require subjective
evaluation, but which strongly hint at the value of our
approach. In Section 5.2 we will show some experiments
that objectively measure the utility of our approach on
classification, clustering and anomaly detection. We note
once again that the quality of illustrations here suffers
from monochromic printing and small-scale reproduction.
We urge the interested reader to consult [19] for large-
scale color reproductions and additional details.

5.1 Subjective Demonstration
First, we used the tool to browse the hundreds of datasets
in the UCR archive. One such dataset, known as
Kalpakis_ECG, contains 70 ECGS used to test an
ARIMA based clustering technique [18]. When we
glanced at this dataset with our tool we noticed something
interesting. While ECGs (and therefore the thumbnails
derived from them) can have great variability, five of the
70 thumbnails had radically different thumbnails. Figure
11 illustrates this on a subset of the full database.
It was natural to ask why this should be, so we further
examined the original raw data, and noticed that the 5
relevant time series had radically different structure to all
the rest.

Figure 10: The two thumbnails in the first row are radically
different from others. Whereas normal2.txt, normal4.txt,
normal6.txt and normal8.txt are actually ECGs, normal14.txt
and normal16.txt turned out to be the action potential of a
pacemaker cell.

We asked a cardiologist to explain these findings. She
informed us that the 5 recordings in question are not
ECGs! They are in fact examples of the action potential of
a normal pacemaker cell (not to be confused with the
electronic man-made devices which mimic them, and are
named after them).

Figure 11: Top) Four snippets from randomly chosen ECGs
from the Kalpakis_ECG dataset. Note that ECGs can have
great variability. Bottom) A snippet from the normal18
“ECG” from the Kalpakis_ECG dataset. In fact, this is not
an ECG, but an example of the action potential of a normal
pacemaker cell. The fact that this time series did not belong
with the others was discovered by a casual glance with our
time series thumbnail tool (See Figure 10).

Once the time series is plotted, it becomes obvious that
these data are not ECGs. However, neither the original

s noted in Section 3, our time series bitmap
feature among visualization

forcefully

clustering and anomaly detection, we

eriment, we examined the UCR Time
or datasets that come in pairs. For

r level of the tree,

1] and ARIMA models

authors [18] nor the other researchers who have published
on this data [] seem to have noticed this. This suggests the
utility of our approach a simple sanity check for
practitioners working with large datasets.

5.2 Objective Experiments
A
representation has a unique
techniques in that it allows the calculation of distance
between two time series. This ability is particularly
attractive because it allows very efficient comparison.
Once the bitmap is created (in time linear in the length of
the sequence) the time complexity for comparison is only
O(L), since L is a small constant, this is O(1).

Note that we are mostly interested in relatively long time
series here. For short time series, it has been
shown that Euclidean distance and DTW are very hard to
beat [22][30]. In any case, since short time series can be
visualized directly, there is less motivation to use
visualization techniques on them. It is difficult to define
“short” and “long” formally. Intuitively, short time series
would include things like a gene expression profiles (10 to
40 datapoints) and individual heartbeats (100 to 1,000
datapoints). In contrast long time series include things like
a 5-minute trace of an ECG or 10-days worth of a
telemetry sensor.

Since a distance/similarity measure is all that is required
for classification,
will compare time series thumbnails to classic solutions to
these problems below.

5.2.1 Clustering

0 100 200 300 400 500

ventricular depolarization

initial rapid
repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

0 100 200 300 400 5000 100 200 300 400 500

ventricular depolarization

initial rapid
repolarization

“plateau” stage

repolarization

recovery phase

0 100 200 300 400 500

For our first exp
Series Archive f
example, in the Buoy Sensor dataset, there are two time
series, North Salinity and East Salinity, and in the
Exchange Rate dataset, there are two time series,
German Marc and Swiss Franc. We were able to identify
fifteen such pairs, from a diverse collection of time series
covering the domains of finance, science, medicine,
industry, etc. Although our method is able to deal with
time series of different lengths, we truncated all time
series to length 1,000 for visual clarity.

While the correct hierarchical clustering at the top of the
tree is somewhat subjective, at the lowe
we would hope to find a single bifurcation separating each
pair in the dataset. Our metric, Q, for the quality of
clustering is therefore the number of such correct
bifurcations divided by fifteen, the number of datasets.
For a perfect clustering, Q = 1.

We compared to two well-known and highly referenced
techniques, Markov models [1
[18][34]. For each technique we spent one hour searching
over parameter choice and reported only the best

performing result. To mitigate the problem of overfitting,
we set the parameters on a different, but similar dataset.

The results for the three approaches are given in Table 1.

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

1

2

17

18

27

28

29

30

3

4

5

6

21

22

7

8

9

10

11

12

13

14

15

16

19

20

26

25

23

24

Table 1: The quality of clustering obtained by
the 3 algorithms under consideration.

Algorithm Q
Thumbnails 0.93
Markov Model 6 0.4
ARMA models 0.40

Figure esult endrogram for our
pproach. The dendrograms for the other approaches are

proach with different parameter settings.

12 shows the r ing d
a
omitted here for brevity, but may be viewed at [19].
We wished to test whether our approach was sensitive to
its parameters, so we randomly changed them and
reevaluated the quality of the clustering. Table 2 contains
the results.

Table 2: The quality of clustering obtained by
our ap

N n Q
64 8 0.86
77 11 3 0.7
54 9 0.86

These re s suggest that our app is not overly

nsitive to parameter choices.

CG clustering problem,

sult roach
se

We repeated the experiment with a homogenous datasets.
We considered a four-class E
where each class corresponds to a different patient. Figure
13 shows the clustering obtained with level 3 bitmaps,
using parameters N = 50, n = 10. The results are correct,
in that each time series from a given patient is assigned to
it own sub-tree. For this problem we found that we could
vary the N amd n parameters by a factor of 4 (N > n) and
still obtain the correct clustering.

ee. For this problem we found that we could
vary the N amd n parameters by a factor of 4 (N > n) and
still obtain the correct clustering.

Figure 12: The clustering obtained by the time series
thumbnail approach on a heterogeneous data collection.
Bold lines denote incorrect subtrees. A key the data appears
in Appendix A.

Figure 12: The clustering obtained by the time series
thumbnail approach on a heterogeneous data collection.
Bold lines denote incorrect subtrees. A key the data appears
in Appendix A.

Figure 13: The clustering obtained by the time series
thumbnail approach on a homogeneous data collection.

5.2.2 Classification
For classification we considered an ECG classification
problem, and a video surveillance problem. Our ECG
dataset is a four-class problem derived from BIDMC
Congestive Heart Failure Database of four patients. Each
instance consists of 3,200 contiguous data points (about
20 heartbeats) randomly extracted from a long (several
hours) ECG signal. Twenty instances are extracted from
each class (patient).

The video surveillance dataset is a time-series dataset
extracted from video sequences of two actors either

aiming a gun or simply pointing at a target. We randomly
extracted twenty instances of 1,000 contiguous data points
from each of the following long time series:

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

1

2

3

4

5

11

13

12

14

15

6

9

10

7

8

16

18

17

19

20

A. Male Actor 1 with gun
B. Male Actor 1 without gun (point)
C. Female Actor 2 with gun
D. Female Actor 2 without gun (point)

The problem is therefore a four-class problem of
differentiating each of the acts independently – A vs. B
vs. C vs. D. In total, each dataset contains eighty
instances.

We compared to the ubiquitous Euclidean distance [21]
[22][24] and DTW [20][30].

For both datasets we measure the error rates, using the
one-nearest-neighbor with leaving-one-out evaluation
method. The results are summarized in Table 3.

Table 3: Classification error rates for two datasets.
 Euclidean DTW Bitmaps

ECG 42.25 % 16.25 % 7.50 %

Surveillance 37.50 % 12.5 % 8.75 %

We also considered a Normal vs Arrhythmia problem that
appeared in [11]. Using Markov models, the authors
reported an error rate of 2%. With our technique, under
virtually any parameter settings we achieve 0% error. We
can achieve perfect classification using one nearest
neighbor as above, or we can use MDS to project the data
into 2 dimensional space and achieve perfect
classification using a simple linear classifier, a decision
tree or SVD. Figure 14 shows the data projected into 2D
space, and the linear classifier learned.

1

23

4

5
6

7

8
910

11

12

13 14

15

16
1718

19

20

21

22
23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

1

23

4

5
6

7

8
910

11

12

13 14

15

16
1718

19

20

21

22
23

24

25

26

27 28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

MIT ECG Arrhythmia Data

Figure 14: The MIT ECG Arrhythmia dataset projected into
2D space using only the information from a level 2-time
series bitmap. The two classes are easily separated by a
simple linear classifier (gray line).

5.2.3 Anomaly detection
The time series bitmap distance measure allows the
creation of a simple anomaly detection algorithm.
We can create two concatenated windows, and slide them
together across the sequence. At each time instance we
build a time series bitmap for the two windows, and
measure the distance between them. This distance we
report as an anomaly score. Figure 15 illustrates the idea
on some annotated ECG data.

Figure 15: Using time series bitmaps as anomaly detectors.
Top) A subsection of an ECG dataset. A cardiologist
annotated an anomaly at approximately the 22-second mark.
Bottom) The score for our approach shows a strong peak for
the duration of the anomaly.

This approach easily detects the single anomaly shown,
and the rest of the annotated anomalies in this dataset (not
shown). At each “step” of the sliding window we can
incrementally ingress a new data point, and egress an old
data point (updating only two pixels of the each
thumbnail), so the time complexity is linear in the length
of the time series.

In the simple example above, both sliding windows are of
the same length. More generally, one may wish for the
trailing window to be larger, so that it retains more of a
“memory” of the previous data. We leave such
considerations for future work.

6 Conclusions and Future Work.
In this work, we have introduced a new framework for
visualization of time series. Our approach is unique in that
it can be directly embedded into any standard GUI
operating system. We demonstrated the effectiveness of
our approach on a variety of tasks and domains. Future
work includes an extensive user study, and investigating
techniques to automatically set the system parameters.

Acknowledgments: We would like to thank cardiologist
Helga Tsotras for her helpful insights into the ECG data.
This research was partly funded by the National Science
Foundation under grant IIS-0237918.

Reproducible Results Statement: In the interests of
competitive scientific inquiry, all datasets used in this
work are available at the following URL [19].

References
[1] Aach, J., & Church, G. (2001). Aligning gene

expression time series with time warping algorithms.
Bioinformatics, Volume 17, pp. 495-508.

[2] Agrawal, R., Lin, K. I., Sawhney, H. S., & Shim, K.
(1995). Fast similarity search in the presence of
noise, scaling, and translation in times-series
databases. In Proceedings of twenty-first
International Conference on Very Large Databases,
pp. 490-501.

MITdb/210
Dataset

0:19 0:21 0:23 0:25 0:27

Fusion of
ventricular
and normal
beat

Anomaly Score

MITdb/210
Dataset

0:19 0:21 0:23 0:25 0:27

Fusion of
ventricular
and normal
beat

Anomaly Score

[3] Almeida, J.S., Carrico, J.A., Maretzek, A., Noble,
P.A., & Fletcher, M. (2001). Analysis of genomic
sequences by Chaos Game Representation.
Bioinformatics, 17(5), pp. 429-37.

[4] Barnsley, M.F., & Rising, H. (1993). Fractals
Everywhere, second edition, Academic Press.

[5] Bar-Joseph, Z., Gerber, G., Gifford, D., Jaakkola, T.,
& Simon, I. (2002). A new approach to analyzing
gene expression time series data. In Proceedings of
the sixth Annual International Conference on
Research in Computational Molecular Biology, pp.
39-48.

[6] Berndt, D., & Clifford, J. (1994). Using dynamic time
warping to find patterns in time series, AAAI
Workshop on Knowledge Discovery in Databases,
pp. 229-248.

[7] Celly, B. & Zordan, V. B. (2004). Animated People
Textures. In proceedings of the 17th International
Conference on Computer Animation and Social
Agents. Geneva, Switzerland.

[8] Chiu, B., Keogh, E., & Lonardi, S. (2003).
Probabilistic Discovery of Time Series Motifs. In the
9th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining, pp. 493-498.

[9] Daw, C. S., Finney, C. E. A. & Tracy, E. R. (2001).
Symbolic Analysis of Experimental Data. Review of
Scientific Instruments. (2002-07-22).

[10] Fiser. A., Tusnady, G.E., & Simon, I. (1994). Chaos
game representation of protein structures. J. Mol.
Graph, 12(4), pp. 302-4, 295.

[11] Ge, X., & Smyth, P. (2000). Deformable Markov
model templates for time-series pattern matching. In
proceedings of the sixth ACM SIGKDD, pp. 81-90.

[12] Hahn, M.W., Stajich, J.E., & Wray, G.A. (2003). The
Effects of Selection Against Spurious Transcription
Factor Binding Sites. Mol. Biol. Evol. 20(6), pp. 901-
906.

[13] Haigh, K., Foslien, W., & Guralnik, V. (2004). Visual
Query Language: Finding patterns in and
relationships among time series data, In Proceedings

of the seventh Workshop on Mining Scientific and
Engineering Datasets.

[14] Havre, S., Hetzler, E., Whitney, P., & Nowell, L.
(2002). ThemeRiver: Visualizing Thematic Changes
in Large Document Collections. IEEE Transactions
on Visualization and Computer Graphics, pp. 9-20.

[15] Hu, N., Dannenberg, R.B., & Tzanetakis, G. (2003).
Polyphonic Audio Matching and Alignment for Music
Retrieval, IEEE Workshop on Applications of Signal
Processing to Audio and Acoustics.

[16] Jeffrey, H.J. (1990). Chaos game representation of
gene structure. Nucleic Acids Research 18, pp. 2163-
2170.

[17] Jeffrey, H.J. (1992). Chaos Game Visualization of
Sequences. Comput. & Graphics 16, pp. 25-33.

[18] Kalpakis, K., Gada, D., & Puttagunta, V. (2001).
Distance Measures for Effective Clustering of ARIMA
Time-Series. In the Proceedings of the 2001 IEEE
International Conference on Data Mining, pp. 273-
280.

[19] Keogh, E. www.cs.ucr.edu/~nkumar/SDM05.html
[20] Keogh, E. (2002). Exact indexing of dynamic time

warping. In Proceedings of the twenty-eighth
International Conference on Very Large Data Bases,
pp. 406-417.

[21] Keogh, E., Chakrabarti, K., Pazzani, M., & Mehrotra
(2001). Locally adaptive dimensionality reduction for
indexing large time series databases. In Proceedings
of ACM SIGMOD Conference on Management of
Data, pp. 151-162.

[22] Keogh, E. & Kasetty, S. (2002). On the Need for
Time Series Data Mining Benchmarks: A Survey and
Empirical Demonstration. In the eighth ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 102-111.

[23] Keogh, E., Lonardi, S., & Ratanamahatana, C.
(2004). Towards Parameter-Free Data Mining. In
proceedings of the tenth ACM SIGKDD International
Conference on Knowledge Discovery and Data
Mining.

[24] Korn, F., Jagadish, H., & Faloutsos, C. (1997).
Efficiently supporting ad hoc queries in large
datasets of time sequences. In Proceedings of
SIGMOD, pp. 289-300.

[25] Lin, J., Keogh, E., Lonardi, S., Lankford, J.P. &
Nystrom, D.M. (2004). Visually Mining and
Monitoring Massive Time Series. In proceedings of
the tenth ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining..

[26] Lin, J., Keogh, E., Lonardi, S. & Chiu, B. (2003) A
Symbolic Representation of Time Series, with
Implications for Streaming Algorithms. In
proceedings of the eighth ACM SIGMOD Workshop
on Research Issues in Data Mining and Knowledge
Discovery.

[27] Shneiderman, B. (2002). Inventing discovery tools:
combining information visualization with data
mining. Information Visualization 1(1): 5-12.

[28] Silvent, A. S., Carbay, C., Carry, P. Y. & Dojat, M.
(2003). Data, Information and Knowledge for
Medical Scenario Construction. In proceedings of
the Intelligent Data Analysis In Medicine and
Pharmacology Workshop. Protaras, Cyprus.

[29] Tanaka, Y. & Uehara, K. (2004). Motif Discovery
Algorithm from Motion Data. In proceedings of the
18th Annual Conference of the Japanese Society for
Artificial Intelligence (JSAI). Kanazawa, Japan.

[30] Ratanamahatana, C.A., & Keogh, E. (2004).
Everything you know about Dynamic Time Warping
is Wrong. 3rd Workshop on Mining Temporal and
Sequential Data, in conjunction with the 10th ACM
SIGKDD International Conference on Knowledge
Discovery and Data Mining.

[31] Wattenberg, M. (2002). Arc Diagrams: Visualizing
Structure in Strings. In proceedings of the IEEE
Symposium on Information Visualization, pp. 110-
116.

[32] Weber, M., Alexa, M., & Mueller, W. (2001)
Visualizing Time-Series on Spirals. In proceedings of
the IEEE Symposium on Information Visualization,

[33] Wyszecki, G. (1982). Color science: Concepts and
methods, quantitative data and formulae, 2nd edition.
New York, Wiley, 1982.

[34] Xiong, Y., & Yeung, D.Y. (2002). Mixtures of ARMA
models for model-based time series clustering. In
Proceedings of the IEEE International Conference on
Data Mining, pp.717-720.

Appendix A: Key to Datasets

Table A: The datasets used in the Experiments in Section 5.1.1
1 MotorCurrent1: 17 Exchange Rate: Swiss Franc
2 MotorCurrent2: 18 Exchange Rate: German Mark
3 Video Surveillance: Ann, gun 19 Furnace: heating input
4 Video Surveillance: Ann, no gun 20 Furnace: cooling input
5 Video Surveillance: Eamonn, gun 21 Reel 2: angular speed
6 Video Surveillance: Eamonn, no gun 22 Reel 2: tension
7 Power Demand: Jan-March (Italian) 23 Balloon1
8 Power Demand: April-June (Italian) 24 Balloon2 (lagged)
9 Great Lakes (Erie) 25 Evaporator: feed flow
10 Great Lakes (Ontario) 26 Evaporator: vapor flow
11 Buoy Sensor: North Salinity 27 Shuttle Inertia Sensor X
12 Buoy Sensor East Salinity 28 Shuttle Inertia Sensor X
13 Koski ECG: slow 1 29 Shuttle Inertia Sensor Z
14 Koski ECG: slow 2 30 Shuttle Inertia Sensor Z
15 Koski ECG: fast 1
16 Koski ECG: fast 2

Appendix B: Additional Anomaly Detection
Results
Note that these results do not appear in the SIAM paper.

 A: Using time series bitmaps as an anomaly detector.
Top) A subsection of an ECG dataset. A cardiologist
annotated a premature ventricular contraction at
approximately the 1.4 mark. Bottom) The score for our
approach shows a strong peak for the duration of the
anomalous heartbeat.

B: A cardiologist annotated two premature ventricular
contractions at approximately the 0.4 and 1.1 mark
respectively, and a supraventricular escape beat at about
the 1.0 mark. Our approach easily detects all the three
anomalies. Top) A subsection of an ECG dataset. Bottom)
The score for our approach shows three strong peaks for
the duration of the anomalous heartbeat.

 C: This figures shows a very complex and noisy ECG.
But according to a cardiologist, there is only one abnormal
heart beat at approximately the 0.23 mark. Our tool easily
finds it.

