
Knowl Inf Syst
DOI 10.1007/s10115-012-0508-7

REGULAR PAPER

MDL-based time series clustering

Thanawin Rakthanmanon · Eamonn J. Keogh ·
Stefano Lonardi · Scott Evans

Received: 11 December 2011 / Revised: 23 March 2012 / Accepted: 7 April 2012
© Springer-Verlag London Limited 2012

Abstract Time series data are pervasive across all human endeavors, and clustering is
arguably the most fundamental data mining application. Given this, it is somewhat surpris-
ing that the problem of time series clustering from a single stream remains largely unsolved.
Most work on time series clustering considers the clustering of individual time series that
have been carefully extracted from their original context, for example, gene expression pro-
files, individual heartbeats, or individual gait cycles. The few attempts at clustering time
series streams have been shown to be objectively incorrect in some cases, and in other cases
shown to work only on the most contrived synthetic datasets by carefully adjusting a large set
of parameters. In this work, we make two fundamental contributions that allow for the first
time, the meaningful clustering of subsequences from a time series stream. First, we show
that the problem definition for time series clustering from streams currently used is inherently
flawed, and a new definition is necessary. Second, we show that the minimum description
length framework offers an efficient, effective, and essentially parameter-free method for
time series clustering. We show that our method produces objectively correct results on a
wide variety of datasets from medicine, speech recognition, zoology, gesture recognition,
and industrial process analyses.

Keywords Time series · Clustering · MDL

T. Rakthanmanon (B) · E. J. Keogh · S. Lonardi
Department of Computer Science and Engineering, University of California, Riverside,
Riverside, CA 92521, USA
e-mail: rakthant@cs.ucr.edu

E. J. Keogh
e-mail: eamonn@cs.ucr.edu

S. Lonardi
e-mail: stelo@cs.ucr.edu

S. Evans
GE Global Research, Niskayuna, NY, USA
e-mail: evans@ge.com

123

T. Rakthanmanon et al.

1 Introduction

Time series data are pervasive across almost all human endeavors, including medicine,
finance, science, and entertainment. As such it is hardly surprising that it has attracted signif-
icant attention in the research community [1,4,25,33]. Given the ubiquity of clustering both
as a data mining application in its own right and as a subroutine in other higher-level data
mining applications (i.e., summarization, outlier discovery, rule-finding, preprocessing for
some classification algorithms etc.), it is surprising that the problem of time series cluster-
ing from a single time series stream remains largely unsolved, in spite of significant efforts
by the community [1,4,33]. Most work on time series clustering considers the clustering of
individual time series that have been carefully extracted from their original context, say, gene
expressions, or extracted signals such as individual heartbeats. The few attempts at clustering
the contents of a single time series stream have been shown to be objectively incorrect in some
cases [18], and in other cases shown to work only on the most contrived datasets by carefully
adjusting a large set of parameters. In this work, we make two fundamental contributions.
First, we show that the problem definition for time series clustering from streams currently
used is inherently flawed. Any meaningful algorithm must avoid trying to cluster all the
data. In other words, the subsequences of a time series should only be clustered if they are
clusterable. This seems to open up a “chicken and egg” paradox. However, our second contri-
bution is to show that the minimum description length (MDL) framework offers an efficient,
effective, and essentially parameter-free solution to this problem. MDL has had a significant
impact in bioinformatics and data mining of discrete objects such as natural language [15]
but has yet failed to have a significant impact on real-valued data mining [14,22,28].

We begin by giving the intuition behind the fundamental observation that motivates and
informs our work that clustering of time series from a single stream of data requires ignoring
some of the data.

1.1 Why clustering time series streams requires ignoring some data

The observation motivating our efforts to cluster time series is that any attempt that insists
on trying to explain all the data is doomed to failure. To see this, consider one of the most
obviously “clusterable” time series data sources: motion-captured sign language, such as
American Sign Language (ASL). There has been much recent work on nearest-neighbor
classification of such data, with accuracies greater than 90 % frequently reported [1]. This
suggests that a long data stream of ASL might be amenable to clustering, where each cluster
maps to a distinct “word” or “phrase.”

However, all such data contain movement epenthesis (ME) [8,33]. During the production
of a sign language sentence, it is often the case that a movement segment needs to be inserted
between two consecutive signs to move the hands from the end of one sign to the beginning
of the next. These ME segments can be as long as—or even longer than—the true signs and
are typically not performed with the precision or repeatability of the actual words, since they
have no meaning. Recent sophisticated sign language recognition systems for continuous
streams have begun to recognize that “automated sign recognition systems need a way to
ignore or identify and remove the movement epenthesis frames prior to translation of the
true signs” [33].

What we observed about ASL as a concrete and intuitive example matches our experience
with dozens of other datasets and indicates that this is a pervasive phenomenon. We believe
that almost all datasets have sections of data that do not represent a discrete underlying
behavior, but simply a transition between behaviors or random drifts where no behavior is

123

MDL-based time series clustering

Three clusters of equal diameter when K = 20

{whoid, davud, njoin, dovid, david}
{ified, frien, oined, oiden, viden, vidan}
{todow, todov, sonof}

Three clusters of equal diameter when K = 40

{avuds, ovida, avide}
{davud, dovid, david}
{nofpe, nedpe, andpe}

Fig. 1 Representative partitional clusters from dataset D for two settings of K

taking place. In most datasets that we have examined, such sections constitute the majority
of the data. If we are forced to try to model these in our clusters, they will swamp the true
significant clusters. We can best demonstrate this effect and hint at our proposed solution by
an experiment on a discrete analog of ASL time series, in this case English text.

We emphasis that this is just a expository example, and if we were really assigned to
cluster such text data, we could do better than the attempt shown below.

Consider the following string D, which from left to right mentions three versions of
the name David (English, Persian, Yiddish) and three versions of the name Peter (English,
Croatian, Danish). Note that all names have five letters each, making this problem apparently
simple.

Here, the words between the names are exactly the epenthesis previously referred to. To
make it more like our time series problem, we can strip out the punctuation and spacing,
leaving us:

The discrete analog of the time series clustering algorithm in [10] would begin by extract-
ing all the subsequences of a given fixed length. Let us assume for simplicity the length five
is used, and thus, the data are transformed into:

david
avide
viden
idenj
. . .

owhat

In Fig. 1, we show representative clusters for two values of K , if we perform partitional
clustering as in [10] on this extracted data.

Note that while the cluster of the name variants of David is discovered, we find that under
any setting of K , there are equally significant meaningless clusters, for example {nofpe,
nedpe, andpe}. This is in spite of the fact that this can be considered a particularly easy
task. Exactly 40 % of the signal consists of data we hope to recover, and we deliberately
avoided name variants of different lengths (i.e., pieter, pere). In more realistic settings, we
expect much less of the data to contain meaningful signals. Note also that the problem is not
mitigated by using other clustering variants. The problem is inherent in the false assump-
tion that a clustering of a single stream that must explain all such data could ever produce
meaningful results [18].

123

T. Rakthanmanon et al.

1.2 How MDL can help

In contrast to the previous section, it is instructive to see what our proposed algorithm will
do in this case. While the details of our algorithm are not introduced until Sect. 4, we can
still outline the basic intuition here.

The original string D has a bit-level representation whose length we denote as DL(D). Our
algorithm can be imagined as attempting to losslessly compress the data by finding repeated
structure in it. As there is little exactly repeated structure, we must find approximately repeated
structure and encode the differences. For example, if we find the approximately repeated ver-
sions of the name “david,” we can think of one version as being a model or hypotheses for
the data and encode only the difference between the other occurrences:

In terms of MDL, we can see david as a partial hypothesis H1 or description of the data. This
model has some size, which is simply the length in bits of the word DL(H1) = DL(david).
In addition, the size of the remaining data was both reduced by factoring out the common
structure and (slightly) increased by the overhead of the pointers to the dictionary, etc.1 When
encoded with the hypothesis, the length (in bits) of the description of the data is given as
DL(D|H1). The total cost of both the hypothesis and the data encoded using the hypothesis
is just DL(H1) + DL(D|H1).

Because this sum is less than the length of the original data DL(D), we feel that we are
making progress. Perhaps, however, there is more structure we can exploit. A brief inspection
of the data suggests another model, H2, that exploits both repeated names:

Because DL(H2) + DL(D|H2) < DL(H1) + DL(D|H1), we prefer this new hypothesis
as a model of the data.

Are we now done? We can try other hypotheses. For example, we could consider the
hypothesis H3 = {1:david 2:peter 3:ono}, attempting to exploit the two occurrences of a
pattern “o*o” (i.e.,..sonof.. and ..to do..). However, because this pattern is short, and only has
two occurrences, we cannot break even with the cost of the overhead:

DL(H2) + DL(D|H2) < DL(H3) + DL(D|H3)

Because we cannot find any other hypotheses that produce a smaller model, we invoke the
MDL principle to claim that H2 = {1:david 2:peter} is the best model of the data D. Here,
best means something beyond simply achieving the greatest compression. We can claim
that MDL approach has achieved the most parsimonious explanation of the data, recover-
ing the true underlying structure [9,13,15,16,21]. In at least this case, where the sentence
was contrived as an excuse to use two names trice, MDL did recover the true underlying
structure.

1 In this toy example, we are deliberately glossing over the concrete details of how the pointers are represented
and how the amount compression achieved is measured, etc. [21]. We will formalize these details in Sect. 3.

123

MDL-based time series clustering

Note that while our informally stated algorithm does manage to recover the two embedded
clusters, it does not attempt to explain all of the data. This is a critical observation, in order
to cluster a single stream of data, be it discrete or real-valued, we must be able to represent
and rank solutions that ignore some of the data.

2 Related work

The tasks of clustering multiple time series streams, or many individual time series (i.e., gene
expressions) have received significant attention, but the solutions do not inform the problem
we consider here, the task of clustering a single time series stream. The most commonly
referenced technique for clustering a single time series stream is presented in [10] as a sub-
routine for rule discovery in time series. In essence, the method slides a fixed length window
across the stream, extracting all subsequences that are then clustered with K -Means. The
reader may have already spotted a flaw here; the algorithm tries to explain all the data. In
[18] (and follow-up works by more than twenty other authors [5,6,11]), it was shown that this
method can only produce cluster centers that are sine waves, and the output of the algorithm
is essentially independent of the input. Note that even if the algorithm did not have these fatal
flaws, it assumes the cluster all have equal length and that we know the correct value of K .
As we shall show, our method requires neither assumption.

Since the problem with [10] was pointed out in 2005 [18], at least a dozen solutions have
been proposed. In Sect. 5.3, we show that the most referenced of these works [6] does not
produce objectively correct results, even after extensive parameter tuning by the original
authors on a relatively simple problem.

While there have been some efforts to use MDL with time series [26,30], they all operate
on a quantized representation of the data. This has the disadvantage of requiring three param-
eters (cardinality, dimensionality, and window size), eliminating the greatest advantage of
MDL, its intrinsically parameter-free nature.

While MDL has had surprisingly little impact in data mining, it is a tool of choice for many
bioinformatics problems. For example, working with RNA data, Evans et. al. have proposed
a method using data compression and the MDL principle that is capable of identifying motif
sequences, some of which were discovered to be miRNA target sites implicated in breast
cancer [13]. Moreover, the authors showed the generality of their ideas by applying them,
unmodified, to the problem of network traffic anomalies [14]. There is also a significant
work on using MDL to mine graphs [16,25], dating back to classic work by Cook et al.
[9].

Finally, we note that the task was informed by, and may have implications for many other
time series problems, including time series segmentation2 [4]. To see why, let us revisit the
technique of text analogy. It is not obvious how one should segment the three concatenated
words “hisabasiais,” Perhaps the best we could do is to exploit the known frequencies
of bigrams and trigrams, etc. In fact, most time series segmentation algorithms essentially
do the real-valued equivalent of this [4]. However, if we see another such triplet of three
concatenated words from later in the same stream, for example “withoutabasiais,” we
can immediately see that “abasia” must be a word.3

2 The phrase “time series segmentation” is unfortunately overloaded. It can mean approximating the data
with the smallest number of piecewise polynomial segments for a given error threshold, or as here; extracting
small, discrete, semantically meaningful segments of data [4].
3 Abasia is the inability to walk due to impaired muscle coordination.

123

T. Rakthanmanon et al.

3 Background and notation

3.1 Definitions and notation

We begin by defining the data type of interest, time series:

Definition 1 A time series T is an ordered list of numbers. T = t1, t2, . . . , tm . Each value
ti can be any finite number (e.g., for two-byte values, they could be integers in range
[−32, 768, 32, 767]) and m is the length of time series T .

Before continuing, we must make and justify a choice. The MDL technique that is at the
heart of our algorithm requires discrete data, but most time series datasets use four or eight
bytes per value and are thus real-valued [23]. Our solution is simply to cast the real-valued
numbers into a reduced cardinality version. Does such a reduction lose meaningful informa-
tion? To test this, we did one nearest-neighbor classification on eighteen public time series
datasets, for cardinalities from the original four bytes down to a single bit. Figure 2 shows the
results. As we can see, we can drastically reduce cardinality without reducing accuracy. The
original four-byte cardinality is typically a by-product of file format convention or hardware
specification, and not a claim as to the intrinsic cardinality of the data.

We note that there may be other things we could have done. For example, the MML
framework [32] that is closely related to MDL would allows us to work in original contin-
uous space. However, we choose MDL because it is more familiar and it allows for a more
intuitive explanation of our algorithms. Likewise, we have at least a dozen choices of how
to discretize the time series (adaptive binning, uniform binning, SAX, etc.); however, after
testing all published algorithms and finding it made little or no difference, we settled on the
simple idea shown below in Definition 3.

Based on the observations in Fig. 2, we will simply use 64-value (6-bit) cardinality in the
rest of this work.

While the source data are one long time series, we ultimately wish to cluster it into sets
of shorter subsequences:

Definition 2 A subsequence Ti,k of a time series T is a short time series of length k that
starts from position i . Formally, Ti,k = ti , ti+1, . . . , ti+k−1, 1 ≤ i ≤ m − k + 1.

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Deceasing Cardinality

C
lassification A

ccuracy

Fig. 2 Classification accuracy on 18 time series datasets as a function of the data cardinality. Even if we
reduce the cardinality of the data from the original 4,294,967,296 to a mere 64 (vertical bar), the accuracy
does not decrease

123

MDL-based time series clustering

As we previously noted, we are working in a space of reduced cardinality. Because
comparing time series with different offsets and amplitudes is meaningless [18], we must
(slightly) adapt the normalization process for our discrete representation:

Definition 3 A discrete normalization function DNorm is a function to normalize a real-
valued subsequence T into b-bit discrete value of range [1, 2b]. It is defined as followings:

DNorm(T) = round

((
T − min

max − min

)
×

(
2b − 1

))
+ 1

where min and max are the minimum and maximum value in T , respectively.

Based on the results in Fig. 2, b is fixed at 6 for all experiments. We need to define a
distance measure; we use the ubiquitous Euclidean distance measure:

Definition 4 The distance between two subsequences Ti,k and Tj,k is the Euclidean distance
(ED) between Ti,k and Tj,k . Both subsequences must be in the same length. Hence, it is:

Dist(Ti,k, Tj,k) =
√√√√k−1∑

l=0

(
ti+l − t j+l

)2

As we shall see later, the Euclidean distance is not general enough to support clustering from
time series streams; nevertheless, it is still a useful subroutine to speed up our more gen-
eral measures. As generally noted [3,19,31,34], the Euclidean distance is a fast and robust
distance measure.

For both the full time series T and any subsequences derived from it, we are interested in
knowing how many bits are necessary to represent it. Normally, the number of bits depends
solely on the data format, which is typically a reflection of some arbitrary choices of hardware
and software. In contrast, we are interested in knowing the minimum number of bits to exactly
represent the data. In the general case, this number is not calculable, as it is the Kolmogorov
complexity of the time series [22]. However, there are numerous ways to approximate this,
using Huffman coding, Shanon–Fano coding, etc. Because entropy is a lower bound on the
average code length from any such encoding, we can use the entropy of the time series as its
description length:

Definition 5 The entropy of a time series T is defined as following. For special case when
P = 0, P log2 P is defined as 0.

H (T) = −
∑

t

P (T = t) log2 P(T = t)

We can now define the description length of a time series.

Definition 6 A description length DL of a time series T of length m is the total number of
bits required to represent it, that is DL(T) = m ∗ H(T).

The DL of a time series using entropy clearly depends on the data itself, not just arbitrary
representational choices. Figure 3 shows four time series, which all require 250 bytes to char-
acterize in the original representation, but which have differing entropies and thus different
description lengths.

The reader may have anticipated the following observation. While the (slightly noisy)
straight line B has high entropy, we would subjectively consider it a simple shape. It is

123

T. Rakthanmanon et al.

0 50 100 150 200 250

A

0

250

B

C

D

Fig. 3 Four time series of length 250 and with a cardinality of 256. Naively all require 250 bytes to represent,
but they have different description lengths

0 50 100 150 200 250

0

250

B H

B’ which is B-H, denoted as
B’ is B given H
B’ = (B|H)

Fig. 4 Time series B can be represented exactly as the sum of the straight line H and the difference
vector B′

simple given our belief (hypothesis) that it is a slightly corrupt version of a straight line. If
H is this hypothesis, then we can consider instead the entropy of a time series B ′, which as
shown in Fig. 4 is simply B encoded using H and written as B ′ = (B|H). As a practical
matter, to use H to encode B, we simply subtract H from B to get a difference vector B ′ and
encode this simpler vector B ′.

While the vector B ′ is also of length 250, it has only 10 unique values, all of which are
small in magnitude; thus, its entropy rate is only 2.51 bits. In contrast, B has 172 unique
values and an entropy rate of 7.29. Note that if we are given only B ′, we cannot reconstruct B;
we also need to know the slope and mean of the line. Thus, when reporting the overall number
of bits for B ′, we must also consider the number of bits it takes to encode the hypothesis
(the line H). We can encode the line simply by recording the heights’ two locations, the first
and last points,4 each of which requires a single byte. Thus, the number of bits required to
represent B using our hypothesis is:

DL(B) = DL(H) + DL(B|H) = (2 ∗ 8) + (250 ∗ 2.51) = 643.5 bits

which is significantly less than the 1,822 bits required for the naive encoding of B without
any hypothesis.

Note the straight line would not help in reducing the number of bits required to represent
time series C , but using a sine wave as the hypothesis would significantly help. This obser-
vation inspired one of the principle uses of MDL, model section [28]. Statisticians use this
principle to decide whether some noisy observations suggest an underlying physical model
is produced by, say, a piecewise linear model as opposed to a sinusoidal model. However, our
work leverages off a simple but unexploited observation. The hypotheses are not limited to
well-defined functions such as sine waves, wavelet basis functions, polynomial models, etc.
The hypothesis model can be any arbitrary time series. We will see how this observation can
be exploited in detail later, but in brief: if k subsequences of a stream truly form a cluster,
then it should be possible to store them in less space by encoding them as a set of difference

4 If we know the time series is z-normalized, we only need one byte to record the line.

123

MDL-based time series clustering

vectors to the mean of all of them. Thus, we have a potential test to guide our search for
clusters.

Having seen this intuition, we can now formalize the notion of hypothesis as it pertains to
our problem:

Definition 7 A hypothesis H is a subsequence used to encode one or more other subsequences
of the same length.

As a practical matter, the encoding we use is the one visualized Fig. 4, we simply subtract
hypothesis H from the target subsequence(s) and encoded the difference vector(s). We could
encode the difference vector(s) with, say, Huffman encoding, but as we noted in Definition 5,
we really only care about the size of the encoding, so we simply measure the entropy of the
difference vector(s) to get a lower bound of the size of encoding.

A necessary (but not sufficient) condition to place two subsequences H and B into the
same cluster is:

DL(B) > DL(B|H)

This inequality requires that the subsequence B takes fewer bits to represent when H is used
as a basis to encode it, encoding the intuition that the two subsequences are related or similar.

We can hint at the utility of thinking about our data in terms of hypothesis encoding by
revisiting our text example. When a clustering text stream, would it be better to merge A
or B?

A = {david,dovid}, B = {petersmith,petersmidt}
The first case allows a tight cluster of two short words, is that better than a looser but longer
cluster B? The problem is exacerbated when we consider the possibility of clusters with more
than two members: how would we rank the relative utility of the tentative cluster C = {bob,
rob, hob}?

Normally, clustering decisions are made by considering Euclidean distance (or its text
counterpart, Hamming distance); however, Euclidean distance only allows meaningful com-
parisons when all the subsequences are the same length. The solution for text, to use the
length-normalized Hamming distance, cannot be generalized here. The reason is subtle and
underappreciated, suppose we have two subsequences of length k that are distance d apart.
If we truncate the end points and measure the distance again, we might find it has increased!
This is because we should only compare z-normalized time series when using Euclidean
distance,5 and after (re)z-normalizing the slightly shorter subsequences, we may find they
have grown further apart. Thus, the z-normalized Euclidean distance function is not linear in
length and is not even monotonic.

We have already hinted at the fact that the DL function can use extra information, by using
“given,” that is, DL(B ′|H) is the DL of B ′ given H . We can now formalize this notion:

Definition 8 A conditional description length of a subsequence A when a hypothesis H is
given is

DL(A|H) = DL(A − H)

Recall from Figs. 3 and 4 that the DL of a subsequence depends on the structure of the data.
For example, a constant line has a very low DL, whereas a random vector has a very high

5 The solution of not normalizing the time series would mitigate this problem, but measuring the Euclidean
distance between two time series with different offsets or amplitudes produces meaningless results [18].

123

T. Rakthanmanon et al.

DL. If A and H are very similar, their difference (A − H) will be close to a constant line
and thus have a tiny DL. In essence then, the DL function gives us a parameter-free test to
see whether two subsequences should be clustered together.

We generalize the notion of DL to multiple sequences next. We can apply the same spirit
by using a hypothesis to calculate the minimum number of bits required to keep a cluster.
We call this description length of a cluster:

Definition 9 A Description Length of a Cluster (DLC) C is the number of bits needed to
represent all subsequences in C. In this special case, H is the center of the cluster. Hence,
the description length of cluster C is defined as:

DLC(C) = DL(H) − max
A∈C

DL(A|H) +
∑
A∈C

DL(A|H)

The above DLC gives us a primitive to measure the reduction in bits achieved by encoding
data with a hypothesis. The two right terms in the equation record the number of bits needed
to represent the cluster C. Concretely, if the cluster C contains n subsequences, we need
to keep at most n subsequences for reconstructing C. We choose to keep the hypothesis H
and the n − 1 smallest differences. Therefore, the description length of the cluster C is the
combination of the description length of the hypothesis H and the minimum of any n − 1
conditional description lengths with respect to H .

Our clustering algorithm is essentially a search algorithm. Three operators avail of the DLC
definition to test how many bits a particular choice can save. Thus, these three operators fall
under the umbrella definition of bitsave:

Definition 10 A bitsave is the total number of bits saved after applying an operator that
creates a new cluster, adds a subsequence to an existing cluster, or merges two existing clus-
ters together. It is the difference in the number of bits before and after applying a given
action:

bitsave = DL(Bef ore) − DL(A f ter)

In detail, the bitsave for each operator is defined as following:

1) Creating a new cluster C’ from subsequences A and B

bitsave = DL(A) + DL(B) − DLC(C′)

2) Adding a subsequence A to an existing cluster C

bitsave = DL(A) + DLC(C) − DLC(C′)

where C’ is the cluster C after including subsequence A.
3) Merging cluster C1 and C2 to a new cluster C’.

bitsave = DLC(C1) + DLC(C2) − DLC(C′)

Note that, as we discussed earlier, we do not use Euclidean distance to make decisions about
which subsequences to place into which clusters. We use only use Euclidean distance in two
subroutines: motif discovery and finding the closest subsequence from a given cluster center.
Next, we will define closest subsequence or the nearest neighbor:

123

MDL-based time series clustering

Definition 11 A nearest neighbor of the given subsequence A is the subsequence B such
that

Dist(A, B) ≤ Dist(A, X) for any subsequencesX

Another definition, which we borrow from the literature [24], is time series motifs.

Definition 12 A time series motif is pair of subsequence A and B such that

Dist(A, B) ≤ Dist(X, Y) for any subsequencesX �= Y, A �= B

Similar to the nearest neighbor, the time series motif contains two most similar subsequences
in the given time series. We use the simple-but-robust Euclidean distance as dist function
(cf. Definition 4) for finding both time series motif and the nearest neighbor of the given
subsequence. Note that if subsequence X and Y are overlapped, it may lead to the discovery
of trivial matches. For more details about the time series motif, we refer the reader to [24].
In next section, we will explain our algorithm in detail.

4 Clustering algorithm

Having introduced the necessary notation, we are finally in a position to introduce our
algorithm. We begin by giving a simple text and visual intuition in the next section and
follow by giving detailed and annotated pseudo code in Sect. 4.2.

4.1 The intuition behind stream clustering

Recall that our input is a single time series like the one shown in Fig. 5 (bottom) and our
required output is a set of clusters—possibly of different lengths and sizes. Recall that the
union of all the subsequences in this set of clusters may only cover a fraction of the input
time series. Indeed, for pathological cases we are given a pure noise time series, we want our

0.5 1 1.5 2 2.5 3 x 10 50

50 100 150 200 250 3000

50 100 150 200 250 3000

Fig. 5 Two interwoven bird calls featuring the Elf Owl, and Pied-billed Grebe are shown in the original
audio space (top), and as a time series extracted by using MFCC technique (middle) and then clustered by our
algorithm (bottom)

123

T. Rakthanmanon et al.

Step 1: Create a cluster
from top-1 motif

Step 2: Create another cluster
from next motif

Step 3: Add subsequence to
an existing cluster

Step 4: Merge 2 clusters
(rejected)

Subsequences Center/Hypothesis

1 2 3 4
-4
-2
0
2

Step of the clustering process

bi
ts

av
e

pe
r

un
it

Clustering stops here

Create
Add
Merge

Fig. 6 A trace of our algorithm on the bird call data shown in Fig. 5(bottom)

algorithm to return a null set of clusters. In Fig. 5, we show our running example. It contains
the interwoven calls of two very different species of birds.

Our proposed clustering algorithm is a bottom-up greedy search over the space of clusters.
For the moment, we will ignore the computational effort that it requires and simply explain
what is done, leaving the how it is (efficiently) done for the next section.

Our algorithm is an iterative merging algorithm similar in spirit to an agglomerative
clustering algorithm [17]. However, the differences are telling and worth enumerating:

• Our algorithm typically stops merging before explaining all the data, thus producing a
partitioning a subset of the data, not producing a hierarchy of all the data.

• Agglomerative clustering algorithms are typically implemented such that they require
quadratic space; our algorithm has only linear space requirements.6

• Most critically, agglomerative clustering algorithms assume the K items of a fixed dimen-
sionally (subsequence length) to be clustered are inputs to the algorithm. However, we
do not know how many items will ultimately be clustered, or even how long the items
will be.

Similar to agglomerative clustering, we have a search problem that uses operators, in
our case, create, add, and merge (Definition 10). When the algorithm begins, only create is
available to us.

We begin by finding the best initial pair of subsequences to combine so that we may create
a cluster of two items. To find this best pair, we treat one as a hypothesis and see how well
it encodes the other (Definition 8). The pair that reduces the bit cost the most is the pair of
choice. This is shown in Fig. 6 as Step 1.

There is a potential problem here. Even if we fix the length of subsequences to consider
to a constant s, the number of candidate pairs to consider is quadratic in the length of the
time series, approximately O((m − s)2/2). Furthermore, there are no known shortcuts that
let us search this space in sub-quadratic time.

6 Linear space agglomerative clustering algorithms do exist, but require highly multiply redundant calculations
to be performed, and are thus rarely used due to their lethargy.

123

MDL-based time series clustering

The solution to this problem is to note that Euclidean distance and conditional description
length are highly correlated where either of them is small. We can leverage off this fact
because there exist very fast algorithms to find the closest pair of subsequences (which are
known as time series motifs [24]) under Euclidean distance. So rather than a brute force
search using the conditional description length, we do a fast motif search and then test the
motif pair’s conditional description length.

In the next stage of the algorithm, there are two operators available to us. We can either
add a third item to our existing cluster of size two, or we can create a new cluster, possibly
of a different length. In Fig. 6 in Step 2, we can see that in this case, our scoring functions
suggest creating a new cluster is the better option in.

In the subsequent phase of the algorithm, it happens that all operators are available to us:
we could try to create a new cluster, we could merge our two existing clusters, or we could
add a subsequence to one of our two clusters. As we can see in Fig. 6, Step 3, the last option
is chosen.

In the next iteration, the cheapest operator was to merge our two existing clusters as shown
in Step 4. However, doing this does not decrease the size of the representation—it increases it.
As such, our algorithm terminates after returning the two clusters it had created up to Step 3.
The only other way that our algorithm can terminate is if it simply runs out of data to cluster.

4.2 Our algorithm in detail

As we noted in the last section, our algorithm is a bottom-up search algorithm. The input is
a single time series, and the output is a set of clusters of subsequences. Our algorithm can
cluster subsequences of different lengths, and it does not require the number of clusters to
be specified.

There are three operators in our search algorithm: create, add, and merge. In each step,
we do all (legal) operations and choose the operator that maximizes the number of bits saved
as measure by bitsave (Definition 10). The current clusters are updated with respect to that
choice.

The algorithm can terminate in just two ways; either the best possible choice cannot save
any bits, or all data are used up.

Most attempts to cluster time series [6,10,11] suffer from a surfeit of parameters. Our
algorithm allows essentially none. However, if we allow subsequences that are too short,
we can get pathological results in some cases. For example, there are only two possible
z-normalized subsequences of length two. Moreover, a user may wish to bias the algorithm
toward certain clustering. For example, for electrical power demand load, we may be inter-
ested in weekly or daily patterns. Thus, as shown in Table 1, we allow the user the option of
suggesting an approximate length s.

The algorithm begins by initializing the cluster set to empty, then it enters a loop until
no more bits can be saved (line 2), or it runs out of data. Within each iteration the loop, we
perform three operators create (line 4–9), add (line 10–15), and merge (line 16–22), and we
keep the results of the most parsimonious operator.

For the create process, we call a subroutine to find time series motifs under Euclidean
distance using the fastest currently known technique [24]. Because we do not know how long
the subsequences in the cluster should be, the algorithm runs MotifDiscovery multiple
times on different lengths of motif (line 5). If the new cluster is created, then the number of
bits saved is calculated (line 7). The temporary version of updated clusters are kept (line 8)
and used if the algorithm eventually chooses to create this cluster (line 24). Recall that the
details of function ComputeBitsave are provided in Definitions 9 and 10.

123

T. Rakthanmanon et al.

Table 1 Main time series stream clustering algorithm

It is possible to add a subsequence into an existing cluster (line 10–15). We first find the
most similar subsequence in the input time series with respect to the center of a given clus-
ter (line 11); we can achieve this task by using any nearest-neighbor search algorithm [12],
including brute force search. After the search, the cluster is updated to include that nearest
subsequence (line 12), the number of bits saved is calculated, and the temporary clusters are
recorded (line 13–14).

For our last operator, any pair of clusters is allowed to merge (line 18); we then compute
the number of bits saved for each pair and record the temporary cluster.

After the algorithm measures the number of bits saved from all possible choices, the final
cluster is updated with respect to the choice that maximizes the number of bits saved (line
23–24).

We have glossed over an important detail: the two items being combined by the merge/add
operators may be of different lengths. To allow this critical flexibility, we use a simple data
structure to record a cluster. For any given cluster C, C.size records the number of subse-
quences in the cluster, C.cen is the center of the cluster, C.seq is a set of subsequences in the
cluster, and C.shift is a set of shift positions (i.e., offsets) of each subsequence in Cwhen it
aligned to the C.cen. Note that to compute the conditional description length (Definition 8),
a subsequence and its hypothesis must be of the same length.

123

MDL-based time series clustering

Table 2 Create operator

Table 3 Add operator

Table 4 Merge operator

Table 2 shows how a new cluster can be created from two subsequences of the same size.
Because those two subsequences are from motif discovery under Euclidean distance, their
align position is set to 0 (line 4). The center of new cluster is the average of those two subse-
quences. In Table 3, when we want to add a subsequence A to an existing cluster C, the new
center is created by the weighted average of the current center and the subsequence (line 1).
Because A is the nearest neighbor of C.cen, no offset alignment is needed for A.

Table 4 shows how two clusters of different lengths can be merged into the same cluster.
The new cluster contains all subsequences from both clusters (line 1–2). Because two clus-
ters may be different lengths, we need to align them before finding the new center. As the
Fig. 6 example shows, Step 4 merges two clusters from Step 1 and Step 3. The red center
in Step 1 is longer than the green center in Step 3. We align the red center at all possible
offsets (line 6) and then create a new center by averaging two current centers. Parts of the

123

T. Rakthanmanon et al.

new centers are created by weighted averaging from all (one or two) centers that cover that
part (line 7–9). To make a decision among all possible offsets, MDL plays an important role
again; at each offset, bitsave is calculated (line 11), and we choose the offset that can save
the maximum number of bits (line 22–23). Similar to the code in line 6–13, which evaluates
all offsets when C1.cen moves intoC2.cen, the code in line 14–21 evaluates the inverse
when C1.cen moves out of C2.cen.

To summarize, our algorithm contains three operators (create, add, and merge), which all
use MDL to decide the best choice at each step of the clustering. As there are no known index-
ing/motif discovery algorithms for MDL, we avail ourselves of two fast external modules
that use Euclidean distance for motif discovery [24] and nearest-neighbor search [20]. Using
Euclidean distance as a fast proxy for MDL is possible because they are highly correlated
when both are small.

5 Experimental results

We begin by stating our experimental philosophy. To ensure our experiments are reproduc-
ible, all codes/data are available at [29]. In addition, the site contains many more experiments
omitted due to space limitations. Furthermore, the web site contains video animations of the
clustering process for each dataset.

5.1 Comparison to ground truth

We begin by considering a time series for which we have access to the ground truth (albeit
indirectly). Consider the time series shown in Fig. 7(top). A visual inspection gives a hint
of some structure, but even on this tiny example, it is not clear exactly what the clustering
should be—or even what is the natural length for potential clusters. This dataset was obtained
by taking an audio snippet of a recording of Edgar Allen Poe’s poem “The Bells” and trans-
forming it in to the Mel-Frequency Cepstral Coefficients (MFCC) retaining only the first
coefficient.

The clustering we obtained looks subjectively intuitive; however, because of the original
source material, we are in a unique position to do a more objective test. Table 5 shows the
original source text brushed with the colors reflecting the clustering obtained.

200 400 600 800 1000 12000

1 2 3 4 5 6 7 8 9 10

Step of the clustering process

bi
ts

av
e

pe
r

un
it

-1

0

1

2

Clustering stops here

Create
Add
Merge

Fig. 7 Top 29.8 s of an audio snippet, represented by the first coefficient in MFCC space, and then annotated
with colors to reflect the clusters. Bottom a trace of the steps use to produce the clustering

123

MDL-based time series clustering

Table 5 The text corresponding to the time series shown in Fig. 7, annotated by color/font

The results are not perfect with reference to the text version. Recall that we are only
considering one of the MFCC coefficients, instead of the ten plus typically used in speech
processing. This allows some collisions, such as “time” and “knells.” However, the struc-
ture recovered by our algorithm is significant. Note that our clusters are of different sizes
(three items, and two items) and of different lengths (from 55 to 70 points). Also note that
we could have had a single cluster of eighteen occurrences of the word “bells.” However,
that would have obfuscated the information that this word tends to be repeated in this work,
as in “bells, bells, bells.” These longer clusters are arguably more parsimonious.

5.2 Clustering a noisy dataset

In Fig. 8, we show the results of clustering a noisy industrial dataset. The data come from an
industrial wire winding process [2]. The original data consist of seven dimensions; here, we
show only the results of clustering the noisiest channel, labeled U1 (the results on the other
channels are at [29]). Note that the data have significant non-uniform noise, including spikes
and dropouts. While we do not have access to the ground truth here, the clusters, which have
different sizes and length, clearly have the property of being similar within a cluster and
dissimilar between clusters. Note that approximately 26 % of the data remain unclustered.

5.3 Comparison to other methods

As we noted above, there are few candidate strawmen to compare our work to. Here, we
compare our work to the most referenced work in the literature. In a sequence of papers,
Chen proposes a series of fixes for the stream clustering problem [5–7]. He demonstrates
his ideas mostly on synthetic data; however, as shown in Fig. 9 (right), he also tests on short
section of the Koski heartbeat dataset.

While the results are perhaps reasonable, it is not clear why we should have two clusters
here since there is clearly just one heartbeat. In addition, there is a subtle artifact noticed
by cardiologist, Dr. Helga Van Herle, whom we asked to examine this. The slight slope on
the light-gray cluster show in Fig. 9 (left) is not in the data; it comes from the fact that the
input data are not an integer multiple of beats, instead being roughly 5.2 beats. Since the

123

T. Rakthanmanon et al.

0 200 400 600

500 1000 1500 2000 25000

dropouts

spikes

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

bi
ts

av
e

pe
r

un
it

Clustering stops here

Create
Add
Merge

Fig. 8 Top dimension U1 of the Winding dataset. Middle a trace of the clustering steps produced by our
algorithm. Bottom representative clusters obtained

PR

S

Q
Artifact of
clustering
algorithm

Fig. 9 Left a screen dump of Fig. 11 from [6]. The original caption read “TF Clustering: Koski-ECG result.”
Right an annotation of the clusters by a USC cardiologist

algorithm is trying to explain all the data, it must explain the extra P-wave by averaging it
into a place where it does not belong. Furthermore, as acknowledged in the original paper,
the algorithm requires the setting of several parameters and “magic numbers” (i.e., “we chose
p as the number of points in the time series divided by 15..”). Finally, we note in passing that
the algorithm requires multiple calls to a quadratic space and time (in the length of the time
series) algorithm, which would make it impractical for many real data mining problems. Our
algorithm requires linear space.

In Fig. 10, we show the clustering we achieved on exactly the same dataset. We believe
the results here are intuitively correct, discovering a complete single heartbeat as the cluster.

123

MDL-based time series clustering

500 1000 1500 20000

1 2 3 4

Step of the clustering process

B
its

av
e

pe
r

un
it

0
1
2
3 Clustering stops

here, because there
is essentially no
data left to cluster

Cluster
plotted

Stacked,

Dithered

Fig. 10 Top the same 2,000 data points from Koski-ECG as used in Fig. 9. Middle a trace of the clustering
steps produced by our algorithm. Bottom the single cluster discovered has five members

Note that our algorithm explains 87.5 % of the data; it does not try to explain the extra P-wave
“bump” caused by the fact that we do not have an integer number of heartbeats.

5.4 Scalability

From our algorithm in Sect. 4.2, assume that MotifDiscovery takes time O(T). In each
create step, MotifDiscovery is called multiple times to find motifs of different length;
we run it at most O(s) times. Because each subsequence is of length at least s, there are
at most O(m/s) new clusters to be created. This is why the running time for creating new
clusters is O(T ∗s∗m/s) = O(mT).

Assume that NearestNeighbor can be finished in time O(ms). The maximum num-
ber of clusters we can have is O(m/s), and the original time series can be updated only when
a new motif is discovered, so the number of clustering steps (cf. line 2 in Table 1) is at most
O(m/s). Thus, for add steps, we have O(ms ∗ m/s ∗ m/s) = O(m3/s).

For merge steps, if a cluster is created by merging k clusters so far, the number of subse-
quences in that cluster is at most O(k). The length of its center is at most O(ks); therefore,
the number of possible offsets is O(ks), and bitsave calculation is finished in time O(k2s2).
The maximum number of clusters we can have is at most O(m/s), so we can have cluster of
size k at most O(m/sk) clusters, and there are at most O(m/s) steps in our algorithm. This
means that the running of merge steps is at most O(m/s∗(m/sk)2∗k2s2) = O(m3/s). Hence,
the total running time of our algorithm is at most O(mT + m3/s) where T is a running time
for a motif discovery. The empirical behavior is shown in Fig. 11.

To put these results in perspective, the ornithology lab we are working with has spent
months collecting data in the field (cf. Fig. 5), so they are willing to wait the hour we require
to cluster several minutes of audio. Nevertheless, we believe that a 100×speedup will soon
be possible simply by caching some near redundant motifs calculations.

123

T. Rakthanmanon et al.

5000 10000 15000 20000 25000 300001000

0

4000

8000

12000

T
im

e
(s

ec
)

Size of time series

Scalability
16000

Fig. 11 Running time of our algorithm on Koshi data when s = 350

min max
min

max
ED vs MDL

ED

M
D

L

Fig. 12 The relationship between Euclidean distance (ED) of pairs of subsequences in a random walk time
series and MDL of their difference. Euclidean distance is calculated in original continuous space but MDL is
calculated in discrete space (64 cardinality)

5.5 Discussion of the MDL choice

Now that the reader has gleaned some intuition for our algorithm and its utility for clustering
data; we will briefly revisit a discussion of why MDL on a discretized time series is our
choice of measure to steer the clustering search.

We cannot use Euclidean distance (or the related correlation or Dynamic Time Warping,
etc. [12,20]) directly because it does not allow us to compare the relative merits of clusters
of different lengths or different sizes. In contrast, MDL does allow such meaningful com-
parisons. Moreover, in the limited case when MDL and Euclidean distance can be compared
(when time series lengths are the same), we find that the two measures are highly correlated so
long as they are small (if both are destined to be large, it does not really matter how correlated
they are). The relationship between Euclidean distance and MDL is shown in Fig. 12.

We work in the discrete space rather than the original continuous space because MDL
requires it, and because working with the discretized time series makes no perceptible differ-
ence in classification (as shown in Fig. 2) or in similarity search, indexing, motif discovery,
or outlier discovery.

Because of their relationship especially when the distance is small, to make an intractable
problem solvable (in term of acceptable running time), we can apply ED-based techniques
to speed up the algorithm in some modules. For example, instead of finding the pair of
subsequences whose difference has the smallest MDL, we can use the fast motif discovery
algorithm from [24] to find the most similar pair using Euclidean distance. We also can

123

MDL-based time series clustering

apply some techniques, such as early abandoning and lower bounding, in searching a nearest
subsequence of the existing clusters.

Although Euclidean distance can dramatically speed up the running time of algorithm,
sometimes the most similar subsequences using Euclidean distance and MDL are not the
same. This makes our final score, bitsave, non-monotonically decreasing as the readers may
have noticed in Fig. 7 (bottom) and in Fig. 8 (middle).

6 Multi-dimensional clustering

In additional to a single dimensional time series clustering, our algorithm can be extended
to cluster multi-dimensional time series data. In many applications that contain more than
one feature, the quality of the clustering can be better if we can do clustering across different
features or dimensions. For example, in motion capture, some activities have key features
only in the upper parts of the body, but lower parts are keys in some activities.

6.1 Notation

For the sake of clarity, this section will define some necessary notations related to
multi-dimensional time series clustering; however, we not that many of these definitions
are obvious analogs of the single-dimensional case discussed in Sect. 3. We begin by defin-
ing multi-dimensional time series:

Definition 13 A d-dimensional time series T is a d-dimensional ordered list of numbers.
T =< T1, T2, . . ., Td > where a time series in dimension i, Ti = ti,1, ti,2, . . . , ti,m . Each
value t j can be any finite number and m is the length of the time series, which is equal for
all dimensions.

When the original time series contains multiple dimensions, its subsequence is called a
d-dimensional subsequence:

Definition 14 A d − dimensionalsubsequenceTi, j,k of a d-dimensional time series T is
a short time series of length k of dimension i that starts from position j . Formally, Ti, j,k =
ti, j , ti , j+1 , . . . , ti, j+k where 1 ≤ i ≤ d and 1 ≤ j ≤ m − k.

As we mentioned before in previous sections, Euclidean distance and MDL are highly
correlated when the distances are small. As in the single version algorithm, many techniques
using the Euclidean distance are used for speeding up our algorithm. Hence, we define the
Euclidean distance for two d-dimensional subsequences as following:

Definition 15 The Euclidean distance between two d-dimensional subsequences A and B
of the same length, k, is:

Dist(A, B) =
√√√√ d∑

i=1

k∑
j=1

(
Ai, j − Bi, j

)2

The description length for a multi-dimensional time series is calculated based on the entropy
of the given time series. We define entropy for d-dimensional time series as:

Definition 16 The entropy of a d-dimensional time series T is defined as following equation.
For special case when P = 0, P log2 P is defined as 0.

123

T. Rakthanmanon et al.

H(T) = −
d∑

i=1

∑
t

P(Ti = t) log2 P(Ti = t)

For simplicity, we define the entropy of d-dimensional time series as the simple summa-
tion of the entropy from each dimension. This means we treat each dimension independent
from others. While we do not preclude other methods for calculating d-dimensional entropy,
this method works very well empirically.

However, there may be some room here to improve the quality of the clustering if we
can exploit use the relationship between different dimensions. We leave this as the future
improvement.

Similar as in Definition 6 in Sect. 3.1, the description length of a multi-dimensional time
series T is defined as m ∗ H(T) where m is the length of the time series T . We can reuse
Definition 8, 9 and 10 in our multi-dimensional clustering algorithm.

We invite the readers to revise some definitions in Sect. 3.1 before we move forward to
the algorithm in next section.

6.2 Multi-dimensional clustering algorithm

In general, the idea of clustering multi-dimensional time series is similar to the idea of
clustering a single-dimensional time series in Sect. 4.2.

The algorithm composes of three operations—create, add, and merge. The general idea
is the same as in the previous algorithm. All possible operators will be considered, and their
bitsave will be computed. Then, the choice whose bitsave is maximum will be selected and the
algorithm performs the operation corresponding to that choice. The algorithm for clustering
multi-dimensional time series is shown in Table 6.

We allow user to set the approximate length of subsequences, contained inside the final
clusters. The set of the final clusters is initialed to an empty set (line 1). The algorithm will
be terminated on only two conditions, first, when no possible choices can reduce the number
of bits for representing the clusters and, second, when there is no data left and all clusters
have been merged.

In the create operation (line 4–10), we find a most similar pair of subsequences. The
Euclidean distance is used here instead of MDL for speeding up the process and makes this
process much faster. A trivial extension of the motif discovery algorithm from [24] using
multi-dimensional Euclidean distance (cf. Definition 15) is used here to find the most sim-
ilar subsequences in multi-dimensional time series (line 6). Then, a new cluster is created,
and its bitsave is calculated (line 7–8). For convenience, the temporary cluster is collected
(line 9).

In add process (line 11–17), the nearest neighbor of each existing cluster is discovered
(line 13). The rest of the algorithm, including merge process (line 18–25), is the same as
in the algorithm in Sect. 4.2. After all choices are calculated, the choice, which maximizes
bitsave, will be selected to perform (line 27–28).

Because each subsequence contains multi-dimensional data, the cluster representative or
the cluster’s center also contains multi-dimensional data. Table 7 explained how to create the
cluster. The new cluster is always created from two subsequences so it will contain only two
multi-dimensional subsequences.

Similarly, how to add a multi-dimension subsequence to an existing cluster is explained
in Table 8. The idea of all three operators is same as in the single-dimension clustering
algorithm.

123

MDL-based time series clustering

Table 6 Multidimensional stream clustering algorithm

Table 7 Create operator

Table 8 Add operator

123

T. Rakthanmanon et al.

Table 9 Merge operator

Table 9 explains in detail how to merge two clusters. As in the single-dimension version,
when two clusters are being merged, we have to align their center to find the best position,
whose bitsave is maximized, after merging. We can align the center of the first cluster’s center
when it moves into the center of another cluster (line 10–21), and also when it moves out of
another center (line 22–33). Each position in alignment is kept as a local variable inside the
corresponding cluster (line 20). However, only the cluster that maximum bitsave is return
(line 34–35).

In next section, we will demonstrate that our algorithm can handle the time series that
contain more than one dimension.

6.3 Experimental result

We demonstrate our multi-dimensional clustering algorithm on a people activity dataset,
Physical Activity Monitoring for Aging People (PAMAP) from [27]. In this dataset, eight
subjects (people) perform both indoor and outdoor activities such as normal walk, Nor-
dic walk, cycle, run, ascend stairs, and descend stairs. Each subject has sensors placed on
three locations on their bodies, which are hand, chest, and ankle. We pick one time series

123

MDL-based time series clustering

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

Fig. 13 Three time series generated from z-accelerometer of sensors at hand, chest and shoe from PAMAP
[27]. The subject performs three activities: descending stairs, ascending stairs, and descending stairs again

from each position; we choose to use only three time series generated by z-accelerometers
instead of using all data from all 45 sensors because experience from indexing ASL [1]
and motion capture data suggest that three or four time series is enough to represent most
activities/behaviors.

A snippet of a three dimensional time series showing an individual walking up and down
stairs is shown in Fig. 13. Each time series is generated from a z-accelerometer. The data
are from subject number 1 of indoor activities in PAMAP dataset [27]. In this example, the
subject performed the sequence, walking up stair, walking down stair, and walking up stair.

The multidimensional clustering result is shown in Fig. 14. Each color represents a cluster;
hence, the subsequences of the same color are clustered into the same cluster. The result dem-
onstrates that our algorithm can capture the similar actions inside the same activities. For
example, three clusters appeared in both side of the time series, which are in the same action,
that is, walking down stair. Some data in the time series have been ignored as we can see
in black color. From this example, we conjecture that the subject may occasionally have a
special behavior because it looks like there are patterns inside the clusters. For example, it
appear that she initially starts to climb stairs briskly (red) but begins to slow down as she was
tired out after a few flights (blue). Likewise, the sequence of three clusters in the same order
(pink, cyan, yellow) in both descending stairs sections is suggested.

We also ran our single-dimensional clustering algorithm on each dimension separately.
The result shows that there are incorrect clusters across the different activities in the final
clusters and, in some dimension, the algorithm is terminated very early and covers less than
25 % of the data. Hence, in this example, the clustering result from a single dimension is worse
than the result form the multi-dimensional clustering algorithm. We believe that the multi-
dimensional time series can create the better clusters than the clusters created from just one
dimension, especially when the dataset contains many related features such as motion capture.

We can speed up the algorithm using Euclidean distance and make the problem solvable
in an acceptable time, but we have to trade of the quality of the clustering somehow. Our
parameter-lite algorithm can be extended to cluster multi-dimensional time series and it works
quite well; however, some readers may notice that the bitsave score [in Fig. 14(bottom)] is
not much stable as the result of a single-dimensional clustering algorithm in Sect. 5. This is

123

T. Rakthanmanon et al.

200 400 600 800 1000 1200 1400 1600 1800 20000

Hand

Chest

Ankle

Descend Stair Descend StairAscend Stair

1 2 3 4 5 6 7 8 9 10 11 12 13 14

-2

0

2

Step in clustering process

bi
ts

av
e

pe
r

un
it Clustering stops here Create

Add
Merge

Fig. 14 Top the multi-dimensional time series clustering result. Two clusters are detected in ascending stair,
and three clusters are detected in descending stair. Bottom a trace of the multi-dimensional clustering steps
produced by our algorithm

because the Euclidean distance is used instead of MDL in many core modules. By the curse
of dimensionality, when the number of dimensionality is increase, the Euclidean distance
performs worse and the difference between MDL and Euclidean distance is increase. We
believe that if the multi-dimensional time series clustering using MDL has been well study
in the future, some researchers will provide the distance that is fast enough and very close to
MDL to get the better result.

7 Conclusions

In this work, we have shown that any attempt to cluster a single time series stream that insists
on explaining all the data is almost certainly doomed to failure. We introduced a clustering
representation that has the expressive power to ignore some of the data and can have clusters
with different length subsequences. We further showed an efficient and parameter-lite MDL-
based algorithm to perform the clustering. We have shown on our algorithm is effective on a
wide variety of datasets, for both single and multi-dimensional problems.

Currently, our algorithm only works on batch time series. In ongoing work, we are attempt-
ing to generalize it to the online case.

Acknowledgments We would like to acknowledge the financial support for our research provided by the
Royal Thai Government and NSF grants 0803410 and 0808770.

123

MDL-based time series clustering

References

1. Athitsos V, Wang H, Stefan A (2010) A database-based framework for gesture recognition. Pers
Ubiquitous Comput 14(6):511–526

2. Bastogne T, Noura H, Richard A, Hittinger JM (1997) Application of subspace methods to the identifi-
cation of a winding process. In: Proceeding of the 4th European control conference, Brussels, Belgium

3. Batista GEAPA, Wang X, Keogh EJ (2011) A complexity-invariant distance measure for time series. In:
SDM, pp 699–710

4. Bouchard D, Badler NI (2007) Semantic segmentation of motion capture using laban movement analysis.
In: IVA, pp 37–44

5. Chen JR (2005) Making subsequence time series clustering meaningful. In: ICDM, pp 114–121
6. Chen JR (2007) Useful clustering outcomes from meaningful time series clustering. In: The Australasian

data mining conference
7. Chen JR (2007) Making clustering in delay-vector space meaningful. Knowl Inf Syst 11(3):369–385
8. Chuang ZJ, Wu CH, Chen WS (2006) Movement epenthesis generation using NURBS-based spatial

interpolation. IEEE Trans Circuit Syst Video Technol 16(11):1313–1323
9. Cook DJ, Holder LB (1994) Substructure discovery using minimum description length and background

knowledge. J Artif Intell Res 1:231–255
10. Das G, Lin K, Mannila H, Renganathan G, Smyth P (1998) Rule discovery from time series. In: Proceeding

of the 3rd KDD, pp 16–22
11. Denton AM, Basemann CA, Dorr DH (2009) Pattern-based time-series subsequence clustering using

radial distribution functions. Knowl Inf Syst J 18(1):1–27
12. Ding H, Trajcevski G, Scheuermann P, Wang X, Keogh EJ (2008) Querying and mining of time series

data: experimental comparison of representations and distance measures. PVLDB 1(2):1542–1552
13. Evans SC et al (2007) MicroRNA target detection and analysis for genes related to breast cancer using

MDLcompress. EURASIP J Bioinform Syst Biol 2007:1–16
14. Evans SC, Eiland E, Markham TS, Impson J, Laczo A (2007) MDLcompress for intrusion detection:

signature inference and masquerade attack, MILCOM, Orlando, Florida
15. Grünwald PD, Myung IJ, Pitt MA (2005) Advances in minimum description length: theory and applica-

tions. MIT Press, Cambridge
16. Jonyer I, Holder LB, Cook DJ (2004) MDL-based context-free graph grammar induction and applications.

J Artif Intell Tools 13(1):65–79
17. Kamvar SD, Klein D, Manning CD (2002) Interpreting and extending classical agglomerative clustering

algorithms using a model-based approach. In: ICML, pp 283–290
18. Keogh EJ, Lin J (2005) Clustering of time-series subsequences is meaningless: implications for previous

and future research. Knowl Inf Syst 8(2):154–177
19. Keogh EJ, Lin J, Lee SH, Herle HV (2007) Finding the most unusual time series subsequence: algorithms

and applications. Knowl Inf Syst 11(1):1–27
20. Keogh EJ, Kasetty S (2003) On the need for time series data mining benchmarks: a survey and empirical

demonstration. Data Mining Knowl Discov 7(4):349–371
21. Li H, Abe N (1996) Clustering words with the MDL principle. In: Proceeding of the 16th international

conference on computational linguistics, pp 5–9
22. Li M, Vitanyi P (1997) An introduction to Kolmogorov complexity and its applications, 2nd ed. Springer,

Berlin
23. Molkov YI, Mukhin DN, Loskutov EM, Feigin AM (2009) Using the minimum description length prin-

ciple for global reconstruction of dynamic systems from noisy time series. Phys Rev E 80:046207
24. Mueen A, Keogh EJ, Shamlo NB (2009) Finding time series motifs in disk-resident data. In: ICDM

pp 367–376
25. Papadimitriou S, Sun J, Faloutsos C, Yu PS (2008) Hierarchical, parameter-free community discovery.

In: PKDD pp 170–187
26. Pednault E (1998) Some experiments in applying inductive inference principles to surface reconstruction.

In: IJCAI, pp 1603–1609
27. Reiss A, Weber M, Stricker D (2011) Exploring and extending the boundaries of physical activity recog-

nition. In: IEEE SMC workshop on robust machine learning techniques for human activity recognition
28. Stine RA (2004) Model selection using information theory and the MDL principle. Sociol Methods Res

33(2):230–260
29. Supporting webpage. http://www.cs.ucr.edu/~rakthant/TSEpenthesis
30. Tanaka Y, Iwamoto K, Uehara K (2005) Discovery of time-series motif from multi-dimensional data

based on MDL principle. Mach Learn 58(2):269–300

123

http://www.cs.ucr.edu/~rakthant/TSEpenthesis

T. Rakthanmanon et al.

31. Ueno K, Xi X, Keogh EJ, Lee DJ (2006) Anytime classification using the nearest neighbor algorithm
with applications to stream mining. In: ICDM, pp 623–632

32. Wallace CS, Boulton DM (1968) An information measure for classification. Comput J 11(2):185–194
33. Yang R, Sarkar S, Loeding BL (2010) Handling movement epenthesis and hand segmentation ambiguities

in continuous sign language recognition using nested dynamic programming. IEEE PAMI 32(3):462–477
34. Yankov D, Keogh EJ, Rebbapragada U (2008) Disk aware discord discovery: finding unusual time series

in terabyte sized datasets. Knowl Inf Syst 17(2):241–262

Author Biographies

Thanawin Rakthanmanon is currently a Ph.D. candidate of Com-
puter Science at the University of California, Riverside. His research
interests are data mining and machine learning, especially in efficient
algorithm development, motif discovery, time series clustering/classifi-
cation, and document analysis. He receives the Royal Thai Government
Scholarship for studying his doctoral program.

Eamonn J. Keogh is a full professor of Computer Science at the
University of California, Riverside. His research interests are data min-
ing, machine learning, and information retrieval. Several of his papers
have won best paper awards, including papers at SIGKDD, ICDM, and
SIGMOD. Dr. Keogh is the recipient of a 5-year NSF Career Award
for “Efficient Discovery of Previously Unknown Patterns and Relation-
ships in Massive Time Series Databases.”

Stefano Lonardi is Professor and Vice Chair of the Department
of Computer Science and Engineering at University of California,
Riverside, CA. He is also a faculty member of the Graduate Pro-
gram in Genetics, Genomics and Bioinformatics, the Center for Plant
Cell Biology, the Institute for Integrative Genome Biology, and the
Graduate Program in Cell, Molecular and Developmental Biology.
Stefano’s recent research interest includes design of algorithms, com-
putational molecular biology, data compression and data mining. He
has published over 40 papers in major theoretical computer science
and computational biology journals and has over 50 publications in
referred international conferences. In the year 2005, he received the
CAREER award from National Science Foundation. He has received
funding from NSF, NIH, DARPA, and USDA.

123

MDL-based time series clustering

Scott Evans holds a Ph.D. in Electrical Engineering from Renssel-
aer Polytechnic Institute, an MS in Electrical Engineering from the
University of Connecticut and a BS in Electrical Engineering from
Virginia Tech. He is a Senior Research Engineer in the Machine
Learning lab at GE Global Research in Niskayuna, NY. His research
interests include machine learning, data mining, and algorithmic infor-
mation theory for cyber-security, prognostics and health monitoring,
and remote monitoring and diagnostics.

123

	MDL-based time series clustering
	Abstract
	1 Introduction
	1.1 Why clustering time series streams requires ignoring some data
	1.2 How MDL can help

	2 Related work
	3 Background and notation
	3.1 Definitions and notation

	4 Clustering algorithm
	4.1 The intuition behind stream clustering
	4.2 Our algorithm in detail

	5 Experimental results
	5.1 Comparison to ground truth
	5.2 Clustering a noisy dataset
	5.3 Comparison to other methods
	5.4 Scalability
	5.5 Discussion of the MDL choice

	6 Multi-dimensional clustering
	6.1 Notation
	6.2 Multi-dimensional clustering algorithm
	6.3 Experimental result

	7 Conclusions
	Acknowledgments
	References

