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ABSTRACT

In this article, we studied the tag single-nucleotide polymorphism (tagSNP) selection problem
on multiple populations using the pairwise r2 linkage disequilibrium criterion. We proposed a
novel combinatorial optimization model for the tagSNP selection problem, called the mini-
mum common tagSNP selection (MCTS) problem, and presented efficient solutions for
MCTS. Our approach consists of the following three main steps: (i) partitioning the SNP
markers into small disjoint components, (ii) applying some data reduction rules to simplify
the problem, and (iii) applying either a fast greedy algorithm or a Lagrangian relaxation
algorithm to solve the remaining (general) MCTS. These algorithms also provide lower
bounds on tagging (i.e., the minimum number of tagSNPs needed). The lower bounds allow us
to evaluate how far our solution is from the optimum. To the best of our knowledge, it is the
first time the tagging lower bounds are discussed in the literature. We assessed the perfor-
mance of our algorithms on real HapMap data for genome-wide tagging. The experiments
demonstrated that our algorithms run 3–4 orders of magnitude faster than the existing single-
population tagging programs such as FESTA, LD-Select, and the multiple-population tagging
method MultiPop-TagSelect. Our method also greatly reduced the required tagSNPs com-
pared with LD-Select on a single population and MultiPop-TagSelect on multiple popula-
tions. Moreover, the numbers of tagSNPs selected by our algorithms are almost optimal
because they are very close to the corresponding lower bounds obtained by our method.

Key words: genome-wide tagSNP selection, greedy algorithm, HapMap, Lagrangian relaxation,

linkage disequilibrium, multiple populations.

1. INTRODUCTION

The rapid development of high-throughput genotyping technologies has recently enabled

genome-wide association studies to detect connections between genetic variants and human diseases.

Single-nucleotide polymorphism (SNP) is the most frequent form of polymorphism in the human genome.

Common SNPs with minor-allele frequency (MAF) of 5% have been estimated to occur once every

*600 bp (Kruglyak and Nickerson, 2001), and there are more than 10 million verified SNPs in dbSNP (The

International SNP Working Group, 2001). Given these numbers, it is currently infeasible to take into account
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all the available SNPs to carry out association studies. This motivates the selection of a subset of informative

SNPs, called tagSNPs.

The selection of tagSNPs in silico is a well-studied research topic. Existing computational methods for

tagSNP selection can be classified into the following two categories: haplotype-based methods ( Johnson

et al., 2001; Patil et al., 2001; Gabriel et al., 2002; Wang et al., 2002; Zhang et al., 2002, 2005; Avi-Itzhak

et al., 2003; Ke and Cardon, 2003; Sebastiani et al., 2003) and haplotype-independent methods (Carlson et al.,

2004; Halperin et al., 2005; Hampe et al., 2003; Lin et al., 2004; Liu et al., 2006; Magi et al., 2006; Phuong

et al., 2005; Stram et al., 2003; Qin et al., 2006). The haplotype-based methods require phased multilocus

haplotypes, whereas the haplotype-independent methods do not require haplotype information. The main

shortcoming of haplotype-based methods is that the preprocessing step (i.e., the inference of haplotypes

from genotypes) is computationally demanding. In addition, as there is not an authoritative inference

method, the haplotypes generated by the existing haplotype inference methods are often quite different

(Zhang et al., 2002; Ding et al., 2005; Zeggini et al., 2005). Consequently, the tagSNPs selected by the

haplotype-based methods would be quite different. Recently, Carlson et al. (2004) proposed a haplotype-

independent method that employs the r2 linkage disequilibrium (LD) statistical criterion to measure the

association between SNPs. The tagSNPs selected by this method are shown to be effective in disease

association mapping studies, because the measure r2 is directly related to the statistical power of association

mapping. Because this method has comparable performance at a lower computational cost than many other

methods (Stram et al., 2003; Zhang and Jin, 2003), tagging approaches based on r2 LD statistics have

gained popularity among researchers in the SNP community (Zhang and Jin, 2003; Carlson et al., 2004;

Hinds et al., 2005; Bakker et al, 2006; Magi et al., 2006; Qin et al., 2006).

Most approaches using the r2 criterion require that tagSNPs be defined within a single population, because

LD patterns (see the caption of Fig. 1A for a definition) are quite susceptible to population stratification (Carlson

et al., 2004). In two populations with different evolutionary histories, a pair of SNPs having remarkably different

allele frequencies and very weak LD may show strong LD in the admixed population (see such an example in

Table 1). Recent study (Conrad et al., 2006) showed that the LD patterns and allele frequencies across popu-

lations are very different (Sawyer et al., 2005; Conrad et al., 2006) in fact. For example, among the populations

collected in the HapMap project (i.e., YRI: Yoruba in Ibadan, Nigeria; CEU: Utah residents with Northern and

Western European ancestry; CHB: Han Chinese in Beijing, China; and JPT: Japanese in Tokyo, Japan), 81% of

the SNPs in YRI population have a near perfect proxy (i.e., SNPs that have r2� 0.8 with other SNPs), whereas

in the other three populations, 91% of the SNPs have a near perfect proxy (International HapMap Consortium,

2005). Therefore, tagSNPs picked from the combined populations or one of the populations might not be

sufficient to capture the variations in all populations. To maintain the power of association mapping, we need

to generate a common (or universal) tagSNP set to type all the populations with sufficient accuracy.

A simple approach to select a universal tagSNP set is to tag one population first and then select a

supplementary set for each of the other populations one by one (Bakker et al., 2006; Magi et al., 2006; Need

and Goldstein, 2006). For instance, we can select a tagSNP set for non-African populations and a sup-

plement for populations with significant African ancestry (Need and Goldstein, 2006). However, this

sequential approach might not give a satisfactory solution, as the tagSNP set selected for one population

A B C

FIG. 1. (A) Linkage disequilibrium (LD) patterns in two populations. The vertices denote the SNP markers and the

edges denote pairs of markers with strong LD (i.e., the r2 measure between the markers is greater than a given

threshold). (B) Tagging results of the above simple sequential approach. We first chose markers 3 and 6 to tag

population 1 and then chose an additional marker 5 to tag population 2. Three markers were selected in total to tag both

populations. (C) Tagging results of an improved approach. We selected markers 4 and 6, considering both populations

simultaneously. Only two markers were selected in total to tag both populations. SNP, single-nucleotide polymorphism.
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might be far from being adequate to type the SNPs of the remaining populations. As a result, the sup-

plementary tagSNP sets are large and the total number of tagSNPs chosen is far from the optimum.

Moreover, the performance of the approach is sensitive to the specific order of the input populations. To

generate the smallest set of tagSNPs on K populations, one would have to execute the tagging procedure K!

times considering all possible orderings, which would be extremely inefficient for genome-wide tagging.

We can improve the performance of the tagging approach by evaluating multiple populations at the same

time. When choosing tagSNPs, we prefer those with ‘‘good properties’’ with respect to the collection of

populations as a whole. An example of our tagging strategy is given in Figure 2.

1.1 Previous work on tagSNP selection based on the LD criterion

There is a large body of scientific literature on the problem of selecting tagSNPs based on the r2 LD

criterion. Carlson et al. (2004) suggested a greedy procedure called LD-Select, which works as follows: (i)

select the SNP with the maximum number of proxies, (ii) remove the SNP and its proxies from consid-

eration, and (iii) repeat the above two steps until all SNPs have been tagged. This algorithm is very simple;

however, it may miss solutions with the smallest number of tagSNPs in general, as pointed out by Qin et al.

(2006). More recently, Qin et al. (2006) implemented a comprehensive search algorithm called FESTA,

which first breaks down a large set of markers into disjoint pieces (called precincts) and then performs an

exhaustive search on each piece if the estimated computational cost is below a certain threshold. FESTA

usually gives a better solution than LD-Select, but because of the fact that it employs exhaustive search, it is

too slow to be practical for genome-wide tagSNP selection.

The above two methods are only applicable to single-population tagSNP selection. Recently, Howie et al.

presented an algorithm for multiple populations by extending LD-Select, called MultiPop-TagSelect.

MultiPop-TagSelect combines the tagSNPs selected for each population by LD-Select to produce a uni-

versal tagSNP set for a collection of populations (Howie et al., 2006). The algorithm works reliably, and it

could in principle be used with any tagSNP selection method for single populations. However, its accuracy

highly depends on the performance of the single-population tagSNP selection method. Magi et al. (2006)

also designed a software tool called REAPER which is rather similar to LD-Select if applied to a single
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FIG. 2. (A) Tagging for HapMap populations on region ENm013 with 783 markers. (B) Tagging for HapMap

populations on all ENCODE regions with 10,859 markers. Here, ‘‘Grdy_lb’’ stands for ‘‘Greedy-Tag_lb,’’ ‘‘LRTag_lb’’

stands for ‘‘LRTag_lb,’’ ‘‘LR’’ stands for ‘‘LRTag,’’ ‘‘Greedy’’ stands for ‘‘GreedyTag,’’ and ‘‘MPS’’ stands for

‘‘MultiPopTagSelect.’’

Table 1. r2
Statistics for a Pair of SNP Markers in a Single and Admixed Populations

Population 1 Population 2 Population 3

B b B b B b

A 0.9025 0.0475 0.95 A 0.0025 0.0475 0.05 A 0.4525 0.0475 0.5

a 0.0475 0.0025 0.05 a 0.0475 0.9025 0.95 a 0.0475 0.4525 0.5

0.95 0.05 r2¼ 0 0.05 0.95 r2¼ 0 0.5 0.5 r2¼ 0.6561

One SNP has alleles denoted as A and a while the other SNP has alleles denoted as B and b. Population 3 is an even mixture of

populations 1 and 2.
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population. To select a universal tagSNP set for several populations, it first selects a tagSNP set for one

population, and then it selects a supplement for the remaining populations one by one. As above mentioned,

the performance of the method crucially depends on the choice of the initial tagSNP set and the ordering of

the populations. It is not clear, moreover, how one should select tagSNPs for the first population so as to

minimize the size of the final solution.

1.2 Our contribution on tagSNP section based on the LD criterion

In this article, we took a different approach to the multipopulation tagSNP selection problem. Contrary to the

previous methods, we do not generate a tagSNP set for each individual population separately, but rather we

evaluate all the populations at the same time. The method that we proposed could be used to generate a universal

or cosmopolitan tagSNP set for multiethnic, ethic-unknown, or admixed populations (Howie et al., 2006).

The main idea of our approach is to transform a multipopulation tagSNP selection problem, called the

minimum common tagSNP selection (MCTS) problem (will be defined more precisely later in the article), into

a minimum common dominating vertex set problem on multiple graphs. Each graph corresponds to one of the

populations under consideration. The vertices in a graph correspond to the SNP markers of the population,

and there is an edge between two markers when they are in strong LD (according to some given threshold).

To find an optimal solution MCTS, we first decomposed it into disjoint subproblems, each of which is

essentially a connected component of the union graph1 and represents a precinct as defined by Qin et al.

(2006). Then, for each precinct, we apply three data reduction rules repeatedly to further reduce the size of the

subproblem, until none of the rules can be applied anymore. Finally, the reduced subproblems are solved by

either a simple greedy approach (similar to cosmopolitan tagging) (Bakker et al., 2006) or a more sophisti-

cated Lagrangian relaxation heuristic. Both algorithms will be explained in detail later in the article. Along

with the solution produced by our algorithm, we also obtained lower bounds on the minimum number of

tagSNPs required, which allows us to quantitatively assess how close our solution is from the true optimum.

We evaluated the performance of our method on real HapMap data for genome-wide tagging. The

experimental results demonstrate that our algorithms run 3–4 orders of magnitude faster than the existing

single-population tagging programs such as FESTA, LD-Select, and the multiple-population tagging

method MultiPop-TagSelect. Our method also greatly reduced the required tagSNPs compared with LD-

Select on a single population and MultiPop-TagSelect on multiple populations. Moreover, the numbers of

tagSNPs selected by our algorithms are almost optimal because they are very close to the corresponding

lower bounds provided by our method. For example, the gap between our solution and the lower bound is

1061 SNPs with r2 threshold being 0.5 and 142 SNPs with the r2 threshold being 0.8, given the entire

human genome with 2,862,454 SNPs (MAF being 5%).

The rest of the article is organized as follows: In Section 2, we first propose a combinatorial optimization

model for the MCTS problem and then present a computational complexity result. In Section 3, we introduce

three rules to reduce the size of the problem and devise a greedy tagging algorithm, called GreedyTag, and a

Lagrangian relaxation heuristic, called LRTag. After showing the experimental results in Section 4, we

conclude the article with some remarks about the performance of our tagging method in Section 5.

2. FORMULATION OF THE MCTS PROBLEM

Consider K distinct populations and a set V of biallelic SNP markers v1, v2, . . . , vn. For convenience, we

label the markers in all populations uniformly and uniquely. As the r2 coefficient is unreliable for rare SNPs

when the sample size is small (Carlson et al., 2004), we will consider only SNPs with MAF� 5%. The set

of SNPs might be different from population to population. We use Vi � V to denote the SNP set in

population i. Clearly, we have V ¼V1 [ V2 [ � � � [ Vk.

For a pair of SNP markers vj1 and vj2 in a population i (for any 1� i�K), the r2 coefficient between them

is denoted by r2
i (vj1 , vj2 ). Markers vj1 and vj2 are said to be in high LD in population i, if r2

i (vj1 , vj2 ) � c0,

where g0 is a predefined threshold (g0 will be set to 0.5 or higher in our study). Moreover, vj1 (or vj2 ) is

considered being the tagSNP or proxy for vj2 (or vj1 , respectively) in population i. For conve-

nience, we define Ei to be the set containing all the high-LD marker pairs in population i, i.e.,

Ei¼f(vj1 , vj2 )jr2
i (vj1 , vj2 ) � c0, vj1 , vj2 2 Eig. Now we can formally define the MCTS problem.

1Given graphs Gi¼ (Vi, Ei)(1� i� k), the union graph is defined as G¼ (V, E), where V¼[i Vi and E¼[i Ei.
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Minimum Common TagSNP Selection

Instance: A collection of K populations and a set V of biallelic SNP markers. Each population i

(1� i�K) has its marker set Vi�V and LD patterns Ei¼f(vj1 , vj2 )jr2
i (vj1 , vj2 ) � c0, vj1 , vj2 2 Vig where g0

is a predefined threshold.

Feasible solution: A subset T�V such that for any marker v [ Vi, v =2 T from some population i, there

exists a marker v0 in T\Vi with (v, v0) [ Ei (that is, r2
i (v, v0) � c0).

Objective: Minimize jTj.

A natural generalization of the above definiton is to allow the predefined threshold g0 to vary across popu-

lations. As the techniques discussed for a fixed threshold in our article can be trivially extended to solve the

general problem, to simplify the presentation, we will assume that the threshold is fixed for all populations below.

It is easy to observe that any feasible solution to the MCTS problem is a common dominating vertex set

in the graphs {Gij1� i�K}, where Gi¼ (Vi, Ei). In particular, the smallest set of tagSNPs for a single

population is a minimum dominating vertex set of the corresponding graph. Obviously, the MCTS problem

is NP-hard, because it is a generalization of the minimum dominating vertex set problem, which is known

to be NP-hard (Bar-Yehuda and Moran, 1984).

Theorem 1. The MCTS problem is NP-hard.

We introduced some additional notations to be used later. To differentiate the occurrences of a marker in

different populations, we used vi
j to represent the occurrence of marker j in the ith population (if the marker

occurs). Given a marker vj [ V, we defined the following two sets:

Ni(vj)¼fvi
j0 j(vj, vj0 ) 2 Ei, vj, vj0 2 Vig [ fvi

jjvj 2 Vig
N�(vj)¼

[
1�i�K

Ni(vj)
(1)

The set Ni(vj) represents the subset of markers (actually, their occurrences) in population i that are in

strong-LD with vj, and the set N*(vj) represents the union of such subsets for all the populations. Note that

Ni(vj) is empty if vj =2Vi. Given a marker vj [ Vi from population i, we defined the following set:

C(vi
j)¼fvj0 j(vj, vj0 ) 2 Ei, vj, vj0 2 Vig [ fvjg (2)

The set C(vi
j) is the subset of markers each of which can tag the occurrence vi

j, whereas N*(vj) is the subset

of occurrences that the marker vj can tag.

Based on the above definitions, the MCTS problem can also be viewed as the following set cover

problem. Given the universe U ¼
S

1�i�Kfvi
jjvj 2 Vig and the collection C¼fN�(vj)jvj 2 Vg, we found a

subcollection of sets from C to cover U. Clearly, the number of sets in a minimum set cover is equal to the

number of markers in a minimum tagSNP set.

As a consequence, approximation algorithms that solve set cover can be applied to the MCTS problem.

In practice, greedy algorithms are commonly used for set cover because of their simplicity and effec-

tiveness. The simplest greedy algorithm for set cover, which picks the set that covers the most number of

uncovered elements each time, achieves an approximation ratio of log(m), where m is the number of

elements to be covered (Vazirani, 2003). This implies a log(Kn) approximation algorithm for MCTS,

jUj � Kn. However, the approximation ratio of log(Kn) could be too large in practice, because of the fact

that V may contain millions of markers and n¼ jVj. We thus hoped to design efficient heuristics to provide

better solutions in this article. In fact, one of our results showed that a greedy algorithm augmented with

some carefully designed heuristics can achieve a nearly optimal approximation ratio in practice.

3. OPTIMIZATION TECHNIQUES TO SOLVE THE MCTS PROBLEM

In principle, a minimum common tagSNP set can be found by exhaustive search. In reality, there are

millions of SNP markers, and it is infeasible to conduct the exhaustive search. As human chromosomes

consist of high-LD regions (i.e., haplotype blocks) interspersed with recombination hotspots, we partition

the markers into precincts such that markers in strong LD will belong in the same precinct. In this way, we

could narrow down the search space and thus improve the efficiency of our algorithm.

To deal with multiple populations, we extend the concept of precinct defined originally by Qin et al.

(2006). We say that two markers are in the same precinct if and only if they are in strong LD in some
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population. Based on the simple observation that no marker in a precinct can tag a marker in another precinct,

we can obtain a minimum tagSNP set for the combining the minimum tagSNP sets for each precinct. The

precincts can be easily identified by running a breath first search in the union graph G. By partitioning the

markers into precincts, we decompose the original problem into a set of disjoint subproblems of much smaller

sizes. We then select tagSNPs for each precinct independently, which could save a lot of running time.

3.1. Data reduction rules

To further reduce the subproblem sizes and improve efficiency, we introduced three simple data re-

duction rules.

� Rule 1: Pick all irreplaceable markers. If a marker vj has no proxy from population i (that is, vj is a

singleton in Gi¼ (Vi,Ei)), then marker vj must be in the minimum tagSNP set.
� Rule 2: Remove less informative markers. Given two markers vj0 and vj, if N�(vj0) � N�(vj), we

say that vj is more informative than vj0 . Similarly, given a set of markers vj1 , vj1 , . . . , vjk if

N�(vj1 ) � N�(vj2 ) � . . . � N�(vjk ), vjk is called the maximally informative SNP marker in the set. It is

clear that we can discard less informative SNPs and only keep those maximally informative ones

without degrading the quality of the solution.
� Rule 3: Remove less stringent occurrences. Given two occurrences vi0

j0 and vi
j, if Ci

j � Ci0
j0 , we say that vi0

j0

is less stringent than vi
j. Similarly, given a set of occurrences vi1

j1
, vi2

j2
, . . . , vik

jk
if Cik

jk
� . . . � Ci2

j2
� Ci1

j1
,

the occurrence vik
jk

is called the most stringent occurrence in the set. We observed that the markers

selected to tag the most stringent occurrences will also tag the less stringent occurrences. Therefore,

we considered only the most stringent occurrences and discard the others.

The above rules can also be viewed as data reduction rules applied to a 0=1 matrix obtained as follows:

Given the notations of the occurrence set U, the marker set V and the neighborhood collections C intro-

duced in the previous section, the rows in the matrix represent U, the columns denote V, and each cell (i, j)

indicates whether the marker corresponding to column j can tag the occurrence corresponding to row i (i.e.,

the value of a cell is set to 1 if the marker can tag the occurrence, and 0 otherwise). Thus, rule 2 is

equivalent to redundant column deletion, and rule 3 is equivalent to redundant row deletion.

The above rules can be applied repeatedly and in any combination whenever applicable. The reduced

problem obtained after the application of the above data reduction rules will be subject to our greedy

algorithm or Lagrangian relaxation algorithm, as explained next.

3.2. A greedy algorithm for MCTS

Greedy algorithms are often desirable because of their simplicity and efficiency. The greedy algorithm,

GreedyTag, below is adapted from the greedy algorithm for the set cover problem as presented by Vazirani

(2003). By first applying the above data reduction rules, we will show later in the article that GreedyTag

greatly outperforms the other greedy algorithms such as LD-Select and MultiPop-TagSelect. Moreover, a

lower bound, called GreedyTag_lb, is produced by GreedyTag, which is equal to the number of tagSNPs

selected by data reduction rule 1. Even though the lower bound is is somewhat loose because we consider

only rule 1, it turned out to be pretty tight in our experiments on real data (see Section 4 for more details).

We present the pseudo-code of GreedyTag in the following Algorithm 1.

3.3. A Lagrangian relaxation algorithm for MCTS

A subset T of SNPs can be denoted by its characteristic vector t¼ t1t2 . . . tn, where ti¼ 1 if vi [ T, and

ti¼ 0 otherwise. It is thus easy to formulate the following integer linear program for MCTS.

Minimize jT j ¼
X

1�j�n
tj

subject to
X

vj0 2 C(vi
j
)
tj0 � 1 1 � i � K and 1 � j � n

tj 2 f0, 1g, 1 � j � n

(3)

Our second algorithm for MCTS is based on the Lagrangian relaxation framework. We assigned a non

negative vector k¼ k11k12 . . . kK, n of Lagrangian multipliers to the inequalities and obtained the following

relaxed integer program:
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Minimize L(t, k)¼
X

1�j�n
tjþ

X
1�i�K, 1�j�n

ki, j 1�
X

vj0 2 C(vi
j
)
tj0

� �

subject to tj 2 f0, 1g, ki, j � 0, 1 � i � K, 1 � j � n

(4)

For a given k, define L(k)¼min L(t, k). We observed that the size of any feasible tagSNP set T would be an

upper bound for L(k) in (4), and any L(k) would be a lower bound for jTj. Hence, we looked for max L(k),

which gives the best lower bound for min jTj.
For any given k, we can easily obtain L(k) in (4) as follows: For convenience, we define s(tj) (1� j� n) as

s(tj)¼ 1�
X

1�i�K, vj0 2 C(vi
j
)

ki, j0 ¼ 1�
X

vi
j0 2 N�(vj)

ki, j0 , (5)

which are the Lagrangian costs associated with tj in Equation 4. Rearranging the terms in Equation 4, we

have the objective function L(t, k)¼
P

1�i�K, 1�j�n ki, jþ
P

1�j�n s(tj) � tj. To minimize the objective

function, we have to set tj¼ 0 if s(tj)> 0, tj¼ 1 if s(tj)< 0, and tj an arbitrary value if s(tj)¼ 0.

The vector t obtained above may not be a feasible solution to Equation 3. In other words, some

occurrence might not be tagged by any marker in T ¼fvjjtj¼ 1, 1 � j � ng induced by the characteristic

vector t. We will adopt a strategy called the reduced cost heuristic introduced by Balas and Carrera (1996)

to deal with this issue.

Next we need to find a good multiplier vector k, i.e., one that gives a near optimal lower bound. We

utilized a standard optimization technique called subgradient optimization (Balas and Carrera, 1996),

which iteratively updates the solution toward the subgradient direction to reach the optimum. We can define

Algorithm 1 (GreedyTag: Greedy Algorithm for TagSNP Selection in Multiple Populations)

Input: A set V of biallelic single-nucleotide polymorphism (SNP) markers and their pairwise r2 linkage

disequilibrium (LD) statistics in K distinct populations. A predefined threshold g0 for r2 LD statistics.

Output: A feasible tagSNP set T � V , and a lower bound LB.

Begin

Partition markers into precincts. Let the set of precincts be P.

For each precinct p 2 P {the following will be executed in parallel on a multi-processor machine}

Let U be the set of SNPs and W the set of marker occurrences in p.

Step 1: Apply the three data reduction rules.

Tp ( ;; LBp ( 0; UPDATED ( true;

While UPDATED {execute the optimal rules iteratively}

UPDATED ( false;

If there exists an irreplaceable marker vj [ U {Rule 1}

U ( U�fvjg; W ( W �N�(vj);

Tp ( Tp [ fvjg; LBp ( LBpþ 1; UPDATED ( true;

If there exists a less informative marker vj [ U {Rule 2}

U ( U�fvjg; UPDATED ( true;

If there exists a less stringent occurrence vi
j 2 W {Rule 3}

W ( W �fvi
jg; UPDATED ( true;

For each vj [ U

D(vj)( N�(vj) \W;

Step 2: Select tagSNPs greedily.

While W is non-empty {there are markers to be tagged}

Let vj0 ( argmaxvj2U jD(vj)j;
Tp ( Tp [ fvj0g; U ( U�fvj0g; W ( W �N�(vj0 );

For each vj [ U

D(vj)( D(vj) \W;

T (
S

p2P Tp; LB(
P

p2P LBp

Output T, LB {output the solution and lower bound}

End
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S(ki, j)¼ 1�
X

vj0 2 C(vi
j
)

tj0 (6)

which simplifies L(t, k)¼
P

1�j�n tjþ
P

1�i�K, 1�j�n S(ki, j) � ki, j: Obviously, rk¼ (rk11,rk12, . . . ,

rkK, n), where rki, j¼ S(ki, j). Starting from a initial setting k0, we sequentially generated k1, k2, k3, . . .,
based on the following formula:

kkþ 1¼maxf0, kk þ ak

jT�j � L�

jjrkkjj2
rkkg, (7)

where T* is the smallest feasible tagSNP set found so far (i.e., the best upper bound for max L(t)), L* is the

largest of max L(t) found so far (i.e., the best lower bound for max L(t)), and {a0, a1, a1, … } is a decreasing

sequence of predefined scalars.

The pseudo-code for the Lagrangian relaxation algorithm, LRTag, is given in Algorithm 2. In the algo-

rithm, we started from an initial setting of k0, generated a solution to t0, and extended it to a valid tagSNP set

as above mentioned. Then we updated k0 into k1 according to formula 7. We repeated the process until we

were not able to improve k or a predefined number of maximum iterations was reached. Over the entire

iterative process, the smallest feasible set of tagSNPs found by LRTag would be output as a solution to the

MCTS problem, and the largest L(t) would be a lower bound for tagSNP selection, called LRTag_lb.

Both of our algorithms calculated lower bounds on the minimum number of required tagSNPs, one of

which was found by GreedyTag (i.e., GreedyTag_lb) and the other by LRTag (i.e., LRTag_lb). We define

‘‘gap’’ as the difference between the highest lower bound and the cardinality of the smallest tagSNP set

found by our algorithms, which will be used to measure the quality of the solutions.

4. EXPERIMENTAL RESULTS

In our experiments, we tested the algorithms GreedyTag and LRTag on the HapMap populations and

compared their performance and efficiency with single-population tagging programs LD-Select and FESTA,

and a multiple-population tagging program MultiPop-TagSelect. For convenience, we also denoted by

GreedyTag the cardinality of a feasible tagSNP set obtained by the GreedyTag algorithm. We used similar

notations for LRTag, LD-Select, FESTA, and MultiPop-TagSelect.

Both of our algorithms calculated lower bounds on the minimum number of required tagSNPs, one of

which was found by GreedyTag (i.e., GreedyTag_lb) and the other by LRTag (i.e., LRTag_lb). We define

‘‘gap’’ as the difference between the highest lower bound and the cardinality of the smallest tagSNP set

found by our algorithms, which will be used to measure the quality of the solutions.

We applied all the methods on the entire human genome data involving chromosomes 1 through 22 and

on all ENCODE regions (ENm010, ENm013, ENm014, ENr112, ENr113, ENr123, ENr131, ENr213,

ENr232, and ENr321) genotyped by the HapMap project (release no. 19, NCBI build 34, October 2005).

For the ENCODE data, we estimated the r2 statistics by using a two-marker expectation maximization

(EM) algorithm to compute the maximum-likelihood values of the four gamete frequencies, which is also

commonly adopted by LD-Select and HaploView (Bakker et al, 2006). For the entire human genome data,

we directly download the r2 statistics from the HapMap website (Hapmap LD Data, 2005), generated by

HaploView to save computational cost. Note that HaploView only calculates LD for markers up to

250 kbps apart, which is reasonable because the LD for markers that are farther than 250 kbp would

normally be very weak anyway, and high LD in such a case can happen only purely by chance. To save

running time for dealing with the entire human genome data, we pruned the LD pattern data downloaded

from the HapMap website by keeping only entries with r2 greater than or equal to 0.5.

We ran all the programs on a 32-processor SGI Altix 4700 supercomputer system with 1.6 GHz CPU and

64 GB shared memory in the Computer Science Department, University of California, Riverside, CA. Our

GreedyTag and LRTag algorithms used up to 15 threads in parallel, while each of the other programs is

single threaded.2

2Note that if a program runs in time of t with 15 threads, then its running time with one thread would be 15t. This
transformation can be used to compare the running times of our programs and those of the other programs on a single-
thread mode.
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4.1. Tagging the ENCODE regions

A dense set of SNPs across 10 large genomic regions have been produced by the HapMap ENCODE

project. These regions serve as the foundation to evaluate the development of methodologies and tech-

nologies for detecting functional elements in human DNA. Each region is about 500 kb in length and has an

SNP density about 1 SNP per 600 bp.

4.1.1. Tagging ENCODE regions for a single population. We tag each HapMap population

separately by LD-Select, FESTA, and our new algorithms GreedyTag and LRTag. For illustration purposes,

Algorithm 2 (LRTag: Lagrangian Relaxation Algorithm for TagSNP Selection in Multiple Populations)

Input: A set V of n biallelic SNP markers and their pairwise r2 LD statistics in K distinct populations. A pre-defined

threshold g0 for r2 LD statistics. A pre-defined initial scalar a0 and threshold amin for subgradient optimization. A pre-

defined maximum number Itermax of iterations and a pre-defined threshold Kmax of maximum trials.

Output: A feasible tagSNP set T � V , and a lower bound LB.

Begin

Partition markers into precincts. Let the set of precincts be P
For each precinct p 2 P {the following will be executed in parallel on a multi-processor machine}

Let U be the set of SNPs and W be the set of marker occurrences in p.

Step 1: Apply the three data reduction rules and obtain a temporary tagSNP set Tp and a lower bound LBp.

{The same as the rules in GreedyTag algorithm (see Algorithm 1 for details)}.

Step 2: Select tagSNPs under a Lagrangian relaxation framework.

Generate Lagrangian relaxation formula.

k( 0; a( a0; Iter ( 0; Initialize k being an arbitrary non-negative vector; LBp1 ( 0; Tp1 ( U;

While (a> amin) and (Iter< Itermax)

Iter ( Iterþ 1; new LB(
P

1�i�K, 1�j�n ki, j; new T ( ;;
{Calculate a new lower bound new_LB}

For each vj [ U

sj ( 1�
P

vi
j0 2 N�(vj)

ki, j0 ;

If sj� 0 tj ( 1; Else tj ( 0;

new LB( new LBþ sj � tj;

{Obtain a feasible tagSNP set new_T by the reduced cost heuristic (RCH) method}

For each vj 2 U RCH sj ( sj;

For each vi
j 2 W RCH ki, j ( ki, j;

For each vi
j 2 W

If
P

vj0 2 C(vi
j
) tj0 5 1

RCH sm ( minfRCH sj0 : vj0 2 C(vi
j)g;

RCH ki, j ( RCH ki, jþRCH sm;

For each vj0 2 C(vi
j)

RCH sj0 ( RCH sj0 �RCH sm;

If RCH sj0 � 0 tj0 ( 1;

For each vj [ U

If tj¼ 1 new T ( new T [ fvjg;
{Update the lower bound LBp1 and the tagSNP set Tp1}

If new LB�LBp1 k( kþ 1;

If (k�Kmax) a( a=2; k( 0;

Else LBp1 ( new LB; k( 0;

If jnew Tj5 jTp1j Tp1 ( new T ;

{Update the Lagrangian multipliers k by the subgradient optimization method}

For each vi
j 2 W rki, j ( 1�

P
vj0 2C(vi

j
) tj0 ;

k( maxf0, kþ a jTp1j � LBp1

jjrkjj2 rkg;
{Combine the solutions from step 1 and step 2}

Tp ( Tp [ Tp1; LBp ( LBpþ LBp1;

T (
S

p2P Tp; LB(
P

p2P LBp

Output T, LB {output the solution and the lower bound}

End
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we only showed the results for tagging the CEU population and compared the performance of the above

algorithms in Table 2.

When the r2 threshold is set as 0.5, the number of tagSNPs selected by our algorithm is on the average

9.3% of the total number of markers (the actual percentage number ranges from 5.1% to 15.3%). With a

more stringent r2 threshold of 0.8, the average number of tagSNPs rises to 17.6% of the total number of

markers (ranging from 11.4% to 24.9%). The same trend was observed when applying our algorithms on

the other populations (results are not shown because of space constraint).

On each ENCODE region, we observed that the gap between LRTag_lb and LRTag is at most one with

the r2 threshold being 0.5, and there is no gap when the r2 threshold is set as 0.8. This demonstrates that our

algorithm LRTag found near-optimal solutions in all test cases. In general, LRTag and GreedyTag always

generated the smallest sets of tagSNPs, FESTA selected at most three more tagSNP, and LD-Select might

select up to eight more tagSNPs.

As our algorithms and FESTA are all near-optimal, we compared the time efficiency of these programs

in Table 3. Because LD-Select takes genotype data as input and the other programs take pairwise LD data

as input, we do not compare LD-Select’s running times directly with those of the others here (generally

speaking, it takes LD-Select from 30 m in to 2 h on an ENCODE region). From Table 3, we can see that the

running time of FESTA varied widely from 1 s to 64 h on different regions, while our algorithms Gree-

dyTag and LRTag consistently took 1–2 s on all regions. In conclusion, our algorithms were 3–4 orders of

magnitude faster than FESTA in most of the cases, and our algorithms found slightly smaller sets of

tagSNPs

4.1.2. Tagging ENCODE regions for multiple populations. We tagged each and the entire

ENCODE regions for all four HapMap populations by MultiPop-TagSelect, GreedyTag, and LRTag. The

tagging results of these methods on each ENCODE region are summarized in Table 4. We also highlighted

the results for region ENm013 and for the entire ENCODE region in Figure 1.

With the r2 threshold set as 0.5, the number of tagSNPs selected by our algorithms is on the average

18.3% of the total number of markers (the actual percentage number ranges from 11.0% to 34.5%). With a

more stringent r2 threshold of 0.8, the average number of tagSNPs increases to 33.7% (ranging from 24.0%

Table 2. Summary of TagSNPs Identified by FESTA, LD-Select, GreedyTag,

and LRTag for a Single Population, CEU, on All ENCODE Regions

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321

No. of SNP 525 692 904 947 1080 864 990 612 457 544

r2� 0.5

No. of precinct 39 27 47 52 40 30 83 42 64 52

No. of tagSNP (upper bound)

LD-Select 62 38 65 84 77 69 112 62 72 68

FESTA 57 35 63 76 73 65 107 61 70 65

GreedyTag 56 35 63 76 73 62 107 61 70 64

LRTag 56 35 63 76 73 62 107 61 70 64

No. of tagSNP (lower bound)

LRTag_lb 55 35 63 76 73 62 107 60 70 64

GreedyTag_lb 50 33 63 72 69 54 101 55 70 62

Gap 1 0 0 0 0 0 0 1 0 0

r2� 0.8

No. of precinct 116 69 121 139 131 129 175 105 106 107

No. of tagSNP (upper bound)

LD-Select 123 82 129 152 146 139 189 110 115 109

FESTA 122 79 129 152 143 139 186 110 114 109

GreedyTag 122 79 129 152 143 139 186 110 114 109

LRTag 122 79 129 152 143 139 186 110 114 109

No. of tagSNP (lower bound)

GreedyTag_lb 122 79 129 152 143 139 186 110 114 109

LRTag_lb 122 79 129 150 143 139 186 107 110 109

Gap 0 0 0 0 0 0 0 0 0 0
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to 50.5%). We observed that LRTag always performs the best in these tests, followed by the GreedyTag

algorithm, and MultiPop-TagSelect always performs worst. When r2 threshold is set as 0.5, LRTag requires

16.4% fewer markers on the average than MultiPop-TagSelect. When the r2 threshold is 0.8, LRTag usually

requires 5.1% fewer markers on the average than MultiPop-TagSelect.

The gap between LRTag_lb and LRTag is at most two for each ENCODE region and totally six for all

ENCODE regions with the r2 threshold being 0.5. There is no gap with the r2 threshold being 0.8.

4.2. Genome-wide tagging

Because both LD-Select and MultiPop-TagSelect (written in Perl) took more than 20 h to tag a single

chromosome, we reimplemented their algorithms in Cþþ, called LD-Select* and MultiPop-TagSelect*,

respectively, to give a fair comparison of the programs. As FESTA’s ‘‘greedy-exhaustive hybrid search’’ is

very computational demanding and hard to emulate, we excluded FESTA from the following comparative

study.

Table 3. The Time Efficiency of FESTA, GreedyTag, and LRTag for Selecting TagSNPs

from a Single Population, CEU, on All ENCODE Regions

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321

r2� 0.5

FESTA 3 h,

14 min

3 h,

16 min

4 h,

51 min

3 h,

18 min

14 h,

24 min

64 h,

4 min

5 h,

13 min

2 h,

24 min

1 h,

38 min

45 min,

19 s

GreedyTag 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s 1 s

LRTag 1 s 1 s 1 s 2 s 1 s 2 s 1 s 1 s 1 s 1 s

r2� 0.8

FESTA 1 s 3 s 28 min,

20 s

44 min,

6 s

12 min,

8 s

50 min,

16 s

3 s 1 s 2 s 1 s

GreedyTag <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s

LRTag <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s <1 s

The running times are obtained on a 32-processor SGI Altix 4700 supercomputer system.

Table 4. Summary of TagSNPs Identified by MultiPop-TagSelect, GreedyTag,

and LRTag for All HapMap Populations on ENCODE Regions

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321

No. of SNP 783 1063 1261 1158 1485 1221 1186 900 777 1025

r2� 0.5

No. of precinct 65 38 48 44 67 38 73 56 126 53

No. of tagSNP (upper bound)

MultiPop-TagSelect 206 150 201 238 260 181 306 200 286 233

GreedyTag 179 117 164 184 228 141 257 173 268 193

LRTag 179 117 164 184 228 141 257 173 268 193

No. of tagSNP (lower bound)

LRTag_lb 178 117 162 182 226 141 256 173 268 193

GreedyTag_lb 169 107 149 168 218 139 250 173 264 189

Gap 1 0 2 2 0 0 1 0 0 0

r2� 0.8

No. of precinct 156 111 146 101 209 106 194 170 210 191

No. of tagSNP (upper bound)

MultiPop-TagSelect 338 275 321 425 454 329 462 324 402 396

GreedyTag 322 255 305 391 437 300 445 318 392 377

LRTag 322 255 305 389 437 300 445 318 392 377

No. of tagSNP (lower bound)

LRTag_lb 322 255 305 389 437 300 445 318 392 377

GreedyTag_lb 319 253 303 374 435 300 443 318 392 377

Gap 0 0 0 0 0 0 0 0 0 0
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4.2.1. Tagging the human genome for a single population. We applied LD-Select*, GreedyTag,

and LRTag on each HapMap population separately. For illustration purposes, we only discussed the results

for tagging the CEU population and compared the performance of the above three algorithms. The details

can be found in Table 5.

With the r2 threshold set as 0.5, the number of tagSNPs selected by our algorithms is 14.4% of the total

number of markers on the average (the actual percentage ranges from 11.2% to 21.4%). With a more

stringent r2 threshold of 0.8, the average number of tagSNPs increases to 26.6% (ranging from 22.2% to

Table 5. Summary of the Tag SNPs Selected by LD-Select, GreedyTag,

and LRTag for a Single Population, CEU, on Each Human Chromosome

1a 2 3 4 5 6 7 8 9 10 11

No. of SNP 151,195 181,499 143,472 130,823 138,817 149,514 113,037 122,646 100,352 110,942 104,661

r2� 0.5

No. of precinct 15,752 29,426 12,901 11,906 11,998 11,831 10,512 9,900 9,438 10,153 9,979

No. of tagSNP (upper bound)

LD-Select* 21,865 36,238 19,063 17,212 17,765 17,921 15,418 15,140 13,800 14,882 14,307

GreedyTag 20,806 35,083 17,984 16,295 16,769 16,815 14,584 14,203 13,066 14,041 13,600

LRTag 20,800 35,065 17,977 16,286 16,756 16,798 14,577 14,196 13,058 14,038 13,589

No. of tagSNP (lower bound)

LRTag-lb 20,793 35,059 17,958 16,279 16,736 16,784 14,569 14,182 13,049 14,031 13,578

GreedyTag-lb 20,123 34,202 17,155 15,675 15,965 16,086 14,021 13,568 12,530 13,477 13,089

Gap 7 6 19 7 20 14 8 14 9 7 11

r2� 0.8

No.of precinct 35,990 51,098 31,916 28,650 29,931 30,632 26,181 26,120 23,739 25,186 23,544

No. of tagSNP (upper bound)

LD-Select* 38,944 54,612 35,092 31,590 32,978 33,723 28,754 28,822 26,008 27,698 25,826

GreedyTag 38,534 54,081 34,602 31,124 32,502 33,229 28,362 28,394 25,666 27,302 25,485

LRTag 38,534 54,080 34,601 31,123 32,501 33,227 28,362 28,393 25,665 27,302 25,484

No. of tagSNP (lower bound)

LRTag-lb 38,534 54,080 34,600 31,123 32,501 33,225 28,361 28,391 25,664 27,301 25,483

GreedyTag-lb 38,269 53,687 34,310 30,824 32,189 32,962 28,083 28,110 25,396 27,077 25,276

Gap 0 0 1 0 0 2 1 2 1 1 1

12a 13 14 15 16 17 18 19 20 21 22

No. of SNP 100,437 84,184 68,485 58,491 57,083 47,505 62,666 29,341 51,206 27,955 26,996

r2� 0.5

No. of precinct 9,960 7,476 6,751 6,740 7,184 6,764 6,534 5,291 5,874 3,270 3,829

No. of tagSNP (upper bound)

LD-Select* 14,243 10,996 9,703 9,364 9,962 8,656 9,115 6,464 7,972 4,470 5,029

GreedyTag 13,554 10,374 9,215 8,930 9,503 8,355 8,652 6,286 7,637 4,258 4,831

LRTag 13,548 10,370 9,212 8,923 9,500 8,354 8,649 6,284 7,634 4,257 4,831

No. of tagSNP (lower bound)

LRTag-lb 13,539 10,363 9,203 8,920 9,500 8,353 8,646 6,283 7,630 4,256 4,830

GreedyTag-lb 13,048 9,988 8,867 8,589 9,241 8,180 8,332 6,190 7,380 4,125 4,714

Gap 9 7 9 3 0 1 3 1 4 1 1

r2� 0.8

No. of tagSNP (upper bound)

No. of precinct 23,809 18,509 16,391 15,629 16,869 13,942 15,262 10,019 13,177 7,390 8,240

LD-Select* 25,887 20,221 17,723 16,908 18,194 14,778 16,498 10,494 14,194 7,912 8,727

GreedyTag 25,579 19,967 17,546 16,722 18,012 14,670 16,299 10,420 14,052 7,844 8,652

LRTag 25,579 19,967 17,545 16,722 18,012 14,669 16,299 10,420 14,052 7,844 8,652

No. of tagSNP (lower bound)

LRTag-lb 25,578 19,966 17,545 16,722 18,012 14,668 16,299 10,420 14,051 7,844 8,652

GreedyTag-lb 25,387 19,778 17,405 16,608 17,836 14,588 16,181 10,382 13,943 7,774 8,601

Gap 1 1 0 0 0 1 0 0 1 0 0

aThe numbers 1–11 and 12–22 denote chromosome numbers.
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Table 6. Summary of the Tag SNPs Selected by MultiPop-TagSelect, GreedyTag,

and LRTag for all HapMap Populations on Each Human Chromosome

1a 2 3 4 5 6 7 8 9 10 11

No. of SNP 216,357 249,136 196,535 182,273 187,924 205,496 155,224 170,136 138,047 156,089 144,083

r2� 0.5

No. of precinct 16,234 26,836 12,835 12,251 12,414 11,862 10,332 10,101 9,254 10,220 9,568

No. of tagSNP (upper bound)

MultiPop-

TagSelect*

64,892 126,408 56,978 52,828 54,087 54,454 45,943 46,927 41,341 45,226 41,556

GreedyTag 59,126 122,372 51,266 47,650 48,661 48,817 41,169 42,206 37,289 40,713 37,365

LRTag 55,016 117,537 47,450 44,223 45,186 44,987 38,150 39,149 34,439 37,554 34,590

No. of tagSNP (lower bound)

LRTag-lb 54,942 117,511 47,362 44,141 45,102 44,878 38,090 39,076 34,381 37,486 34,537

GreedyTag-lb 53,937 117,155 46,330 43,239 44,145 43,845 37,280 38,161 33,534 36,713 33,778

Gap 74 26 88 82 84 109 60 73 58 68 53

r2� 0.8

No. of precinct 42,450 56,135 35,192 33,434 33,211 33,228 28,543 28,948 25,485 28,277 25,428

No. of tagSNP (upper bound)

MultiPop-

TagSelect*

100,062 155,505 89,195 82,835 84,998 86,313 72,024 74,934 65,442 70,817 64,679

GreedyTag 94,797 150,664 84,091 78,077 80,188 80,981 67,818 70,678 61,708 66,676 60,721

LRTag 94,797 150,664 84,090 78,076 80,186 80,980 67,817 70,677 61,706 66,674 60,718

No. of tagSNP (lower bound)

LRTag-lb 94,788 150,660 84,079 78,072 80,174 80,964 67,808 70,667 61,699 66,663 60,705

GreedyTag-lb 94,362 150,393 83,585 77,674 79,663 80,507 67,461 70,285 61,321 66,291 60,294

Gap 9 4 11 4 12 16 9 10 7 11 13

12a 13 14 15 16 17 18 19 20 21 22

No. of SNP 141,943 119,080 94,528 81,687 79,898 64,645 89,024 40,549 70,877 39,400 39,523

r2� 0.5

No. of precinct 10,086 7,810 6,532 6,667 7,328 6,952 6,875 5,127 6,139 3,290 3,884

No. of tagSNP (upper bound)

MultiPop-

TagSelect*

42,362 33,477 28,465 27,847 28,987 23,601 27,109 15,768 23,243 13,100 13,895

GreedyTag 38,563 30,183 25,706 25,408 26,432 21,931 24,789 14,785 21,319 12,010 12,980

LRTag 35,493 27,927 23,932 23,721 24,791 20,647 23,174 14,007 19,994 11,253 12,174

No. of tagSNP (lower bound)

LRTag-lb 35,449 27,881 23,903 23,686 24,761 20,636 23,141 14,001 19,971 11,238 12,160

GreedyTag lb 34,833 27,306 23,440 23,229 24,294 20,366 22,697 13,814 19,601 11,035 12,017

Gap 44 46 29 35 30 11 33 6 23 15 14

r2� 0.8

No. of precinct 27,027 21,084 17,723 17,526 18,943 16,278 17,866 11,289 15,438 8,366 9,480

No. of tagSNP (upper bound)

MultiPop-

TagSelect*

65,521 52,863 44,226 42,380 43,913 34,289 41,893 22,274 35,251 19,990 20,624

GreedyTag-lb 61,828 49,797 41,867 40,250 41,726 32,862 39,833 21,465 33,676 19,060 19,742

LRTag-lb 61,826 49,796 41,867 40,250 41,724 32,862 39,833 21,464 33,675 19,060 19,741

No. of tagSNP (lower bound)

LRTag-lb 61,816 49,791 41,860 40,247 41,721 32,860 39,832 21,464 33,673 19,059 19,739

GreedyTag lb 61,450 49,498 41,642 40,029 41,497 32,740 39,625 21,377 33,525 18,996 19,660

Gap 10 5 7 3 3 2 1 0 2 1 2

aThe numbers 1–11 and 12–22 denote chromosome numbers.
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35.5%). Similar trends were observed when applying our algorithms to the other populations (the results are

not shown because of space limitation).

We observed that LRTag always performs the best, followed by the GreedyTag algorithm, and LD-

Select* always performs the worst. With the r2 threshold set as 0.5, LRTag usually requires 4.9% fewer

tagSNPs (the actual percentage number ranges from 2.8% to 6.3%) on average than LD-Select* on each

chromosome. When the r2 threshold is increased to 0.8, LRTag usually requires 1.2% fewer tagSNPs

(ranging from 0.07% to 1.5%) on average than LD-Select*.

We can see that, on each chromosome, the gap between the lower bound from LRTag_lb and the upper

bound obtained by LRTag is on the average 7 (the actual number ranges from 1 to 20) with the r2 threshold

set as 0.5, and less than 1 (ranging from 0 to 2) with the r2 threshold set being 0.8. This demonstrates that

LRTag finds near-optimal solutions in all test cases even for genome-wide tagging on a single population.

In fact, the performance of GreedyTag is not bad either.

4.2.2. Tagging the human genome for multiple populations. Finally, we tagged the entire human

genome for all four HapMap populations by MultiPop-TagSelect, GreedyTag, and LRTag. We summarized

the tagging results of these methods on each chromosome in Table 6, and then highlighted the results for

chromosome 3 and all chromosomes in Figure 3.

With the r2 threshold set as 0.5, the number of tagSNPs selected by our methods is on the average 27.3%

of the total number of markers (the actual percentage ranges from 21.9% to 47.2%). With a more stringent

r2 threshold of 0.8, the average number of tagSNPs increases to 46.0% (ranging from 29.4% to 60.4%).

Based on Table 6, we observed that LRTag always performs slightly better than GreedyTag and signifi-

cantly better than MultiPop-TagSelect*. With the r2 threshold set as 0.5, LRTag requires 6.8% fewer

tagSNPs on average (the actual number ranges from 4.0% to 8.0%) than MultiPop-TagSelect* on each

chromosome. With the r2 threshold set as 0.8, LRTag requires 3.6% fewer markers on average (ranging

from 2.7% to 4.3%) than MultiPop-TagSelect*.

The gap between the lower bound from LRTag_lb and upper bound of LRTag is on the average 48 for

each chromosome (the actual number ranges from 6 to 109) with the r2 threshold set as 0.5, and 6.5

(ranging from 0 to 16) with the r2 threshold set being 0.8, as shown in Table 6.

Table 7. The speeds of GreedyTag and LRTag for Tagging the Entire ENCODE Region

for All HapMap Populations with the r2
Threshold Being 0.5

Region ENm010 ENm013 ENm014 ENr112 ENr113 ENr123 ENr131 ENr213 ENr232 ENr321

LRTag 1 s 4 s 3 s 5 s 7 s 5 s 1 s 1 s 1 s 2 s

GreedyTag 1 s 4 s 4 s 5 s 7 s 6 s 1 s 1 s 1 s 2 s

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.
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FIG. 3. (A) Tagging chromosome 3 for all HapMap populations with 196,535 markers. (B) Tagging the entire human

genome for all HapMap populations with 2,862,454 markers. See the caption of Figure 1 for the definitions of the

algorithm names.
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5. CONCLUSION

Our LRTag and GreedyTag algorithms run quickly on ENCODE regions and the entire human genome

for both single and multiple populations. On an ENCODE region with the r2 threshold being 0.5, it takes

our algorithms no more than 2 s to tag a single population (as shown in Table 3) and less than 7 s to tag

multiple populations (as displayed in Table 7). On a human chromosome, it takes no more than 4 min to tag

a single population (as shown in Table 8) and less than 12 min to tag on multiple populations (as displayed

in Table 9). For r2 thresholds greater than 0.5, our algorithms run faster. Hence, for any given r2 threshold,

it takes our algorithms less than a minute to tag the entire ENCODE region and less than an hour to tag the

entire human genome.

If the number of populations of interest increases, the genotyping density increases or the r2 threshold

increases, the number of required tagSNPs also increases. For example, on multiple HapMap populations

with the r2 threshold being 0.5, we need to tag one SNP for about every six SNPs on the densely genotyped

ENCODE regions. We need to tag one SNP for about every four SNPs on sparsely genotyped HapMap

chromosomes.

All the lower and upper bounds produced by the discussed methods are shown in Figures 2 and 3. In the

figures, we tagged the ENCODE regions and human genome on the HapMap populations with the r2

thresholds being 0.5, 0.6, 0.7, and 0.8 separately. From all these test cases, we observed that LRTag always

chooses the smallest set of tagSNPs, closely followed by GreedyTag, whereas MultiPop-TagSelect chooses

the largest set of tagSNPs.

LRTag_lb always provides the best lower bound and LRTag the best upper bound among all methods

considered. The simple greedy algorithm, GreedyTag, chooses slightly more tagSNPs than LRTag and the

Table 9. The Speeds of GreedyTag and LRTag for Tagging the Entire Human Genome

for All HapMap Populations with the r2
Threshold being 0.5

1a 2 3 4 5 6 7 8 9 10 11

LRTag 3 min,

4 s

2 min,

2 s

3 min,

9 s

2 min,

51 s

3 min,

37 s

11 min,

4 s

2 min,

12 s

3 min,

45 s

2 min,

24 s

2 min,

49 s

2 min,

20 s

GreedyTag 3 min,

11 s

1 min,

13 s

3 min,

43 s

2 min,

46 s

3 min,

20 s

10 min,

45 s

2 min,

25 s

2 min,

52 s

2 min,

18 s

2 min,

55 s

2 min,

16 s

12a 13 14 15 16 17 18 19 20 21 22

LRTag 2 min,

55 s

2 min,

11 s

1 min,

28 s

1 min 48 s 1 min,

10 s

1 min,

17 s

27 s 56 s 25 s 30 s

GreedyTag 3 min 2 min,

27 s

1 min,

16 s

52 s 23 s 1 min,

9 s

1 min,

16 s

27 s 50 s 25 s 30 s

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.
aThe numbers 1–11 and 12–22 denote chromosome numbers.

Table 8. The Speeds of GreedyTag and LRTag for Tagging the Human Genome

for a Single Population, CEU, with the r2
Threshold Being 0.5

1a 2 3 4 5 6 7 8 9 10 11

LRTag 1 min,

18 s

1 min,

44 s

1 min,

28 s

1 min,

12 s

1 min,

27 s

3 min,

7 s

1 min,

3 s

1 min,

15 s

57 s 1 min,

6 s

1 min,

8 s

GreedyTag 1 min,

17 s

1 min,

41 s

1 min,

16 s

1 min,

15 s

1 min,

24 s

3 min,

11 s

58 s 1 min, 16 s 57 s 1 min,

6 s

1 min,

10 s

12a 13 14 15 16 17 18 19 20 21 22

LRTag 56 s 50 s 34 s 28 s 23 s 46 s 31 s 9 s 23 s 11 s 10 s

GreedyTag 56 s 50 s 37 s 27 s 20 s 47 s 31 s 10 s 22 s 11 s 9 s

The running time was evaluated on a 32-processor SGI Altix 4700 supercomputer system.
aThe numbers 1–11 and 12–22 denote chromosome numbers.
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lower bound GreedyTag_lb is slightly lower than LRTag_lb, which indicates that the data reduction rules in

Section 3 are very powerful.

When the r2 threshold increases, the size of the precincts decreases. Consequently, the gap between the

lower bound and the upper bound decreases. For the entire human genome with 2,862,454 markers, the gap

between LRTag and LRTag_lb is 1061 when the r2 threshold is 0.5, and 142 when the r2 threshold

increases to 0.8. The small gap shows that LRTag finds near-optimal solutions for genome-wide tagging.
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