
ngc2503 : 2006/11/10(13:38)

New Generation Computing, 25(2007)61-93
Ohmsha, Ltd. and Springer

Efficient Discovery of Unusual Patterns in Time Series

Stefano LONARDI
Department of Computer Science & Engineering
University of California
Riverside, CA 92521, USA
stelo@cs.ucr.edu
Jessica LIN
Department of Information and Software Engineering
George Mason University
Fairfax, VA 22030, USA
jessica@ise.gmu.edu
Eamonn KEOGH and Bill ‘Yuan-chi’ CHIU
Department of Computer Science & Engineering
University of California
Riverside, CA 92521, USA
{eamonn,ychiu}@cs.ucr.edu

Received 15 March 2006
Revised manuscript received 15 June 2006

Abstract The problem of finding a specified pattern in a time series
database (i.e., query by content) has received much attention and is now a
relatively mature field. In contrast, the important problem of enumerating
all surprising or interesting patterns has received far less attention. This
problem requires a meaningful definition of “surprise”, and an efficient search
technique. All previous attempts at finding surprising patterns in time series
use a very limited notion of surprise, and/or do not scale to massive datasets.
To overcome these limitations we propose a novel technique that defines a
pattern surprising if the frequency of its occurrence differs substantially from
that expected by chance, given some previously seen data. This notion has
the advantage of not requiring the user to explicitly define what is a sur-
prising pattern, which may be hard, or perhaps impossible, to elicit from a
domain expert. Instead, the user gives the algorithm a collection of previ-
ously observed “normal” data. Our algorithm uses a suffix tree to efficiently
encode the frequency of all observed patterns and allows a Markov model to
predict the expected frequency of previously unobserved patterns. Once the
suffix tree has been constructed, a measure of surprise for all the patterns
in a new database can be determined in time and space linear in the size of

ngc2503 : 2006/11/10(13:38)

62 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

the database. We demonstrate the utility of our approach with an extensive
experimental evaluation.

Keywords: Time Series, Suffix Tree, Novelty Detection, Anomaly Detection,
Markov Model, Feature Extraction.

§1 Introduction
The problem of efficiently locating previously defined patterns in a time

series database (i.e., query by content) has received much attention and may now
be essentially regarded as a solved problem (e.g., References1,11,16,21,29,31,32,52,61)).

In contrast, the problem of enumerating all surprising or interesting pat-
terns has received far less attention. The utility of such an algorithm is quite
obvious. It would potentially allow a user to find surprising patterns in a massive
database without having to specify in advance what a surprising pattern looks
like. This problem should not be confused with the relatively simple problem of
outlier detection. Hawkins’ classic definition of an outlier is “. . . an observation
that deviates so much from other observations as to arouse suspicion that it was
generated from a different mechanism”.23)

Here, however, we are not interested in finding individually surprising
datapoints. Instead we are looking for surprising patterns, i.e., combinations of
datapoints whose structure and frequency somehow defies our expectations. The
problem is referred to under various names in the literature, including novelty
detection13) and anomaly detection.58)

The problem clearly requires a meaningful definition of “surprise”. The
literature contains several such definitions for time series; however they are all
too limited for a useful data-mining tool. Consider, for example, the notion
introduced by Shahabi et al.,51) which define surprise in time series as “...sudden
changes in the original time series data, which are captured by local maximums
of the absolute values of (wavelet detail coefficients)”. However, it is not difficult
to think of very surprising patterns that defy this rule.

For example, consider the time series in Fig. 1. Here the beginning of each
normal heartbeat is considered very surprising, but the temporary absence of a
heartbeat is considered to be the least surprising subsection of the time series!

Several other definitions of surprise for time series exist, but all suffer from
similar weaknesses.10,13,58,59) To overcome these limitations we propose a novel
definition that defines a pattern surprising if the frequency of its occurrence
differs substantially from that expected by chance, given some previously seen
data. This notion has the advantage of not requiring the user to explicitly define
what is a surprising pattern, which may in any case be impossible to elicit from
a domain expert. Instead, the user gives the algorithm a collection of previously
observed data, which is considered “normal”. The measure of surprise of a
newly observed pattern is considered relative to this data collection, and thus
eliminates the need for a specific model of normal behavior.

Note that unlike all previous attempts to solve this problem, the measure

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 63

Fig. 1 The time series at the top is a normal healthy human electro-
cardiogram with an artificial “flatline” added. The sequence
at the bottom indicates how surprising local subsections of
the time series are under the measure introduced in Shahabi
et al.. In this case the beginning of each normal heartbeat is
very surprising, but the “flatline” is the least surprising part
of the time series, a very unintuitive result

of surprise of a pattern is not tied exclusively to its structure. Instead, it depends
on the departure of the frequency of the pattern from its expected frequency.
This is the crucial distinction of our approach from all the others.

For example consider the “head and shoulders” pattern shown in Fig. 2.
The existence of this pattern in a stock market time series should not be con-
sidered surprising since it is known to occur (even if only by chance). However,
if it occurred ten times this year, as opposed to occurring an average of twice
a year in previous years, our measure of surprise will flag the pattern as be-
ing surprising. Intuitively, the pattern would also be surprising if its frequency
of occurrence is less than expected. Once again our definition would flag such
patterns.

Our definition of surprise would be of little utility without a technique
that allowed efficient determination of the expected frequency of a pattern. We
demonstrate how a suffix tree can be used to efficiently encode the frequency of
all observed patterns. Since it is possible that a pattern observed in the new
data was not observed in the training data, we propose a technique based on
Markov models to calculate the expected frequency of previously unobserved
patterns. Once the suffix tree has been constructed, the measure of surprise for
all the patterns in a new database can be determined in linear time and linear
space with respect to the size of the database.

The rest of the paper is organized as follows. In Section 2 we introduce
some notations needed in the rest of the document. In Section 3 we discuss

0 5 10 15 20 25 30 35 40 45 50
20

20.2

20.4

20.6

20.8

21

21.2

21.4

21.6

21.8

22

Fig. 2 An Example of the Classic “Head and Shoulders” Pattern

ngc2503 : 2006/11/10(13:38)

64 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

techniques to discretize time series, a necessary preprocessing step for our ap-
proach. In Sections 4 and 5 we introduce Markov models and we show how to
encode them in suffix trees. In Section 6 we show how to efficiently compute
the expected frequency of patterns by using suffix trees. We present our algo-
rithm in Section 7. In Section 8 we demonstrate the utility of our approach
with detailed empirical evaluations. We wait until Section 9, when the reader’s
intuitions about the problem are more fully developed to discuss related work.
Finally, in Section 10 we offer conclusions and directions for future research.
With respect to conference papers34,41) where we first reported the preliminary
results presented here, we have expanded the section on experimental results,
but more importantly we carefully detailed the linear-time algorithm using the
suffix tree and proved its time complexity.

§2 Notation
We use Σ to denote a nonempty alphabet of symbols. We will set a = |Σ|

to be the cardinality of the alphabet. A string over Σ is an ordered sequence
of symbols from the alphabet. Given a string x, the number of symbols in x
defines the length |x| of x. Henceforth, we will use the variable n to denote the
length of x, i.e., |x| = n.

Let us decompose a text x into uvw, i.e., x = uvw where u, v and w are
strings over Σ. Strings u, v and w are called substrings, or words, of x. Moreover,
u is called a prefix of x, and w is called a suffix of x.

We write x[i], 1 ≤ i ≤ |x|, to indicate the i-th symbol in x. We use x[i,j]

as shorthand for the substring x[i]x[i+1] . . . x[j] where 1 ≤ i ≤ j ≤ n, with the
convention that x[i,i] = x[i]. Substrings in the form x[1,j] corresponds to the
prefixes of x, and substrings in the form x[i,n] to the suffixes of x.

We say that a string y has an occurrence at position i of a text x if
y[1] = x[i], y[2] = x[i+1], . . . , y[m] = x[i+m−1], where m = |y|. For any substring
y of x, we denote by fx(y) the number of occurrences of y in x.

Given a set of strings X = {x1, x2, . . . , xk}, k > 1, the colors of y are the
members of the subset of X such that each contains at least one occurrence of
y. The number of colors of y is denoted by c(y).

Throughout this document, variables y and w usually indicate substrings
of the text x. Unless otherwise specified, we assume the generic term m as the
length of any of these words.

We denote by X the time series database X = X1X2 . . . Xk under study,
where each Xi is real number and k is the length of the time series. We use
variable R to refer to the reference time series database, that is to say, the time
series which has been annotated as normal, or “unsurprising” by a user.

§3 Dimensionality Reduction and Discretization
For concreteness, we recall the notion that defines the level of surprise.

Definition 3.1
A time series pattern P , extracted from database X is surprising relative to

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 65

a database R, if the frequency of its occurrence is greatly different from that
expected by chance, assuming that R and X are created by the same underlying
process.

In order to compute this measure, we must calculate the probability of
occurrence for the patterns of interest. Here we run into the familiar paradox
that the probability of a particular real number being chosen from any distribu-
tion is zero19). Since a time series is an ordered list of real numbers, the paradox
clearly applies. The obvious solution is to discretize the time series into some
finite alphabet Σ. Using a finite alphabet allows us to avail of Markov mod-
els to estimate the expected probability of occurrence of a previously unseen
pattern. The problem of discretizing (symbolizing, tokenizing, quantizing) time
series into a finite alphabet has received much attention in diverse fields, includ-
ing astronomy, medicine, chemistry, etc. (see e.g., Reference14) for an exhaustive
overview). The representation has also captured the attention of the data mining
community who use discretized time series to support similarity search24) and to
enable change point detection.21)

While there are literally hundreds of papers on discretizing time series,
none of the techniques are suitable for our purposes. In particular, the follow-
ing limitations thwart our efforts to create a time/space efficient and robust
algorithm.

• Most symbolic approximations require access to the entire dataset, be-
fore the approximation can be created.21,24) This is untenable for large
datasets, and impossible if we wish to monitor streaming data.

• Almost all time series datasets are very high dimensional. This is a chal-
lenge because all non-trivial data mining algorithms degrade exponen-
tially with dimensionality. None of the symbolic representations that we
are aware of allow dimensionality reduction.2,21,24) There is some reduc-
tion in the storage space required, since fewer bits are required for each
value; however, the intrinsic dimensionality of the symbolic representation
is the same as the original data.

• For many of the symbolic approximations in the literature, it is not clear
that the approximation accurately reflects the true shape and structure of
the original time series. This is in contrast to real valued approximation
techniques such as wavelets11) and Fourier transforms,16,32) in which the
fidelity of approximation can be explicitly quantified (by measuring the
reconstitution error).

In contrast to the above, we describe novel symbolic representation that
can be calculated with single pass over the data. The approximation allows
dimensionality reduction, and its fidelity to the original sequence can be mean-
ingfully visualized and qualified. We call our representation SAX (Symbolic
Aggregate ApproXimation).

Our discretization technique is not applied to the entire time series. Since
we are interested in locally surprising patterns, we convert the real-valued time

ngc2503 : 2006/11/10(13:38)

66 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

series to a symbolic representation at a local scale. We achieve this by extracting
subsequences with a sliding window, performing the conversion, and concatenat-
ing the resultant symbols back into global strings r and x. Sliding windows are
commonly used in time series data mining, for example, for indexing,11,32,61) for
rule discovery12) and for anomaly detection.13)

The technique presented in the following allows a time series of arbitrary
length k to be reduced to a string of arbitrary length n, (n < k, typically
n << k). As an intermediate step between the original time series and our
discrete representation of it, a dimensionality-reduced version of the data will
be created. We will utilize the Piecewise Aggregate Approximation (PAA),31,61)

which we review in the next paragraph.

Dimensionality Reduction. First, the time series X of length k is encoded in
a n-dimensional space by a vector X̄ = [x̄1, . . . , x̄n]. The i-th element of X̄ is
calculated by the following equation

x̄i = (n/k)
i(k/n)∑

j=(i−1)(k/n)+1

xj (1)

In order to reduce the time series from k dimensions to n dimensions, the
data is divided into n equal sized “frames”. The mean value of the data falling
within a frame is calculated and a vector of these values becomes the data-
reduced representation. The representation can be visualized as an attempt
to approximate the original time series with a linear combination of box basis
functions as shown in Fig. 3.

Fig. 3 The PAA representation can be readily visualized as an at-
tempt to model a sequence with a linear combination of box
basis functions. In this case, a sequence of length 128 is re-
duced to 8 dimensions

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 67

The PAA dimensionality reduction is intuitive and simple, yet has been
shown to rival more sophisticated dimensionality reduction techniques like Fourier
transforms and wavelets.11,31,61) In addition it has several advantages over its ri-
vals, including being much faster to compute, and being able to support many
different distance functions, including weighted distance functions,36) arbitrary
Minkowski norms,61) and even dynamic time warping.21,47)

Discretization. Having transformed a time series database into the PAA, we can
apply a further transformation to obtain a discrete representation. Among all
possible mappings from real numbers to symbols, we require a discretization that
will produce symbols with equiprobability. If we did not enforce a symmetric
distribution, this would imply that some words generated by this source would
be very frequent and some would be very rare simply because they contain an
occurrence of a frequent or a rare symbols. More precisely, strings should be
flagged when there are surprising higher-order correlations between adjacent
symbols. Enforcing each symbol to have the same probability also maximizes
the entropy and the information encoded on a limited alphabet.

The objective of having each symbol to be equiprobable is easily achieved
since we observed experimentally that normalized time series have a Gaussian
distribution. We illustrate this observation in Fig. 4, where we took a pool of
64 diverse time series datasets from the UCR time series archive, and randomly
extracted 10,000 subsequences of length 128 from it. We then plotted them in
a normal probability plot, a classic statistical tool used to visually evaluate if
a data source comes from a normal distribution. If the data is Gaussian, we
expect to see that the data points approximately follow the diagonal line in the
plot, which is exactly what we observe.

Given that the normalized time series have Gaussian distribution, we can
determine the “breakpoints” that will produce equal-sized areas under Gaussian
curve.

Fig. 4 A normal probability plot of the distribution of values from
subsequences of length 128 from 64 different datasets. The
highly linear nature of the plot strongly suggests that the data
came from a Gaussian distribution

ngc2503 : 2006/11/10(13:38)

68 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Definition 3.2
Breakpoints are a sorted list of numbers B = β1, . . . , βa−1 such that the area
under a N(0,1) Gaussian curve from βi to βi+1 is 1/a (β0 and βa are defined as
−∞ and +∞, respectively).

These breakpoints may be determined by looking them up in a statistical
table. For example, Table 1 gives the breakpoints for values of a from 3 to 10.

Once the breakpoints have been obtained, we can discretize a time series
in the following manner. We first obtain a PAA of the time series. All PAA
coefficients that are below the smallest breakpoint are mapped to the symbol a,
all coefficients greater than or equal to the smallest breakpoint and less than the
second smallest breakpoint are mapped to the symbol b, etc. Figure 5 illustrates
the idea.

Note that in this example the three symbols, a, b and c are approximately
equiprobable as we desired. We call the concatenation of symbols that represent
a subsequence a word.

The use of fixed breakpoints for all datasets may seem unintuitive. It
might be argued that one could adaptively learn the best location for the break-
points by computing the empirical Probability Density Function (PDF) of the
observed values and dividing this PDF into k bins of equal probability mass.
In fact, this was our original plan. However, to our surprise we found that the

Table 1 A lookup table that contains the breakpoints that divide a
Gaussian distribution in an arbitrary number (from 3 to 10)
of equiprobable regions

a 3 4 5 6 7 8 9 10
β1 -0.43 -0.67 -0.84 -0.97 -1.07 -1.15 -1.22 -1.28
β2 0.43 0 -0.25 -0.43 -0.57 -0.67 -0.76 -0.84
β3 0.67 0.25 0 -0.18 -0.32 -0.43 -0.52
β4 0.84 0.43 0.18 0 -0.14 -0.25
β5 0.97 0.57 0.32 0.14 0
β6 1.07 0.67 0.43 0.25
β7 1.15 0.76 0.52
β8 1.22 0.84
β9 1.28

Fig. 5 A time series is discretized by first obtaining a PAA approxi-
mation and then using predetermined breakpoints to map the
PAA coefficients into symbols. In the example above, with
k = 128, n = 8 and a = 3, the time series is mapped to the
word baabccbc

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 69

learned PDF was always very close to a Gaussian for a vast range of datasets, in-
cluding data from medicine, finance, robotics, meteorology, networking, human
motion, music and space telemetry. Nevertheless, an adaptive version of SAX
remains a possibility for a pathological dataset that warrants it.

Definition 3.3
Let αi denote the i-th element of the alphabet, i.e., Σ = {α1, α2, . . .}. Given
a time-series X of length k, and its PAA approximation X̄, the corresponding
word x = x[1]x[2] . . . x[n] is obtained as follows:

x[i] = αj , iff βj−1 ≤ x̄i < βj .

We have now defined the two representations required for our pattern
discovery (the PAA representation is merely an intermediate step required to
obtain the symbolic representation).

As noted earlier, for most symbolic approaches in the literature, it is not
clear how well these discrete representations approximate the true structure of
the original time series. Since we are ultimately interested in surprising patterns
in the original time series, this is a critical issue. We can evaluate the quality
of the SAX representation in several ways. As a simple sanity check, we can
visually compare it to the four most common real valued representations in the
literature.32) Figure 6 shows one such comparison. To make this comparison fair,
we ensured that the number of bits used by all five representations is exactly the
same. While this is a subjective test, SAX does seem to be at least competitive
with the other approaches.

An objective test can be designed as follows. We begin by defining a
distance measure between two time series in the SAX space.

Fig. 6 A visual comparison of our approach and the four most com-
mon time series data mining representations. (left) A raw time
series of length 128 is transformed into the word ffffffeeed-
dcbaabceedcbaaaaacddee. (right) The four most common
time series data mining representations. From bottom to top;
Adaptive Piecewise Constant Approximation, Haar wavelet,
Piecewise Linear Approximation, Discrete Fourier Transform.

ngc2503 : 2006/11/10(13:38)

70 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Table 2 The error rate of one-nearest-neighbor on 9 time series clas-
sification problems using Euclidean distance and 4 symbolic
representations of time series. The fact that SAX has an error
rate that is far lower than its symbolic rivals, and almost indis-
tinguishable from that obtained on the raw data strongly sug-
gests that SAX is accurately capturing the underlying struc-
ture of data, a fact which confirms it choice as the symbolic
representation to support anomaly detection.

Euclidean SAX IMPACTS SDA SLS
Word Spotting 4.78 6.80 25.75 34.87 45.33
Sign language 28.70 27.62 50.30 56.23 34.21

GUN 5.50 5.92 34.92 44.33 48.91
Nuclear Trace 11.00 11.00 21.12 43.95 38.42

Leaves 33.26 35.91 70.76 59.83 60.23
4-Faces 6.25 7.27 45.64 47.95 37.54

Control Chart 7.5 7.3 54.2 39.1 14.12
2-Patterns 1.04 1.05 23.5 34.6 04.74

CBF 0.16 0.12 41.2 53.5 05.23

SaxDist(Q̄, C̄) ≡
√√√√(k/n)

n∑

i=1

(dist(q̄i, c̄i))
2
, (2)

where dist(q, c) can be determined by examining a lookup table (see e.g.,41)). The
distance measure SaxDist is designed to be an approximation of the Euclidean
metric, the distance measure of choice for the vast majority of time series data
mining and indexing algorithms (see, e.g., References9,11,12,16,31,32,36,56,61)).

While we can directly measure the fidelity of SAX to the original signal
(by measuring the reconstruction error), the other discretization methods do
not have a way to directly measure their fidelity. However they all have distance
measures defined on them, so we can indirectly measure the fidelity of their
approximation by considering their classification error rates. The idea is that
no matter what features the discretization method was specialized in extracting
(i.e., the extrema, or the rate of change, etc.), we would hope that these features
would be strongly correlated with the class labels on at least some problems.

We measured the error rates using leaving-one-out evaluation with the one
nearest neighbor algorithm on all the classification datasets in the UCR archive.
For fairness, each of the symbolic approaches was compressed to one 1/16 the
size of the original data. We compared to the Euclidean distance on the raw
data, since this simple approach has been shown to be an extremely competitive
technique.33) Table 2 contains the results.

Note that the results for SAX and the full raw data are not significantly
different, but that the three other symbolic approaches perform very badly, often
close to the default rate. These results strongly suggest that using SAX we can
capture the “essence” of the time series of interest.

§4 Markov Models
We now turn the attention to the probabilistic model that will be used to

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 71

compute the expected number of occurrences of each pattern. Consider strings
generated by a stationary Markov chain of order M ≥ 1 on the finite alphabet
Σ. Let x = x[1]x[2] . . . x[n] be an observation of such a random process and
y = y[1]y[2] . . . y[m] an arbitrary but fixed pattern over Σ with m < n.

The stationary Markov chain is completely determined by its transition
matrix

Π = (π(y[1,M], c))y[1],...,y[M],c∈Σ

where

π(y[1,M], c) = P(Xi+1 = c |X[i−M+1,i] = y[1,M])

are called transition probabilities, with y[1], . . . , y[M], c ∈ Σ and M ≤ i ≤ n − 1.
The vector of the stationary probabilities µ of a stationary Markov chain with
transition matrix Π is defined as the solution of µ = µΠ. Thus, the unique
stationary distribution µ is defined by the equation

µ(y[1,M]) = P(X[i−M+1,i] = y[1,M])

=
∑

a∈Σ

µ(ay[1,M−1])π(ay[1,M−1], y[M])

where M ≤ i ≤ n− 1.
We now introduce the random variable associated with the occurrences

of a generic word y. We define Zi, 1 ≤ i ≤ n −m + 1 to be 1 if y occurs in x

starting at position i, 0 otherwise. We set Zy =
n−m+1∑

i=1

Zi,y so that Zy is the

random variable for the total number of occurrences fx(y).
In the stationary M -th order Markovian model, the expectation of Zi,

which represents the probability that y occurs at a given position i, is given by

E(Zi)=P(X[i,i+m−1] = y)

=µ(y[1,M])
m−M∏

i=1

π(y[i,i+M−1], y[i+M]).

The expected count of the occurrences y under the Markov model is therefore

E(Zy)=(n−m + 1)E(Zi) (3)

=(n−m + 1)µ(y[1,M])
m−M∏

i=1

π(y[i,i+M−1], y[i+M])

because the distribution of the Zi’s does not depend on i.
When the true model is unknown, the transition and stationary probabil-

ities have to be estimated from the observed sequence x. Let y be a substring
of x, where m = |y| ≥ M + 2. The transition probability can be estimated by
the maximum likelihood estimator 49)

π̂(y[1,M], c) =
fx(y[1,M]c)
fx(y[1,M])

(4)

ngc2503 : 2006/11/10(13:38)

72 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

and the stationary probability by the maximum likelihood estimator

µ̂(y[1,M]) =
fx(y[1,M])
n−M + 1

. (5)

Substituting in equation (3) for the estimators (4) and (5) we obtain an
estimator of the expected count of y

Ê(Zy) =
∏m−M

i=1 fx(y[i,i+M])∏m−M
i=2 fx(y[i,i+M−1])

. (6)

A frequently used choice for the order of the chain is M = m − 2, called
maximal model. When M = m−2, the estimator of the expected counts becomes

Ê(Zy) =
fx(y[1,m−1])fx(y[2,m])

fx(y[2,m−1])
.

A precise relationship between the expectation of y and the expectation
of its prefix and suffix is established in the following fact. The theorem derives
immediately from equation (6).

Lemma 4.1
Let y be a substring of x and w1 = y[2,m], w2 = y[1,m−1]. Then

Ê(Zy) =
f(y[1,M+1])
f(y[2,M+1])

Ê(Zw1) = Ê(Zw2)
f(y[m−M,m])

f(y[m−M,m−1])

From an algorithmic perspective, Lemma 4.1 allows one to compute Ê(Zy)
incrementally from the Ê value of a prefix or a suffix of y. To simplify the
notation, in the following we will use Ê(w) instead of Ê(Zw).

§5 Suffix Trees
A simple method to count the number of occurrences of each substring in

a sequence would be to create a look-up table. However, more time- and space-
efficient data structure to organize a dictionary of words are known. One of
these structures is the suffix tree (see, e.g., Reference22) and references therein).
The suffix tree is a digital search tree that represents a set of strings over a finite
alphabet Σ. It has n leaves, numbered 1 to n. Each internal node, other than
the root, has at least two children and each edge is labeled with a nonempty
substring of x. No two edges outgoing from a node can have labels beginning
with the same character. The tree has the property that for any leaf i, the
concatenation of the labels on the path from the root to the the leaf i spells out
exactly the suffix of x that starts at position i, that is, x[i,n]. The substrings of
x can be obtained by spelling out the words from the root to any internal node
of the tree or to any position in the middle of an edge. The position in the tree
corresponding to each substring y of x is called the locus of y. When a locus
corresponds to a node of the suffix tree, we call it proper.

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 73

In order to achieve overall linear-space allocation, the labels on the edges
are described implicitly: for each word, it suffices to save an ordered pair of
integers indexing one of the occurrences of the label in the text. Each edge
label requires thus constant space, which, in conjunction with the fact that total
number of nodes and edges is bounded by O(n), results in the overall linear
space for the tree.

Several clever O(n log |Σ|) constructions are available (see, e.g.,
Reference44,57)). More recent linear-time algorithms are by Ukkonen54) which
is on-line, and by Farach17) which is optimal for large alphabets. The large ma-
jority of these constructions exploit the presence of suffix links in the tree. The
existence of suffix links is based on the following fundamental fact.

Lemma 5.1
If w = ay, a ∈ Σ has a proper locus in Tx, then so does y.

Accordingly, suffix links are maintained in the tree from the locus of each
string ay to the locus of its suffix y, for all a ∈ Σ.

Having built the tree, some additional processing make it possible to count
and locate all the distinct instances of any pattern in O(m) time, where m is the
length of the pattern. In fact, the computation of the statistics of all substrings
of a string is a direct application of suffix trees. We first need some definitions.
We define the leaf-list LL(u) of a node u as the ordered set of indices stored in
the leaves of the subtree rooted at u. We refer to the unique string on the path
from the root to a node u of the tree as the path-label L(u) of u. Vertex u is
also the proper locus of L(u). Some strings do not have a proper locus because
their paths end in the middle of an arc. We can think about this non-proper
loci to correspond to implicit nodes of the tree. Clearly, these implicit nodes are
non-branching (unary).

Given a word w, we denote by <w> its proper locus, if it exists. If instead
w ends in the middle of an arc then <w> denotes the node corresponding to the
shortest extension of w that has a proper locus. Clearly, L(<w>) = w.

By the structure of a suffix tree, the number of occurrences fx(w) of any
string w is given by the number of leaves in the subtree rooted at <w>, that
is, f(w) = |LL(<w>)|. In Fig. 7, the number of occurrences is stored in the
internal nodes. The algorithm that annotates the tree with the value f(w) takes
linear time and space in the size of x.

The suffix tree for a single string can be easily extended to represent all
the suffixes of a set of sequence {x1, x2, . . . , xk}. These suffixes are collected
in a tree called generalized suffix tree (see Reference22)). Now the leaves of the
tree must have two indices, namely the index of the suffix and the index of the
sequence, which we call color. The generalized suffix tree can also be built in
linear time and space.

Once the tree is built, one can annotate each branching node <w> with
the number of colors c(w). We recall that given strings {x1, x2, . . . , xk} and a
substring w, c(w) is defined as the number of distinct sequences that contain
at least one occurrence of w. An algorithm for computing the number of colors

ngc2503 : 2006/11/10(13:38)

74 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

ba aba aba aba..$a

ba$$aba..$$

ba

$

ba

aba aba..$

ba$

$

aba

aba..$

ba

$

aba aba..$

ba$

ba

$

aba ba aba aba..$

ba$$aba..$$

ba

$

aba aba..$

ba$

1

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

a b a a b a b a a b a a b a b a a b a b a $

9

28

19

17 12

4

621 14

23

13

3 2

8 16

3

11

22

8 3 2

3 2

20

18

157

2

10

13

5

4 3

4

4

Fig. 7 TOP: The suffix tree Tx for the string x =
abaababaabaababaababa$, with internal nodes storing
the number of occurrences. BOTTOM: The same suffix tree
augmented with suffix links. The suffix links for the leaves
are omitted for clarity (the path is 1 → 2 → . . . → 22 → root)

for all the nodes of the suffix tree has been proposed by Hui25) and takes linear
time.

§6 Computing Scores by Comparing Trees
Let now r be the reference sequence, and x the sequence under analysis

obtained by discretizing the time series R and X, respectively. In this section
we show a preprocessing phase which takes r and x as input, and produces a

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 75

generalized suffix tree T for {x, r} where each branching node u ∈ T which is a
locus for a substring L(u) of x is annotated with the measure of surprise of the
corresponding word.

The algorithm Preprocess described below computes the scores for all
the substring of x with respect to the reference string r. Although the algorithm
does not require an upper bound on the size of the substrings, it is reasonable
to assume that we will rarely consider substrings longer than log|Σ| n symbols.
It is well known that words longer than log|Σ| n symbols have an expected count
whose limit tends to a constant instead of growing to infinity when n goes to
infinity. These long words are therefore of limited interest to us.

In the first step of the preprocessing phase we build the generalized suf-
fix trees T for {x, r} and we annotate the internal nodes with the number of
occurrences and the number of colors. This step requires linear time and space.

In the second step, we visit each branching node u of T in a breadth-
first order. We do not visit implicit nodes of the tree because the frequency of
substrings changes only at branching nodes and never in the middle of an arc.
The same property is exploited in References3,4,42) to detect usual words in Dna.

For a string w = L(u), if w has two colors (i.e., it occurs both in x and
in r), then we compute directly the score, assuming αfr(w) to be the expected

number of occurrences of w in the reference string, where α =
|x| −m + 1
|r| −m + 1

. The

scale factor α takes care of of adjusting the occurrences based on the length of
x and r. For example, if r is two times longer than x we scale the number of
occurrence observed in r by roughly 1/2.

If otherwise the substring w has one color and it comes from x then we
look for the Markov order M(w) in the interval [1, . . . , |w| − 2] such that all the
strings w[j,j+M(w)] occur in r, for j = 1, . . . , |w|−M(w). In other words, we look
for the longest set of strings from r that cover w as it is done for the estimator
of the expectation for Markov chains (see Section 4). This strategy corresponds
to the idea of trying first the higher Markov orders, and falling back to lower
orders whenever the information to compute the estimator of the expectation are
insufficient. If every possible choice does not meet the requirements, we use the
probability of the symbols from r (stored in a table) to compute the estimate.

Finally, we set the surprise score z(w) to be the difference between the
observed number of occurrences fx(w) and Ê(w). The preprocessing algorithm
is sketched in Table 3.

After this manuscript was completed, it was brought to our attention that
a quite similar strategy to estimate the probability of a substring was used in
Reference26). In that paper, the authors compare several strategies (for example
References28,39)) to estimate the probability of a string y using the number of
occurrences of shorter strings contained in y. The conclusion of their study is
that the most accurate prediction is the method called MOLC, which is very
similar to the technique employed here.

The time complexity depends on the time taken to compute Ê(w). If
the algorithm was implemented as in Table 3, the time complexity would be

ngc2503 : 2006/11/10(13:38)

76 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Table 3 Outline of the preprocessing algorithm for the computation
of the scores obtained comparing the the reference string r
against the string under analysis x

suffix tree Preprocess (string r, string x)
let T = Generalized Suffix tree(x, r)

let α =
|x| −m + 1

|r| −m + 1
Annotate f(w)(T)
Annotate c(w)(T)
visit T in breadth-first traversal, for each node u do

let w = L(u), m = |w|
if w has two colors then

let Ê(w) = αfr(w)
else if w comes from x then

find the largest M in [1, m− 2]

such that

m−M∏
j=1

fr(w[j,j+M]) > 0

if such M exists then

let Ê(w) = α

∏m−M

j=1
fr(w[j,j+M])∏m−M

j=2
fr(w[j,j+M−1])

else /* M = 0 */

let Ê(w) = (|x| −m + 1)

m∏
i=1

fr(y[i])

|r|
let z(w) = fx(w)− Ê(w)
store z(w) in the node u

return T

superlinear. To compute efficiently Ê(w) we need to exploit Lemma 4.1 and the
suffix links of Lemma 5.1.

During the breadth-first traversal, as long as the number of colors is two,
then Ê(w) = αfr(w) and M(w) = |w| − 2. This process requires O(1) per node.
When the number of colors drops to one, the value of M(w) need to be updated.

Assume that we have already computed M(w) for all the strings of a size
m (recall that we are traversing breadth-first). In order to get M(wv), where
|w| = m and v is the string on the edge to the next branching node, it suffices
to know M(w) and M(w[2,m]v). The following fact is easy to prove, and it is
left to the reader.

Fact 6.1
Given two strings w and v

M(wv) = min{M(w),M(w[2,m]v)}

To find M(w[2,m]v), one need to start from the node <wv> and tra-
verse one suffix link to the node <w[2,m]v>. Node <w[2,m]v> exists because of
Lemma 5.1. Observe that w[2,m] has length m − 1, and therefore it must have
been processed before w. A careful ordering of the traversal can make sure that

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 77

M(w[2,m]v) will be available before M(wv) is needed.
Given that M(w) and M(w[2,m]v) can be obtained in O(1), M(wv) can

also be found in constant time. Once M(wv) is found, the value of Ê(wv) is
computed using Lemma 4.1 by taking the Ê(·) from the string from which we
obtained the minimum, and multiplying by the appropriate factor. When M

becomes zero, the computation of Ê(w) involves multiplying the probabilities
of the symbols in w. This can be done in O(1) by precomputing in linear time
a vector that contains the probabilities of all the prefixes of x.3,4,42) Since we
spend O(1) in each node, we can state the following.

Theorem 6.1
The algorithm Preprocess runs in linear time and linear space.

§7 TARZAN Algorithm
Having reviewed extensive material on discretization, Markov models and

suffix trees, we now give a concise description of the proposed algorithm, which
we call Tarzan.∗1 The basic algorithm is sketched in Table 4.

The inputs are the reference database R, the database to be examined
X, and the parameters which control the discretization process. The algorithm
begins by discretizing the data to the desired granularity. The two resultant
strings are passed to the Preprocess algorithm which constructs the annotated
suffix tree T . After this has been accomplished, the surprise of each substring
found in x can be determined. Those substrings which have surprising ratings
exceeding a certain user defined threshold (as defined by the absolute value of
z(w)) can be returned and examined by the user.

The length l2 of the sliding window is connected with the feature window
length l1 and the alphabet size a (which have been discussed in Section 3).
We suggest choosing l2 < log|Σ| |x| because words longer than log|Σ| |x| have
extremely small expectations and belong to a different probabilistic regime. In

Table 4 Outline of the Tarzan algorithm: l1 is the feature window
length, a is the alphabet size for the discretization, l2 is the
scanning window length and c is the threshold

void Tarzan (time series R, time series X, int n, int a, real c)
let x = Discretize time series (X, n, a)
let r = Discretize time series (R, n, a)
let T = Preprocess (r, x)
for i = 1, |x| − l2 + 1

let w = x[i,i+l2−1]

retrieve z(w) from T
if |z(w)| > c then print i, z(w)

∗1 Tarzan is not an acronym. It is a pun on the fact that the heart of the algorithm relies
on comparing two suffix trees, “tree to tree”. Tarzan (R) is a registered trademark owned
by Edgar Rice Burroughs, Inc.

ngc2503 : 2006/11/10(13:38)

78 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

fact, scores z(w) are asymptotically Gaussian distributed when |w| < log|Σ| |x|
and Poisson distributed for longer words.49) The threshold on the score c can be
determined by gathering statistics about the distribution of the scores and/or
assuming the distribution of the scores to be normal.

§8 Experimental Evaluation
Empirically we would like to demonstrate two features of our proposed

approach.

• Sensitivity (High True Positive Rate): the algorithm can find truly
surprising patterns in a time series.

• Selectivity (Low False Positive Rate): the algorithm does not find
spurious “surprising” patterns in a time series.

We compare our approach with the TSA-tree Wavelet based approach of
Shahabi et al.51) and to the Immunology (IMM) inspired work of Dasgupta and
Forrest,13) which are the only obvious candidates for comparison. More details
about these approaches are contained in Section 9.

We begin with a very simple experiment as a reality check. We constructed
a reference dataset by creating a sine wave with 1,000 datapoints and adding
some Gaussian noise. We then built a test dataset using the same parameters as
the reference set; however, we also inserted three artificial anomalies of different
types. We compared all three approaches under consideration. The results are
shown in Fig. 8. We used a feature window of length l1 = 32 for Tarzan and
IMM, and an alphabet of size a = 3 for Tarzan.

Fig. 8 A comparison of three anomaly detection algorithms on the
same task. A) The training data, a slightly noisy sine wave.
B) A time series containing three synthetic “anomalies”, their
locations are denoted by the gray bars C) The IMM anomaly
detection algorithm failed to find the last two anomalies, and
introduced some false alarms. D) The TSA-Tree approach is
also unable to detect the anomaly. E) Tarzan shows a strong
peak for the duration of the anomalies

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 79

The IMM approach was unable to find the last two anomalies, and it
introduced some false alarms. Unlike the two other approaches, this method
has a stochastic component. On some runs it appeared to detect the one of the
three anomalies, but it always produce several false alarms of equal magnitude.
The TSA approach also failed to find the anomalies.∗2 As noted by the authors,
surprising patterns might exist at different scale. The graphic above shows the
results at level 4’ (see the original paper51) for details). However, similar results
are seen at other levels. In contrast to the other techniques, Tarzan shows a
strong peak for the duration of the anomalies. Note that for consistency with
the other techniques, we flipped the results for Tarzan upside down, so the low
expectation for the anomalies shows as peaks.

Objective Tests on Real Datasets. We performed additional exten-
sive testing in medical and biomechanical datasets, including gait data, electro-
cardiograms, electromyelograms, and electroencephalograms. While the results
looked subjectively correct, it takes some ingenuity to find datasets that allow
testing.

In the following, we will consider some experiments in real datasets, where
objective ground truth is available. Having shown above that the IMM algorithm
and TSA-Tree approach are not realistic competitors, we exclude them from
some of the experiments below, when this improves clarity. All datasets used in
this paper are freely available from the UCR archive.

1) Stress Test Database. This database consists of twelve half-hour ECG
recordings of normal ambulatory ECG recordings. At a randomly chosen time,
the volunteers were subject to a loud unexpected sound, and their ECGs were
annotated with the time of the occurrence of the sound.45) We conducted a simple
experiment as follows. We use a training sequence that contains just the first 20
seconds of the data, and then used Tarzan to find the most surprising pattern
in the rest of the dataset. Figure 9 shows the results. We only used the first
20 seconds of normal heartbeats as our reference section because we wanted to
determine whether we could obtain good results with limited training data.

Note that in Fig. 9(C) there is a strong double peak in surprise level just
after data point 1,000, following by a zero surprise for the interval from about
1,150 to 1,250. These results make perfect sense, because visual inspection
confirms that only the RST waves are anomalous, and the PQR waves look just
the same before and after the loud noise event.

2) Power Demand Database. We consider a dataset that contains the
power demand for a Dutch research facility for the entire year of 1997.55) The
data is sampled over 15 minute averages, and thus contains 35,040 points. The
nice feature of this dataset is that although it contains great regularity, as shown
in Fig. 10, it also contains regions that could objectively be said to be surprising
or anomalous. In particular, there are several weeks on which one or more
days were national holidays, and thus the normal pattern of five weekday peaks,

∗2 The authors define surprise as an absolute value, but visualize the level of surprise in their
paper without taking the absolute value. For clarity and consistency we have graphed
absolute values.

ngc2503 : 2006/11/10(13:38)

80 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Fig. 9 An experiment in detecting anomalous electrocardiograms. A)
The first 20 seconds of a normal heartbeat were used as train-
ing data. B) The Tarzan algorithm was then used to search
the rest of the dataset to find the most surprising pattern,
which we realigned to begin at point 1,000. C) The level
of surprise returned by Tarzan, TSA-Tree and IMM for the
subsequence shown above. The Tarzan results show a clear
peak at the ECGS just after the volunteer was subjected to
the unexpected noise. The TSA-Tree is unable to detect the
anomaly, whereas IMM

Fig. 10 The first three weeks of the power demand dataset. Note
the repeating pattern of a strong peak for each of the five
weekdays, followed by relatively quiet weekends

Fig. 11 The Three Most Surprising Weeks in the Power Demand
Dataset, as Determined by Tarzan, TSA-Tree and IMM

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 81

followed by a relatively flat weekend, is disturbed.
We used from Monday January 6th to Sunday March 23rd as reference

data. This time period is devoid of national holidays. We processed the re-
mainder of the year with Tarzan, with a window size equivalent to four hours
(l1 = 16 datapoints), and an alphabet of size a = 4. Due to the size of the
dataset we will just show the three most surprising sequences found by each
algorithm. For each of the three approaches we show the entire week (beginning
Monday), in which the three largest values of surprise fell. The results are shown
in Fig. 11.

Both TSA-tree and IMM returned sequences that appear to be normal
workweeks; however, Tarzan returned three sequences that correspond to the
weeks that contain national holidays in the Netherlands. In particular, from
top to bottom, the week spanning both December 25th and 26th, and the weeks
containing Wednesday April 30th (Koninginnedag, “Queen’s Day”) and May
19th (Whit Monday) respectively. These results present strong visual evidence
that Tarzan is able to find surprising patterns in time series.

3) Video Dataset. This experiment was conducted on a dataset of time
series that were extracted from video surveillance footage.9) For concreteness,
we will briefly discuss how the data was extracted.

A Canon ZR40 camcorder with the shutter at 1/60, video size of 720x480
pixels, and frame rate of 30 frames per second was used to record the actions
of a female actor. Only the actor’s right hand was tracked; to facilitate this she
wore a red glove on that hand only. A frame that has good color visibility was
selected from the video sequence. The selected frame is then used to calculate
Hue (H), Saturation (S), and Value (V) from each pixel. A region of the color to
be tracked (red in this case) is also selected and this forms the region of interest
(ROI). The HSV from each pixel of the selected frame, along with the mean and
covariance from the ROI of the selected frame form the input to find probability
distribution for the ROI over the whole image.20) The probability distribution
uses a multivariate Gaussian and results in a probability matrix of the size of
the image. This resultant matrix is converted to a binary image by thresholding,
and then the resultant binary image is used to compute the centroid position of
the hand. The overall dataset is very high quality; however, there is some noise
and dropouts due to occlusion etc. We extracted a time series from the video
by tracking the center of mass for the right hand. Each frame of the original
video becomes a datapoint in a time series. We only consider the Y-axis in
the experiment that follows. The entire dataset consists of just over 200,000
datapoints.

The actor was asked to perform a variety of actions fifty times in a row,
with a short pause in-between. The actions consisted of two classes, “innocuous”,
for example, pointing to photograph on the wall, and “threatening”, for example,
drawing a replicate firearm from a holster and aiming it. We asked the video
technician who created the dataset to give us the most uneventful session as
a reference time series, and used Tarzan to explore the rest of the data. We
found the three most surprising events, according to our algorithm, and asked the

ngc2503 : 2006/11/10(13:38)

82 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Fig. 12 An experiment in detecting anomalous subsequences from a
video surveillance dataset. A) The first 3 minutes of the video
capture sequence were used as training data. B) The Tarzan
algorithm was then used to search the rest of the dataset to
find the most surprising pattern, which we realigned to begin
at point 1. Only a 3-minute subsection of the entire dataset
is shown C) The level of surprise returned by Tarzan for the
subsequence shown above. It shows a clear peak at three loca-
tions. An explanation of these events is discussed in the main
text

technician to show us the corresponding video sequences. Figure 12(C) shows the
small subsection of the dataset that contains the three most surprising events.

Inspection of video provides an immediate intuitive explanation of the
results, as shown in Figs. 13 and 14. The sequence in B is supposed to record
the actor drawing a replica gun from a hip mounted holster, aiming it at a
target, and returning it to the holster. The entire sequence of events is repeated
approximately fifty times. However, watching the video we discovered that at
about ten seconds into the video, the actor misses the holster when returning
the gun. An off-camera (inaudible) remark is made, and the actor looks toward
the video technician, and convulses with laughter, at one point (frame 385) she
is literally bent double with laughter. This event was the Event 1 discovered by
Tarzan.

The actor quickly regains her composure, and the 50 seconds are unevent-
ful. At that point, the actor looses concentration, draws the gun, but only raises
it half way before returning it to the holster; she pauses briefly to regain her
composure, then realizes that the video technician did not notice her mistake.
She calls out to him, then mimics the mistake she just made. This occurs exactly
where Tarzan discovers the Events 2 and 3. The video technician tells the actor
to “just carry on, ignore it”, and the rest of the video shoot is uneventful.

4) Aerospace Anomaly Detection Benchmarks. We were fortunate enough

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 83

Fig. 13 Stills from the video shoot experiment. (Above) A typical se-
quence starts with the actors’ hands by her sides. She removes
the gun from the holster and aims it at a target. The sequence
concludes with the actor returning the gun to the holster and
her hand to her side (not shown). (Below) The stills corre-
sponding to the Event 1, flagged by Tarzan. When returning
the gun to the holster, the actor misses. She looks at the video
technician, who has made a remark, she smiles and attempts
to continue, but she is not looking at the target, she briefly
convulses with laughter before regaining composure.

to obtain a set of anomaly detection benchmarks from the Aerospace Corp
(TAC). The Aerospace Corp has a unique and crucial responsibility. It is charged
with providing engineering assessments for the engineering discipline specialists
who make the critical go/no-go decision moments before the launch of every un-
manned space vehicle launched by the DoD. The cost of a false positive, allowing
a launch in spite of a fault, or a false negative, stopping a potentially successful
launch, can be measured in the tens of millions of dollars, not including the cost
in morale and other more intangible detriments to the U.S. defense program.
In the hours before a space launch TAC must monitor telemetry from more
than 1,000 sensors. This is currently done having experienced engineers visually
inspect incoming traces; naturally they would like to augment the engineer’s
abilities with a tool that could draw attention to potential anomalies.

As a sanity check for potential anomaly detection algorithms, TAC has
created two benchmark tasks, called Impulse and Sine, respectively. The Impulse
problems are designed to model switching states of electrical systems, and the
Sine problems are designed to model valve systems. Each problem consists of one
reference dataset, and ten datasets that had an artificial anomaly introduced at
a fixed location. Examples of the anomalies include “one cycle additive Gaussian
noise added”, “two cycles frequency halved” and “with one impulse advanced
90◦”, etc. Figure 15 shows a subset of the data.

In our experiments on these benchmarks we did the following. For the
two rival approaches we spent one hour of human time, and one hour of genetic
algorithm CPU time to find the best parameter settings. For our approach

ngc2503 : 2006/11/10(13:38)

84 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

Fig. 14 The Y-axis time series corresponding to the events shown in
Fig. 13. The top two sequences are zoom-ins of sequence B
of Fig. 12. Note that as traditional in video coordinates, the
top of the frame has a Y-value of zero, and the values in-
crease moving down the frame (Above) Four typical examples
of normal gun draw event. (Below) The most surprising sub-
sequences found by the three algorithms under consideration.
The subsequence found by Tarzan has an intuitive explana-
tion. It is not obviously apparent that the subsequence found
by IMM corresponds to a truly surprising subsequence. The
subsequence returned by TSA-Tree contains a dropout (i.e.,
an outlier) at time 8357. As discussed above, outliers are a
simple special case of anomaly. If we remove the outliers by
simple smoothing, the results for Tarzan are unchanged, but
TSA-tree finds an another subsequence which is not obviously
surprising.

we showed a TAC engineer a one-page description of the Tarzan algorithm,
and asked her to set the parameters (without actually allowing her to run any
experiments). We only count Tarzan’s annotation a success if doubling and
halving the parameters also finds the anomalies. Each of the test problems is
of length 1,000 and has its anomaly at time 500. We count an algorithm a
success if it locates its strongest anomaly anywhere between time 450 and 550
(so a random algorithm has a one in ten chance of being correct). Table 5
summarizes the results.

In fairness we note that one of the Sine problems has missing values that
are coded as NaNs. Because SAX codes these as a special character, this was
a trivial problem for Tarzan to solve. Both the other techniques failed on
this problem, because neither has a mechanism for dealing with missing values,
however they could probably be extended for this eventuality.

The previous experiments demonstrate the ability of Tarzan to find sur-

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 85

Fig. 15 A comparison of three anomaly detection algorithms on one
of the Aerospace Benchmark problems. A) The training data,
a slightly noisy sine wave. B) A time series containing a
synthetic anomaly, its location is denoted by the gray bar.
The anomaly is called “L-1M: Sine with amplitude decrease”
C) The IMM anomaly detection algorithm failed to find the
anomaly. D) The TSA-Tree approach is also unable to detect
the anomaly. E) Tarzan shows a strong peak for the duration
of the anomaly.

Table 5 The precision of the three algorithms under consideration on
two sets of artificial anomaly-detection problems created by
The Aerospace Corp.

Impulse (true positives) Sine(true positives)
Tarzan 10 9
TSA-Tree 2 3
IMM 3 4

prising patterns; however, we also need to consider Tarzan’s selectivity. If even
a small fraction of patterns flagged by our approach are false alarms, then, as
we attempt to scale to massive datasets, we can expect to be overwhelmed by
innumerable spurious “surprising” patterns.

In designing an experiment to show selectivity we are faced with the prob-
lem of finding a database which has been carefully annotated by independent
means. Because using a real data set for this task would always be open to
subjective post-hoc explanations of results, we will conduct the experiment on
random walk data.16,32)

By definition, random walk data can contain any possible pattern. In
fact, as the size of a random walk dataset goes to infinity, we should expect
to see every pattern repeated an infinite number of times.19) We can exploit
this property to test our algorithm. Suppose we fix a test dataset XRW to be a
random walk dataset of length 128. If we train Tarzan on another short random
walk dataset, we should expect that the test data would be found surprising,
since the chance that similar patterns exist in the short training database are very
small. However as we increase the size of the training data, the overall measure

ngc2503 : 2006/11/10(13:38)

86 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

128 256 512 1024 2048 4096 8192 16384 32768 65536

av
er

ag
e

of
 |z

(w
)|

|R|

’random.dat’

Fig. 16 The average of |z(w)| of all patterns w found by Tarzan in
a small fixed random walk database XRW when trained on
increasing large random walk datasets. With more experience,
Tarzan finds the patterns less surprising

of surprise of the test data should decrease, since it is more likely that similar
data was encountered. To restate, the intuition is that the more experience our
algorithm has seen random walk data, the less surprising our particular section
of random walk XRW should appear.

We will not consider IMM and TSA-tree in this experiment. IMM is not
defined for arbitrary large random walk datasets (see Section 9), and TSA-tree
does not learn from experience, and thus will have a constant level of surprise.
We tested Tarzan with increasing large reference datasets length 128 to 65,536.
We used a feature window length l1 = 12 and an alphabet size a = 4.

The results are shown in Fig. 16. Note that with little training data, the
average value of |z(w)| is quite high. In other words, the patterns in XRW appear
surprisingly rare because Tarzan has not seen enough training data to build
a general enough model of what to expect when confronted with more random
walk data. However, with more experience, Tarzan finds the patterns in XRW

to be less and less surprising. These results strongly suggest that Tarzan is
able to improve its selectivity as it sees more data.

§9 Related Work
The task of finding surprising patterns in data has been an area of ac-

tive research, which has long attracted the attention of researchers in biol-
ogy, physics, astronomy and statistics, in addition to the more recent work by
the data mining community. The problem, and closely related tasks are var-
iously referred to as the detection of “Aberrant Behavior”,38) “Novelties”,13,43)

“Faults”,59) “Surprises”,10,51) “Deviants”,27) “Temporal Change”,6,18) “Bursts”,37,62)

and “Outliers”.23)

The problem of detecting surprising patterns in discrete domains has re-
ceived the most attention, especially in the context of network intrusion.60) How-
ever, this problem differs from the task discussed in this paper in that the data
is already discrete, it arrives at arbitrary intervals, and typically scalability to

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 87

large datasets is not an important issue. In addition, while the data may be cor-
related, they are atomic units (for example, Unix commands, or ATM transac-
tions), whereas time series data are intrinsically continuous. Various approaches
to this problem have been suggested; many of them reduce to the idea that
surprising patterns should be less compressible than unsurprising ones.10)

In the context of the analysis of biosequences, the search for unexpect-
edly frequent or infrequent substrings is only one component of the broader
quest for interesting patterns of more general kinds. Along these lines, patterns
and families thereof have been variously characterized, and criteria, algorithms
and software developed in correspondence. Without pretending to be exhaus-
tive, we mention Teiresias,50) Gibbs Sampler,40) Meme,5) Winnower,30,48)

Projection,53) Weeder,46) Verbumculus,3,4,42) among others.
Detecting surprising patterns in time series has received much less atten-

tion. There has been some work on novelty detection in time series using neural
networks,7,58) however we do not consider this approach in detail since scalability
is clearly an issue.

A simple approach to monitoring time series is to place a restriction on
the maximum and minimum tolerable values, and to sound an alarm if the sig-
nal ever moves out of this envelope of acceptable behavior. This practice is
referred to as limit-checking. While trivial to implement, the method is known
to have poor sensitivity. A more sophisticated approach involves discrepancy-
checking. The idea here is to use the data observed thus far to predict future
values. Any discrepancy between the two that exceeds a certain tolerance can
be denoted as surprising.8) Of course, this technique is only as good as the
prediction algorithm, and time series prediction is a notoriously difficult prob-
lem. Thus, this method tends to have poor selectivity, producing many false
alarms. In interesting work by Decoste,15) the author integrated both limit-
checking and discrepancy-checking in a single framework, however scalability
to massive datasets remains an issue, and the measure of surprise of an alarm
can only be judged relative to the prediction model, which must be correctly
specified by a domain expert.

Jagadish et al.27) introduced a technique for mining deviants in time series;
however, deviants are “. . . points with values that differ greatly from that of sur-
rounding points”, and thus this work may be considered more of a generalization
of classic outlier detection.23)

In Reference51) and several follow up papers, Shahabi et al. suggest a
method to find both trends and “surprises” in large time series datasets. The
authors achieve this by using a wavelet-based tree structure (TSA-Tree) that can
represent the data at different scales, e.g., the weather trend in last month vs.
last decade. However, the definition of surprise used seems limited to dramatic
shifts in the signal. In particular, this approach is not suitable for detecting
unusual data patterns that hide inside the normal signal range. For example,
the system would not be able to detect if we give it an EEG time series that
we had flipped upside down, since the wavelet-based “surprise” features are
invariant to this transformation of the data.

ngc2503 : 2006/11/10(13:38)

88 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

The immunological based approach of Dasgupta and Forrest,13) is inspired
by the negative selection mechanism of the immune system, which discriminates
between self and non-self. In this case self is the model of the time series
learned from the reference dataset, and non-self are any observed patterns in
the new dataset that do not conform to the model within some tolerance. A
major limitation of the approach is that it is only defined when the space of
self is not exhaustive. However, if you examine enough random walk data (or
financial data, which is closely modeled by random walk16)), self rapidly becomes
saturated with every possible pattern, and thus non-self is the null set, and
nothing encountered thereafter is considered surprising.

§10 Conclusions
In this paper we introduced Tarzan, an algorithm that detects surprising

patterns in a time series database in linear space and time. Our definition of
surprising is general and domain independent, and flags a pattern to be surprising
if the frequency with which we observe it differs greatly from that expected given
previous experience. We compared it to two other algorithms on both real and
synthetic data, and found it to have much higher sensitivity and selectivity.

Although the ability of Tarzan to find surprising patterns without user
intervention is a great advantage, we intend to investigate the possibility of incor-
porating user feedback and domain based constraints. A current trend in reduc-
ing the number of parameters in data mining algorithms35) could enlist Tarzan
among the parameter-light methods. Tarzan is certainly not parameter-free.
The discretization and the dimensionality reduction have a few key parameters,
as well as Tarzan itself.

We conclude by noting that here we have concentrated the attention solely
on the intricacies of finding the surprising patterns, without addressing the many
meta-questions that arise. For example, the possible asymmetric costs of false
alarms and false dismissals, and the actionability of discovered knowledge.18) We
intend to address these issues in future work.

Acknowledgements
A preliminary version of this work was presented at the Eighth ACM

SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD ’02), Edmonton, Alberta, Canada, and included in its Proceedings, pp. 550-
556, ACM press (2002). A portion of Section 3 of this paper was presented at the
8th ACM SIGMOD Workshop on Research Issues in Data Mining and Knowl-
edge Discovery and included in its Proceedings, pp. 2-11 (2003).

This project was supported in part by NSF CAREER IIS-0447773, NSF
CAREER IIS-0237918, and NSF DBI-0321756.

The authors would like to thank Bhrigu Celly, Chotirat Ann Ratanama-
hatana and Victor Zordan for their help with the video data experiment, and
Michalis Vlachos and Ahmet Bulut for their useful comments and suggestions.

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 89

References
1) Agrawal, R., Faloutsos, C., and Swami, A, “Efficient Similarity Search in Se-

quence Databases,” in Proc. of the 4th Int’l Conference on Foundations of Data
Organization and Algorithms, pp. 69–84, Chicago, IL, 1993.

2) Andre-Jonsson, H. and Badal D.Z., “Using Signature Files for Querying Time-
series Data,” in Proc. of Principles of Data Mining and Knowledge Discovery,
1st European Symposium, pp. 211–220, Trondheim, Norway, 1997.

3) Apostolico, A., Bock, M.E. and Lonardi, S., “Monotony of Surprise and Large-
scale Quest for Unusual Words,” J. Comput. Bio., 10, 3–4, pp. 283–311, 2003.

4) Apostolico, A., Bock, M. E., Lonardi, S. and Xu, X., “Efficient Detection of
Unusual Words,” J. Comput. Bio., 7, 1/2, pp. 71–94, Jan., 2000.

5) Bailey, T.L. and Elkan, C., “Unsupervised Learning of Multiple Motifs in
Biopolymers Using Expectation Maximization,” Machine Learning, 21, 1/2,
pp. 51–80, 1995.

6) Blockeel, H., Furnkranz, J., Prskawetz, A. and Billari, F.C., “Detecting Tem-
poral Change in Event Sequences: An Application to Demographic Data,” in
Proc. Principles of Data Mining and Knowledge Discovery, pp. 29–41, 2001.

7) Borisyuk, R., Denham, M., Hoppensteadt, F., Kazanovich, Y. and Vinogradova,
O., “An Oscillatory Neural Network Model of Sparse Distributed Memory and
Novelty Detection,” BioSystems, 58, pp. 265-272, Jan., 2000.

8) Brutlag, J.D., “Aberrant Behavior Detection in Time Series for Network Service
Monitoring,” in Proc. of the 14th Systems Administration Conference, Berkeley,
CA, Dec., 3–8, 2000, pp. 139-146, The USENIX Association.

9) Celly, B., Ratanamahatana, C.A., and Zordan, V., “A Novel Technique for
Indexing Video Surveillance Data,” submitted for publication, 2003.

10) Chakrabarti, S., Sarawagi, S., and Dom, B., “Mining Surprising Patterns Using
Temporal Description Length,” in Proc. 24th Int. Conf. Very Large Data Bases,
pp. 606–617, 1998.

11) Chan, K., and Fu, A.W., “Efficient Time Series Matching by Wavelets,” in Proc.
of the 15th IEEE Int’l Conference on Data Engineering, pp. 126–133, 1999.

12) Das, G., Lin, K.-I., Mannila, H., Renganathan, G., and Smyth, P., “Rule Discov-
ery from Time Series,” in Proc. of the 4th International Conference of Knowledge
Discovery and Data Mining, AAAI Press, pp. 16–22, 1998.

13) Dasgupta, D., and Forrest, S., “Novelty Detection in Time Series Data Using
Ideas from Immunology,” in Proc. of The International Conference on Intelligent
Systems, 1999.

14) Daw, C.S., Finney, C.E.A. and Tracy, E.R., “Symbolic Analysis of Experimental
Data,” Review of Scientific Instruments, 2001.

15) Decoste, D., “Mining Multivariate Time-series Sensor Data to Discover Behavior
Envelopes,” in Proc. Knowledge Discovery and Data Mining, pp. 151–154, 1997.

16) Faloutsos, C., Ranganathan, M., and Manolopoulos, Y., “Fast Subsequence
Matching in Time-series Databases,” SIGMOD Record (ACM Special Interest
Group on Management of Data), 23, 2, pp. 419–429, June, 1994.

17) Farach, M., “Optimal Suffix Tree Construction with Large Alphabets,” in Proc.
38th Annual Symposium on Foundations of Computer Sciencepp, pp. 137–143,
Oct., 1997.

ngc2503 : 2006/11/10(13:38)

90 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

18) Fawcett, T., and Provost, F., “Activity Monitoring: Noticing Interesting
Changes in Behavior,” in Proc. Fifth ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining,, pp. 53–62, 1999.

19) Feller, W., An Introduction to Probability Theory and its Applications, Wiley,
New York, 1968.

20) Forsyth, D. and Ponce, J., Computer Vision: A Modern Approach, Prentice-
Hall, 2001.

21) Ge, X. and Smyth, P., “Deformable Markov Model Templates for Time-series
Pattern Matching,” in Proc. of the 6th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-00), pp. 81–90, 2000.

22) Gusfield, D., Algorithms on Strings, Trees, and Sequences: Computer Science
and Computational Biology, Cambridge University Press, 1997.

23) Hawkins, D.M., Identification of Outliers, Monographs on Applied Probability &
Statistics, Chapman and Hall, London, 1980.

24) Huang, Y.-W. and Yu, P., “Adaptive Query Processing for Time-series Data,”
in Proc. Fifth ACM SIGKDD International Conference on Knowledge Discovery
and Data Mining (S. Chaudhuri and D. Madigan eds.), pp. 282–286, ACM Press,
Aug., 1999.

25) Hui, L.C.K., “Color Set Size Problem with Applications to String Matching,” in
Proc. of the 3rd Annual Symposium on Combinatorial Pattern Matching (Tuc-
son, AZ, 1992), (A. Apostolico, M. Crochemore, Z. Galil and U. Manber, eds.),
LNCS644, Springer-Verlag, Berlin, pp. 230–243.

26) Jagadish, H.V., Kapitskaia, O., Ng, R.T. and Srivastava, D., “One-dimensional
and Multi-dimensional Substring Selectivity Estimation,” VLDB Journal 9, 3,
pp. 214–230, 2000.

27) Jagadish, H.V., Koudas, N. and Muthukrishnan, S. “Mining Deviants in a Time
Series Database,” in Proc. 25th International Conference on Very Large Data
Bases, pp. 102–113, 1999.

28) Jagadish, H.V., Ng, R.T. and Srivastava, D., “Substring Selectivity Estimation,”
in Proc. of PODS, pp. 249–260, 1999.

29) Kalpakis, K., Gada, D. and Puttagunta, V., “Distance Measures for Effective
Clustering of Arima Time-series,” in Proc. of the 2001 IEEE International Con-
ference on Data Mining, pp. 273–280, San Jose, CA, 2001.

30) Keich, U. and Pevzner, P.A., “Finding Motifs in the Twilight Zone,” in An-
nual International Conference on Computational Molecular Biology, pp. 195–
204, Washington, DC, Apr., 2002.

31) Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S., “Dimensionality
Reduction for Fast Similarity Search in Large Time Series Databases,” Journ.
of Knowledge and Information Systems, 3, 3, pp. 263–286, 2000.

32) Keogh, E., Chakrabarti, K., Pazzani, M. and Mehrotra, S., “Locally Adaptive
Dimensionality Reduction for Indexing Large Time Series Databases,” SIGMOD
Record (ACM Special Interest Group on Management of Data), 30, pp. 2151–
162, June, 2001.

33) Keogh, E. and Kasetty, S., “On the Need for Time Series Data Mining Bench-
marks: A Survey and Empirical Demonstration,” in ACM SIGKDD Interna-
tional Conference on Knowledge Discovery and Data Mining, pp. 102-111, Ed-
monton, Alberta, Canada, 2002.

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 91

34) Keogh, E., Lonardi, S. and Chiu, B., “Finding Surprising Patterns in a Time
Series Database in Linear Time and Space,” in Proc. of ACM SIGKDD Inter-
national Conference on Knowledge Discovery and Data Mining (KDD’02), pp.
550–556, Edmonton, Alberta, Canada, July, 2002.

35) Keogh, E., Lonardi, S. and Ratanamahatana, C.A., “Towards Parameter-free
Data Mining,” in Proc. of ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining (KDD’04), pp. 206–215, Seattle,WA, 2004.

36) Keogh, E. and Pazzani, M., “An Enhanced Representation of Time Series Which
Allows Fast and Accurate Classifcation, Clustering and Relevance Feedback, in
Proc. 4th International Conference on Knowledge Discovery and Data Mining,
pp. 239–241, 1998.

37) Kleinberg, J., “Bursty and Hierarchical Structure in Streams,” in Proc. of ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining
(KDD’02), Edmonton, Alberta, Canada, July, 2002.

38) Kotsakis, E. and Wolski, A., “Maps: A Method for Identifying and Predicting
Aberrant Behaviour in Time Series,” in Proc. 14th Internat. Conf. on Industrial
and Engineering Applications of Artificial Intelligence and Expert Systems, 2001.

39) Krishnan, P., Vitter, J.S. and Iyer, B., Estimating Alphanumeric Selectivity in
the Presence of Wildcards,” in Proc. of SIGMOD, pp. 282–293, 1996.

40) Lawrence, C.E., Altschul, S.F., Boguski, M.S., Liu, J.S., Neuwald, A.F. and
Wootton, J.C., “Detecting Subtle Sequence Signals: A Gibbs Sampling Strategy
for Multiple Alignment,” Science, 262, pp. 208–214, Oct., 1993.

41) Lin, J., Keogh, E., Lonardi, S. and Chiu, B., “A Symbolic Representation of
Time Series with Implications for Streaming Algorithms,” in Proc. of the 8th
ACM SIGMOD Workshop on Research Issues in Data Mining and Knowledge
Discovery, pp. 2–11, San Diego, CA, 2003.

42) Lonardi, S., “Global Detectors of Unusual Words: Design, Implementation, and
Applications to Pattern Discovery in Biosequences,” Ph.D. thesis, Department
of Computer Sciences, Purdue University, August 2001.

43) Ma, J. and Perkins, S., “Online Novelty Detection on Temporal Sequences,”
in Proc. International Conference on Knowledge Discovery and Data Mining
(KDD’03), Washington, DC, 2003.

44) Mccreight, E.M., “A Space-economical Suffix Tree Construction Algorithm,” J.
Assoc. Comput. Mach., 23, 2, pp. 262–272, Apr. 1976.

45) Moody, G., Muldrow, W. and Mark, R.G., “A Noise Stress Test for Arrhythmia
Detectors,” Computers in Cardiology 11, pp. 381–384, 1984.

46) Pavesi, G., Mauri, G. and Pesole, G., “An Algorithm for Finding Signals of
Unknown Length in DNA Sequences,” in Proc. of the International Conference
on Intelligent Systems for Molecular Biology, pp. S207–S214, AAAI press, Menlo
Park, CA, 2001.

47) Perng, C., Wang, H., Zhang, S. and Parker, S., “Landmarks: A New Model for
Similarity-based Pattern Querying in Time Series Databases,” in Proc. of 16th
International Conference on Data Engineering, 2000.

48) Pevzner, P.A. and Sze, S.-H., “Combinatorial Approaches to Finding Subtle
Signals in DNA Sequences, in Proc. of the International Conference on Intelli-
gent Systems for Molecular Biology, pp. 269–278, AAAI press, Menlo Park, CA,
2000.

ngc2503 : 2006/11/10(13:38)

92 S. Lonardi, J. Lin, E. Keogh and B.Y. Chiu

49) Reinert, G., Schbath, S. and Waterman, M.S., “Probabilistic and Statistical
Properties of Words: An Overview,” J. Comput. Bio., 7, pp. 1–46, 2000.

50) Rigoutsos, I. and Floratos, A., “Combinatorial Pattern Discovery in Biological
Sequences: The TEIRESIAS Algorithm,” Bioinformatics, 14, 1, pp. 55–67,
1998.

51) Shahabi, C., Tian, X. and Zhao, W., “Tsa-tree: A Wavelet-based Approach to
Improve the Efficiency of Multi-level Surprise and Trend Queries,” in Proc. 12th
International Conference on Scientific and Statistical Database Management,
2000.

52) Struzik, Z.R., and Siebes, “A. Measuring Time Series Similarity through Large
Singular Features Revealed with Wavelet Transformation,”. in Proc. of the 10th
International Workshop on Database & Expert Systems Applications, pp. 162–
166, 1999.

53) Tompa, M. and Buhler, J., “Finding Motifs Using Random Projections,” in
Annual International Conference on Computational Molecular Biology, pp. 67–
74, Montreal, Canada, Apr., 2001.

54) Ukkonen, E., “On-line Construction of Suffix Trees,” Algorithmica, 14, 3, pp.
249–260, 1995.

55) Van Wijk, J.J. and Van Selow, E.R., “Cluster and Calendar-based Visualization
of Time Series Data,” in Proc. IEEE Symposium on Information Visualization,
pp. 4–9, Oct., 25–26, 1999.

56) Vlachos, M., Kollios, G. and Gunopulos, D., “Discovering Similar Trajectories,”
in 18th IEEE International Conf. on Data Engineering, San Jose, CA, 2002.

57) Weiner, P., “Linear Pattern Matching Algorithm,” in Proc. of the 14th Annual
IEEE Symposium on Switching and Automata Theory, pp. 1–11, Washington,
DC, 1973.

58) Whitehead, B. and Hoyt, W.A., “A Function Approximation Approach
to Anomaly Detection in Propulsion System Test Data,” in Proc.
AIAA/SAE/ASME/ASEE 29th Joint Propulsion Conference, Monterey, CA,
June 1993.

59) Yairi, T., Kato, Y. and Hori, K., “Fault Detection by Mining Association Rules
from House-keeping Data,” in Proc. of International Symposium on Artificial
Intelligence, Robotics and Automation in Space, 2001.

60) Yang, J., Wang, W. and Yu, P., “Info-miner: Mining Surprising Periodic Pat-
terns,” in Proc. of the 7th ACM SIGKDD International Conference on Knowl-
edge Discovery and Data Mining, pp. 395–400, 2001.

61) Yi, B.K. and Faloutsos, C., “Fast Time Sequence Indexing for Arbitrary Lp
Norms,”. in Proc. of the 26st Intl. Conference on Very Large Databases, pp.
385–394, 2000.

62) Zhu, Y. and Shasha, D., Efficient Elastic Burst Detection in Data Streams.

ngc2503 : 2006/11/10(13:38)

Efficient Discovery of Unusual Patterns in Time Series 93

Stefano Lonardi, Ph.D.: He is Assistant Professor at University of

California, Riverside, CA. He received his “Laurea cum laude”

from University of Pisa in 1994 and his Ph.D. in 2001 from

the Department of Computer Sciences, Purdue University, West

Lafayette, IN. He also holds a doctorate degree from University of

Padua (1999). In 2005, he received the CAREER award from Na-

tional Science Foundation. His recent research interest includes

algorithms, computational molecular biology, and data mining.

Jessica Lin, Ph.D.: She is an assistant professor of Information

and Software Engineering in George Mason University. She re-

ceived her PhD in Computer Science from the University of Cali-

fornia, Riverside. Her research interests include data mining and

informational retrieval.

Eamonn Keogh: He is an assistant professor at the University of

California, Riverside. His research interests are machine learning,

information retrieval and techniques for solving similarity and

indexing problems in time-series datasets.

Bill ‘Yuan-chi’ Chiu: He is a graduate student at University of

California, Riverside. His research interests are evolutionary al-

gorithms, reinforcement learning algorithms, physic-based char-

acter animation, and high-level behavior synthesis using motion-

captured data.

