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Abstract

Motivation: High-throughput conformation capture experiments, such as Hi-C provide genome-

wide maps of chromatin interactions, enabling life scientists to investigate the role of the

three-dimensional structure of genomes in gene regulation and other essential cellular functions.

A fundamental problem in the analysis of Hi-C data is how to compare two contact maps derived

from Hi-C experiments. Detecting similarities and differences between contact maps are critical in

evaluating the reproducibility of replicate experiments and for identifying differential genomic

regions with biological significance. Due to the complexity of chromatin conformations and the

presence of technology-driven and sequence-specific biases, the comparative analysis of Hi-C data

is analytically and computationally challenging.

Results: We present a novel method called Selfish for the comparative analysis of Hi-C data that takes

advantage of the structural self-similarity in contact maps. We define a novel self-similarity measure

to design algorithms for (i) measuring reproducibility for Hi-C replicate experiments and (ii) finding

differential chromatin interactions between two contact maps. Extensive experimental results on

simulated and real data show that Selfish is more accurate and robust than state-of-the-art methods.

Availability and implementation: https://github.com/ucrbioinfo/Selfish

Contact: aroay001@ucr.edu or stelo@cs.ucr.edu

1 Introduction

Recent studies have revealed that genomic DNA in eukaryotes is not

arbitrarily packed into the nucleus. The chromatin has a well-organ-

ized and regulated structure in accordance to the stage of the cell

cycle and environmental conditions (Ma et al., 2015; Pederson,

1972). The chromatin structure in the nucleus plays a critical role in

many essential cellular processes, including regulation of gene ex-

pression and DNA replication (Dixon et al., 2012, 2015; Rao et al.,

2014; Sexton et al., 2012).

Technological and scientific advancements in genome-wide

DNA proximity ligation (Hi-C) have enabled life scientists to study

how chromatin folding regulates cellular functions (Cavalli and

Misteli, 2013; Chen et al., 2015; Gorkin et al., 2014; Lieberman-

Aiden et al., 2009). The analysis of Hi-C led to the discovery of new

structural features of chromosomes such as topologically associating

domains (TADs) (Dixon et al., 2012; Zufferey et al., 2018) and

chromatin loops (Cao et al., 2018; Rao et al., 2014).

With the decreasing cost of Hi-C experiments and the higher

availability of Hi-C data for different cell types in diverse condi-

tions, there is a growing need for reliable and robust measures to

systematically compare contact maps to discover similarities and dif-

ferences. However, the comparative analysis of Hi-C data presents

computational and analytical challenges due to presence of

technology-driven and sequence-specific biases. Technology-driven

biases include sequencing depth, cross-linking conditions, circular-

ization length, and restriction enzyme sites length (Cournac et al.,

2012; O’Sullivan et al., 2013; Stansfield and Dozmorov, 2017).

Sequence-specific biases include GC content of trimmed ligation

junctions, sequence uniqueness and nucleotide composition (Yaffe

and Tanay, 2011). For instance, it is well-known that contact maps

from replicate experiments can contain significant differences solely

due to these biases, which could be falsely interpreted as biological

differences if these biases were not accounted for (Yardimci et al.,

2018) . Several normalization methods have been developed to com-

pensate for these biases and improve the reproducibility of Hi-C

experiments (e.g. Imakaev et al., 2012; Knight and Ruiz, 2013;

Lieberman-Aiden et al., 2009; Yaffe and Tanay, 2011). While sev-

eral computational methods have been proposed to extract statistic-

ally significant differences in normalized contact maps (Ay et al.,

2014; Cairns et al., 2016; Rao et al., 2014; Ron et al., 2017), their

performance is still not entirely satisfactory due to the inherent
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complexity, inter-dependency and unaccounted biases in chromatin

interaction data.

There are two major domains of application for the comparative

analysis of Hi-C contact maps. The first application domain is

focused on quantifying the reproducibility of Hi-C biological/tech-

nical replicate experiments (Yardimci et al., 2018). For instance,

Yang et al. (2017) defined a reproducibility measure based on the

stratum-adjusted correlation coefficient statistic defined on the

unique spatial features of Hi-C data. Their method HiCRep

(i) reduces the effect of noise and biases by applying a 2D averaging

filter on the data, (ii) addresses the distance dependence of Hi-C

data by stratifying the data with respect to the genomic distance,

(iii) calculates a Pearson correlation coefficient for each stratum and

(iv) aggregates the computed stratum-specific correlation coeffi-

cients using a weighted average.

In the same application domain aimed at quantifying reproduci-

bility or concordance of contact maps, Ursu et al. (2018) presented a

method called GenomeDISCO to measure the differences between

smoothed contact maps. GenomeDISCO represents contact map as

a graph, where each node represents a genomic locus and each edge

represents an interaction between two loci. Edges are weighted by

the normalized frequency of the corresponding pairs of loci.

GenomeDisco executes iteratively the two following steps: (i) traver-

ses the graph using random walks, which has the effect of denoising

(smoothing) the data, (ii) computes the normalized difference be-

tween smoothed contact maps using the L1 distance between two

contact maps.

The second application domain is aimed at finding statistically

significant differences between contact maps for cells in different

states (tissues, developmental states, healthy/diseased, time-points,

etc.). It is well-known that chromatin interactions that are mediated

by specific protein can have distinct frequencies in different cell

types or in different cell conditions (Gong et al., 2011; Patel et al.,

2012). Differences in chromatin interactions can be associated with

cell-type-specific gene expression or mis-regulation of oncogenes or

anti-oncogenes (Hnisz et al., 2016; Liu et al., 2008; Schmitt et al.,

2016).

Wang et al. (2013) proposed the first method to discover differ-

ences in Hi-C contact maps. The authors used a simple fold change

of the normalized local interactions to discover that estrogen stimu-

lation significantly impacts chromatin interactions in MCF7 cells.

Building on this idea, Dixon et al. (2015) proposed a method that

(i) quantile normalizes contact maps to compensate for the bias

induced by different sequencing depth, and (ii) determines the sig-

nificance of normalized differences between two contact maps (aug-

mented by feature vectors representing epigenetic signals) using a

Random Forest model. Their method can (i) determine whether the

epigenetic signal is predictive of changes in interaction frequency

and (ii) discover which epigenetic signals are most predictive of

changes in higher-order chromatin structure.

Stansfield and Dozmorov (2017) developed a non-parametric

method to account for between-datasets biases. They used locally

weighted polynomial regression to fit a simple model trained on the

difference between the two datasets. Based on the assumption that

the majority of the interactions should be relatively unchanged

among similar Hi-C datasets and by centering the average difference

to zero, loci which are far from the average are considered potential-

ly significant differential interaction.

Unlike other methods which assume independence among pair-

wise interactions (which holds true only for low resolution Hi-C)

Djekidel et al. (2018) presented a method that takes into account

the dependency of adjacent loci in higher resolutions. Based on the

fact that interacting neighboring loci are known to be inter-

dependent, structural differences can be detected by observing the

differences in a neighborhood of the corresponding loci pair. In con-

trast, random noises tend to affect singular pairwise interactions

only. By considering a three-dimensional space in which the x and y

are the coordinates of the genomic loci and z is their pairwise inter-

action frequency, the authors define a chromatin interaction be-

tween two conditions to be differential when the intensity of the

majority of k-nearest neighbors of (x, y) exhibit a significant change.

In this work, we address three major weaknesses of these existing

methods for the comparative analysis of contact maps, namely,

(i) ignoring the inter-dependency of chromatin interactions,

(ii) requiring a pre-processing (normalization) step based on a

flawed assumption that biases between two contact maps can be ac-

curately modeled and (iii) being extremely computationally demand-

ing for the analysis of high-resolution Hi-C data. We present new

comparative methods for the analysis of Hi-C data based on the no-

tion of self-similarity (Shechtman and Irani, 2007). We show that

our self-similarity measure is robust to biases and does not need

complex and computationally intensive normalization steps, such as

Minus versus Average (MA) (Dudoit et al., 2002) or Minus versus

Distance (MD) (Stansfield and Dozmorov, 2017). In the first part of

the paper, we show that our self-similarity measure can be used as a

tool to quantify the reproducibility of Hi-C biological/technical rep-

licate experiments. In the second part, we show that our measure

can also be employed for finding statistically significant differences

between Hi-C contact maps.

2 Materials and methods

Although existing methods for comparing contact maps vary widely,

they all share the following assumption. Given two contact maps

that are expected to be similar (e.g. technical replicates of the same

biological experiment), it is possible to devise (or train) a common

underlying model can faithfully represent both. We believe that this

approach is fundamentally flawed, because the inherent biases pre-

sent in the Hi-C data are very hard to model and completely elimin-

ate. Here we propose to use the intrinsic self-similarity structure in

contact maps to avoid dealing with the modeling problem.

In the application domain of object detection in complex visual

data, the notion of self-similarity was first introduced by Shechtman

and Irani (2007). The idea of self-similarity on images can be

explained as follows. Shechtman and Irani (2007) showed that given

two images of a certain object, the most relevant correlations be-

tween them are not necessarily the raw values of pixels (or an under-

lying model describing those pixel values) but the internal

organization of self-similarities of local regions at similar relative

geometric positions. Given two images of the same object, the rela-

tion between these local self-similarities tend to be more preserved

than the similarities between the images.

2.1 Self-similarity and reproducibility
As said, existing methods for measuring the reproducibility of Hi-C

experiments compute correlations or distances between normalized

interaction frequencies of loci pairs, which is error-prone due to

technology-driven and sequence-specific biases. Here we show that

this comparison can be done indirectly by using self-similarity.

When we compare two contact maps that are expected to be

similar, e.g. for two technical replicates of the same biological ex-

periment, we expect to have similar internal layout of interactions.

More precisely, given two contact maps A and B for two replicates,
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if we observe more chromatin interactions in block a than in block b
in contact map A, we expect to have more chromatin interactions in

block a than block b in contact map B as well, for several local

choices of a, b. In other words, to measure similarity we do not need

to depend on the absolute number of interactions in each contact

map, rather we can rely on pairwise comparison between many local

interactions. Here we claim that the Boolean vectors representing

binary comparison between local interactions encode enough infor-

mation to define a similarity measure that can be used to quantify

reproducibility for contact maps.

Henceforth, a Hi-C contact map is a N�N matrix where entry

(i, j) in the matrix denotes the frequency of interaction between

locus (or bin) i and locus (or bin) j in the genome. First, we slide a

square block of size N=k�N=k along the main diagonal of the con-

tact map using a stride of N=2k so each pair of adjacent blocks over-

lap by half of their size. For each position of the sliding block,

we compute the sum of interaction frequencies inside the block. We

store these sums in vector B, which has 2k components. Then, we

compare all
2k
2

� �
pairs of block sums, and set the matrix Cðs; tÞ ¼

IðBs > BtÞ for all choices of ðs; tÞ 2 f1; . . . ; 2kg � f1; . . . ; 2kg, where

I is the indicator function.

We claim that the matrix C is a compact representation of the

interaction distribution along the main diagonal of the contact

maps, which is robust to noise and biases (thus does not require nor-

malization) because it relies on comparing entities that belong to the

same contact map, and not across maps. We compute the similarity

SðA;BÞ between contact map A and B as follows

SðA;BÞ ¼ e�ckCA�CBk2

¼ e�c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX
ðs;tÞ2f1;...;2kg2 ½CAðs; tÞ �CBðs; tÞ�2

r

where c is a constant, CA is the Boolean matrix for contact map A,

CB is the Boolean matrix for contact map B. The value of k should

be chosen so that the size of the resulting blocks N/k is sufficient

large to enclose important chromatin structures (e.g. TADs).

Parameters c and k are determined experimentally.

2.2 Self-similarity and differential chromatin

interactions
For the accurate detection of differential chromatin interactions

(DCI), we need to be able to distinguish true differences (which

might have biological relevance) from differences caused by biases

or other artifacts in the data. Since there is no ground truth for DCIs

between cell types, conditions or developmental stages, there is no

possibility of learning from real examples. The only differences that

can be trusted are those that significantly exceed the differences

observed between biological replicates. For this reason, we can also

employ our self-similarity metric in a method for finding DCIs be-

tween two Hi-C contact maps. In our self-similarity representation

described below, each interaction frequency is represented by a ser-

ies of comparison between its surrounding local regions.

We first observe that DCIs have locality properties. If contact map

A and B have a DCI at coordinate (i, j), this is not only reflected in

the interaction difference of Aði; jÞ � Bði; jÞ but also in the neighbor-

hood of (i, j). We call impact region the neighborhood affected by the

DCI. We call impact radius the size of the neighborhood being

affected, which is proportional to the magnitude of the DCI. We

argue that what determines the statistical significance of a DCI in a

particular location (i, j) does not only depend on the statistical signifi-

cance of the difference Aði; jÞ � Bði; jÞ but also on the statistical

significance of the difference between their region centered at (i, j).

Isolated locations that have the large interaction frequency differences

are often not significant and are likely to be due to noise or other

artifacts.

To incorporate locality information in our self-similarity repre-

sentation, each interaction A(i, j) is represented by a linear combin-

ation of its neighboring interactions. To penalize interactions which

are progressively farther from (i, j), we weight these local interac-

tions via a Gaussian filter centered at (i, j) (see Fig. 1 for an

example). By gradually increasing the size of the Gaussian filter, we

capture impact regions with larger and larger radii. We denote with

GA
rk

the matrix resulting from the convolution between a Gaussian

filter with radius rk and the contact map A. We first compute GA
rk

for a set of n radii fr1; r2; . . . ; rng, and collect them in vector CA as

follows

CAði; jÞ ¼ ðGA
r1
ði; jÞ;GA

r2
ði; jÞ; . . . ;GA

rn
Þ:

It is well-known that interactions in Hi-C contact maps are more

frequent when the pairs of interacting loci are closer in genomic dis-

tance due to random polymer interactions driven by one-dimensional

genome proximity. To compensate for the amplification of contact

frequency due to proximity, we Z-normalize the interaction frequen-

cies in A with respect to their genomic distances along each diagonal

d as follows.

Âði; jÞ ¼ Aði; jÞ � ld

rd

where d ¼ jj� ij, and ld ;rd are the average and the standard devi-

ation along the diagonal d, respectively.

If (i, j) is not a DCI between A and B, we expect vectors CÂ ði; jÞ
and CB̂ ði; jÞ to exhibit similar trends along their components, be-

cause they represents aggregate interaction frequency in gradually

increasing neighborhood centered at (i, j). If (i, j) is a DCI with im-

pact radius r, we expect to observe a significant difference between

the kth Gaussian representations of that interaction, where k is the

index of the radius rk closest to r. Due to biases in the interaction

frequencies across different contact maps, the difference between the

two feature vectors CÂ and CB̂ cannot be directly used to indicate

the significance of a change. We address this issue by take advantage

Fig. 1. Our self-similarity metric for representing chromatin interactions is

obtained by first convolving a contact map with a set of Gaussian filters with

radii fr1; r2; . . . ; rng. The shade represents the intensity of the convolution for

different radii. In this example, a sharp frequency change can be observed be-

tween radius r2 and r3 in contact map A but not in contact map B. This differ-

ence can indicate a potential DCI
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of self-similarity, i.e. by using local comparison of local regions in

contact maps.

According to Mikolajczyk (2002), the Gaussian filter scale r

must be distributed exponentially between the inner (r1) and outer

(rn) scale limits (impact radii) rn ¼ r0sn, in order to maintain a uni-

form change of information between successive levels of Gaussian

filtering. For 5-kb resolution data, we set r0 ¼ 7, s ¼ 2 and n ¼ 10.

Inspired by the work of Lowe (2004), instead of using C to de-

fine the behavior of interaction frequency across a set of impact

regions, we use the first-order derivative of C with respect to impact

radius r, which can be estimated by the difference Grkþ1
�Grk

.

dC
dr

i; j; kÞ � DCði; j;kÞ ¼ Grkþ1
ði; jÞ �Grk

ði; jÞ
�

By computing the first-order derivative for various choices of the

impact radii, we carry out a comparison of local contact map

regions (Grkþ1
�Grk

). Figure 2 shows the first-order derivatives of

CÂ and CB̂ and the difference between them for the DCI reported

later in Figure 8. Observe the sharp change between the derivatives

at radius r2 which corresponds to a DCI with that radius.

In the last step of our algorithm, we compute the mean l and

standard deviation r for the normal distribution fitted on the differ-

ence of the first-order derivatives DCA � DCB for each radius rk.

Then, we compute the P-value Pk
A;Bði; jÞ for location (i, j) and radius

rk as follows

Pk
A;Bði; jÞ ¼ Pr X >

dCA

dr
ði; j; kÞ � dCB

dr
ði; j; kÞ

� �� �

where X � Nðl; rÞ.
From the set of k P-values for each index (i, j), we choose the

smallest P-value of the difference between two contact maps A and

B at that index, as follows.

PA;Bði; jÞ ¼ min
k2f1;...;ng

fPk
A;Bði; jÞg

These P-values PA;Bði; jÞ are finally fed into the Benjamini–

Hochberg algorithm to calculate the final probabilities (Benjamini

and Hochberg, 1995).

3 Results

3.1 Reproducibility
We evaluated our reproducibility measure on a Hi-C dataset

obtained from Schmitt et al. (2016) that has a variable total number

of interactions and resolution. The dataset consists of five different

cell types: hESC (H1), Mesendoderm (MES), Mesenchymal Stem

Cell (MSC), Neural Progenitor Cell (NPC) and Trophoblast-like

Cell (TRO). Each cell type has two biological replicates. All experi-

ments were carried out on a single chromosome (chromosome 1 for

this work) with 40 kb resolution. According to our experience,

parameter c is dependent on the particular Hi-C protocol used.

Parameter k must be chosen such that the resulting blocks enclose

the primary structures of contact maps which are likely to be

preserved between cell types, e.g. TADs. Parameter c has to be set to

the largest integer value such that the computed reproducibility for

biological replicates is at least 0.9. For this dataset, we set k¼100

and c¼5. We compared our method Selfish against two state-

of-the-art reproducibility methods, namely HiCRep (Yang et al.,

2017) and GenomeDISCO (Ursu et al., 2018).

First, we assessed the effect of the total number of intra-

chromosomal interactions captured by Hi-C experiment on different

reproducibility measure. Given two biological replicates, we gener-

ated pseudo-replicates by first summing the two Hi-C matrices and

then down-sampling the resulting matrix. Any pair of contact maps,

which are either replicates or pseudo-replicates are called non-repli-

cates. Next, each individual replicate was down-sampled to a wide

range of total interactions (105; 5� 105;106; 2� 106;5� 106;107).

For each of these choices, we computed the pair-wise reproducibility

score.

Figure 3a–c illustrates the effect of the total number of interactions

(which depends on the Hi-C sequencing depth) on the performance of

reproducibility measures. A desirable feature for a reproducibility

measure is to produce similarity scores that are invariant from the

total number of interactions. Observe in Figure 3a–c that Selfish is

much more invariant to the total number of interactions than HiCRep

and GenomeDISCO. Both these latter methods failed to report stable

reproducibility scores which are independent from the sequencing

depth.

In the next experiment, we evaluated the effect of binning reso-

lution of Hi-C data on the reproducibility methods. For this experi-

ment, we used deeply sequenced Hi-C data of cell type GM12878

Fig. 2. The first-order derivatives DCA and DCB and the difference between

them for the DCI reported later in Figure 8. A large difference between DCA

and DCB at radius r2 indicates the presence of a potential DCI

Fig. 3 Illustrating the effect of the total number of interactions on reproducibil-

ity score of (a) non-replicates, (b) pseudo-replicates and (c) biological repli-

cates. Panel (d) illustrates the effect of data resolution (bin size) on

reproducibility score of two replicates of cell type GM12878 from Rao et al.

(2014)
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from Rao et al. (2014). Again, a desirable property of a reproduci-

bility score is to be robust to changes in resolution. Figure 3d shows

that reproducibility scores for 5 kb, 10 kb, 25 kb, 50 kb and 500 kb

resolutions are very stable for Selfish, whereas HiCRep and

GenomeDISCO scores are resolution dependent, in particular for

GenomeDISCO.

We also tested our reproducibility measure to cluster different

cell and tissue types. Contact maps of 14 different tissues and 2 cell

types were obtained from Schmitt et al. (2016). A visual inspection

of Figure 4 shows that our reproducibility measure can cluster simi-

lar cell and tissue types. For instance, observe that Selfish correctly

clusters the right and left ventricles, IMR90 and lung as well as

hippocampus and cortex together.

These experimental results clearly indicate that Selfish outper-

forms existing methods in terms of robustness to changes in

sequencing depth and binning size. Both of these are very desirable

features which can significantly simplify Hi-C data analysis in terms

of quality control for reproducibility in replicate experiments.

We also compared the average running time of the three methods

on two replicates of cell type GM12878 from Rao et al. (2014).

Table 1 shows that Selfish is by far more efficient than HiCRep and

GenomeDISCO.

3.2 Differential chromatin interaction
We compared Selfish to the current state-of-the-art method for

detecting differential chromatin interaction called FIND (Djekidel

et al., 2018). To the best of our knowledge, FIND is the only DCI

detection method which works on high-resolution Hi-C data by tak-

ing into account the chromatin interactions inter-dependency.

Extensive experimental results in Djekidel et al. (2018) show that

FIND performs better than previously published methods for DCI

detection.

Fig. 4. Clustering of 14 human primary tissues and two cell lines obtained

from Schmitt et al. (2016). The dendrograms are computed based on the pair-

wise similarity calculated using (a) GenomeDisco, (b) Selfish and (c) HiCRep

Table 1. Average running time of HiCRep, GenomeDisco and

Selfish for different choices of the data resolution

Method 500 kb 50 kb 25 kb 10 kb 5 kb

HiCRep 6 s 636 s 1045 s 34 479 s �a

GenomeDisco 7 s 2989 s 4933 s 30 238 s 61 004 s

Selfish 0.75 s 85 s 184 s 345 s 474 s

aHiCRep fails to run on 5-kb data on a server machine with 256 GB of RAM.

Fig. 5. Enrichment of differential transcription factor binding and epigenetic

marks (CTCF, POLII, P300 and H3K4me3) around reported DCIs for (a) cell

type GM12878 and (b) cell type K562

Fig. 6. A modified APA plots for reported DCIs between two cell types

GM12878 and K562 by (a) Selfish and (b) FIND
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We ran Selfish and FIND on Hi-C contact maps for cell types

GM12878 and K562 obtained from Rao et al. (2014). We repli-

cated some of the experiments proposed in Djekidel et al. (2018) in

order to make a fair comparison with FIND. First, we analyzed the

enrichment of epigenetic signals in the neighborhood of detected

DCIs as well as the percentage of nearby genes having significant

expression fold changes. We evaluated the enrichment of four im-

portant epigenetic markers, namely the binding of CTCF, POLII

and P300, as well as the presence of histone modification

H3K4me3. CTCF is widely recognized as a main driver of chroma-

tin structure (Rao et al., 2014; Tang et al., 2015). We computed

the enrichment of CTCF differential peaks (i.e. peaks that are dif-

ferent between two cell types) around detected DCIs. For this part

of the analysis, we obtained the FIND’s detected DCIs from

Djekidel et al. (2018).

To compute the enrichment of each marker in the neighborhood

of the detected DCIs, we calculated the distance of marker peaks to

their closest anchor of DCIs. Figure 5 shows the enrichment of epi-

genetic markers near DCIs. Observe that CTCF and H3K4me3 are

more enriched around the Selfish’s reported DCIs than those

detected by FIND, even though the number of reported DCIs for

Selfish is twice as large (30 456 versus 14 131).

We also calculated the expression fold change of nearby genes

for the two cell types. We first determined the set of genes which

have overlap with any of the detected DCIs’ anchors. Then we com-

puted the percentage of those genes having an expression fold

change of two or greater. For the set of genes overlapping FIND’s

DCIs, 71.46% of them were over-expressed. For Selfish, 78.78%

were over-expressed. This analysis confirmed that the differences in

chromatin structure are strongly associated with the changes in gene

regulation. However, the DCIs detected by Selfish have stronger

associations to differences in gene regulation than FIND. For the

gene expression analysis, we used the dataset from Djekidel et al.

(2018). The expression data were obtained from ENCODE, acces-

sion numbers GSE78553 and GSE78625, for cell types GM12878

and K562, respectively.

To quantify how well the Hi-C data supported the detected DCIs

between two cell types GM12878 and K562, we generated a

modified aggregate peak analysis (APA) plots (Phanstiel et al., 2015;

Rao et al., 2014). The interaction frequencies in contact maps were

Fig. 7. Precision–recall curves for Selfish (magenta) and FIND (green) for (a) 2-fold, (b) 5-fold and (c) 10-fold DCIs. The vertical and horizontal bars represent the

95% confidence interval for precision and recall at that threshold respectively. (d) The distribution of distances of FPs to closest TPs
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first Z-normalized along the diagonals as explained in Section 2.

Then, for each detected DCI, we calculated the interaction differen-

ces between the contact maps in a 6-50Kb neighborhood. By aver-

aging over all DCIs, we computed the APA plot for differences. The

differential APA score, i.e. the value of the central index in the plot

compared to neighboring regions shows how different the interac-

tions are at reported DCIs with respect to their expected interaction

frequency with that genomic distance.

Figure 6 shows that Selfish produces the expected Gaussian-

shaped plot around its reported DCIs while the DCIs from FIND

failed to generate a similar pattern. Correspondingly, the computed

APA score is higher for Selfish (4.46) compared to FIND (3.06) sug-

gesting a stronger detection of DCIs. Finally the peak pixel of the

APA plot for FIND (score of 4.17) is not centered on the called DCI

pairs suggesting that Selfish performs better at pinpointing anchor

points of chromatin interactions at high resolution.

We also compared the runtime of FIND and Selfish on the 5-kb-

resolution dataset described above. FIND failed to run on the whole

genome or even on large segments of contact maps. To compare the

efficiency of Selfish and FIND, we computed the average runtime

required to process random contact map segments of 6 Mb. Selfish

took an average of 101.6 s. FIND required an average of 12 839.6 s,

about 120� slower than Selfish.

To further investigate the accuracy of detected DCIs, we used

simulated Hi-C data generated by the method proposed in Zhou

et al. (2014). We generated 100 pairs of simulated contact maps,

each of which had known location for DCIs. After running Selfish

and FIND on these simulated datasets, we obtained a P-value for

each DCI location for all 100 simulated pairs of contact maps.

Given the P-values and the true locations of DCIs (true positives),

we computed a precision–recall curve for each simulated pair of

contact maps. We used the threshold averaging method proposed by

Fawcett (2006) to combine the 100 precision–recall curves to get the

overall performance curve. We thresholded over the ratio of all indi-

ces in the contact map used for computing the precision and recall

for each simulated pair. To combine the curves, we averaged all 100

calculated precision and recall values for each threshold. Figure 7a–c

shows the performance of both methods for 2-fold, 5-fold and

Fig. 8. A 2-Mb region shown around Brn2 promoter of chromosome 4 of mouse neural cells: (a) ES and (b) NPC. Dashed circles show the contact between the

Brn2 promoter and an NPC-specific enhancer. Insets show the magnified view of this contact
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10-fold DCIs. The vertical and horizontal bars represent the 95%

confidence interval for precision and recall at that threshold respect-

ively. Selfish performed better than FIND on all fold change settings,

confirming the stronger performance that we observed on real Hi-C

data. The performance difference is most striking for small fold

change values, which are more relevant for comparisons of real Hi-

C datasets and yet have a very large effect on gene regulation

(Greenwald et al., 2018). It is also important to note that Selfish’s

performance is quite consistent across different samples as indicated

by small confidence intervals.

Figure 7d shows the distribution of distances between false positive

DCIs produced by Selfish and FIND to true DCIs (true positives). To

generate this figure, we set the number of returned DCIs equal to the

number of true DCIs. Then, for each falsely detected DCI, we calcu-

lated its distance to the closest true DCI. These results clearly show

that most of Selfish’s false positives are located in close proximity of

true DCIs confirming their relevance to true differences and their non-

random distribution. FIND’s false positive are instead much farther

from true DCIs and are more scattered in the contact map.

In our final experiment to assess the performance of two methods,

we tested Selfish and FIND on a real test case from Bonev et al. (2017).

Figure 8 shows a 2-Mb region around the Brn2 promoter (also known

as Pou3f2) for mouse embryonic stem cells (ES) and neuronal progenitor

cells (NPC). Dashed circles show the contact between the Brn2 promoter

and an NPC specific enhancer. Insets show the magnified view of this

contact. Observe that the contact between the promoter and enhancer is

strongly present in the NPC cell (Fig. 8a) in contrast with the ES cell in

which this interaction is weak (Fig. 8b). The mentioned contrast shows

itself as a subtle but important difference of interactions between two

cell types. The highlighted regions of the epigenetic signals show the dif-

ference in the specified regions between two cell types. Detected DCIs by

Selfish and FIND for q-value < 10�4 are shown in magenta and green

squares, respectively. Observe that Selfish can identify this contact region

as a DCI between two cell types, but FIND fails to detect it.

4 Conclusion

We presented a new approach for comparative analysis of Hi-C data

using a novel self-similarity measure. We showed the utility of our

measure by providing solutions to two important problems in the

analysis of Hi-C data, namely the problem of measuring reproduci-

bility of replicated Hi-C experiments and the problem of finding dif-

ferential chromatin interactions between two contact maps.

We showed that a simple binary comparison operation between

blocks in the contact maps can be used to encode the local and glo-

bal features in a manner that is robust to the data resolution and

sequencing depth. This encoded information is used to build a fea-

ture vector for each contact map, which in turn allows to define a

simple but effective similarity metric using the distance between

their feature vectors. Experimental results showed that our self-simi-

larity-based measure outperformed two state-of-the-art methods

(HiCRep and GenomeDISCO) for measuring reproducibility of

replicated Hi-C experiments.

We also introduced a new method for finding differential chroma-

tin interactions between two contact maps. Selfish is designed based on

the idea that each pairwise chromatin interaction can be represented by

its neighboring interactions. Therefore, each interaction difference re-

veal itself as a weighted impact on the neighboring interactions. We

capture this impact using a set of gradually increasing Gaussian filters.

By extensively testing Selfish on simulated and real test data, we

showed that it outperforms the state-of-the-art DCI detection method

FIND both in accuracy and efficiency.
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