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Abstract-In the emerging area of wireless sensor networks, one 
of the most typical challenges is to retrieve historical information 
from the sensor nodes. Due to the resource limitation of sensor 
nodes (processing, memory, bandwidth, and energy), the 
collected information of sensor nodes has to be compressed 
quickly and precisely for transmission. In this paper, we propose 
a new technique -- the ALVQ (Adoptive Learning Vector Quan-
tization) algorithm to compress this historical information. The 
ALVQ algorithm constructs a codebook to capture the prominent 
features of the data and with these features all the other data can 
be piece-wise encoded for compression. In addition, with two-
level regression of the codebook’s update, ALVQ algorithm saves 
the data transfer bandwidth and improves the compression 
precision further. Finally, we consider the problem of 
transmitting data in a sensor network while maximizing the 
precision. We show how we apply our algorithm so that a set of 
sensors can dynamically share a wireless communication channel. 
 

I.      INTRODUCTION 
The ever changing developments in electrical embedded 

systems have enabled the widespread deployment of sensor 
networks consisting of small sensor nodes with sensing, 
computation, and communication capabilities. The sensor 
nodes can monitor various characteristics of the environment 
such as temperature, humidity, pressure, light, sound, 
chemicals, noise levels, radioactivity, movement, etc. The 
applications of sensor networks have been seen in a large 
variety of areas. For example, the sensor networks can help 
biologists automatically recognize and track different species 
of birds. The environmental scientists can utilize sensor 
networks to monitor and record the development of 
environmental conditions. In the intelligent building, sensors 
are deployed in offices and hallways to measure temperature, 
noise, light, and interact with the building control system. In 
the battle fields, soldiers equipped with sensor can be easily 
tracked and organized by commander. 
    Suppose there is a sensor network with a base station (sink) 
and N sensors. An interesting application is to let the sink 
collect the historical information from each sensor to perform 
some query processing or statistical analysis. Several 
constraints of sensor networks make the information retrieval 
implementation difficult. The first constraint is the resource 
(i.e. memory, bandwidth and power, etc) limitation of sensor 
node. Thus it is impractical to transmit the original data feed 
from each sensor to the base station. The second constraint is 
communication channel sharing. When transmitting data to the 
sink, several sensors have to share the communication channel. 
In this paper, we address the historical information retrieval 
problem by addressing the following sub-problems: a) At each 

sensor, how to compress its historical information given a 
bandwidth allocation? b) In the sensor network, how to 
allocate bandwidth to sensors in order to maximize and 
balance their compression qualities? 
 

 
Figure 1. The LEACH model 

 
Figure 2. A sample communication channel 

An efficient data compression technique SBR (Self Based 
Regression) [6] has been proposed recently and has been 
shown to work better than other well-known techniques in 
sensor network settings. A problem of SBR is its codebook is 
not precise enough for compression. In addition the codebook 
updating in SBR wastes a lot communication bandwidth. As to 
the network topology, a large amount of energy-saving 
algorithms [7][10][11] group nearby sensors into clusters. All 
the sensors in the same cluster share the cluster head’s 
communication channel evenly (as in Figure 1), that is, they 
utilize the same data transmission bandwidth if they want to 
talk to the cluster head. For example, in TDMA scheduling, a 
different time slot is assigned to each sensor (as in Figure 2), 
while in FDMA scheduling, a different frequency range slot is 
allocated to each sensor. For our compression problem, as the 
information is distributed differently at different sensors, the 
compression qualities show large variances among sensors 
given the same bandwidth allocation. As the bandwidth is an 
important factor for increasing compression qualities, if we 
could assign more bandwidth to the low quality sensors and 
assign less band-width to the sensors whose compression 
qualities are high enough, the overall compression qualities of 
all sensors would be maximized and balanced. In this paper 
we address this problem and present a Dynamic Bandwidth 
Assignment algorithm to solve it. 
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A.   Our Contributions 
Our contributions are summarized as follows: 
    a) We apply the LVQ (Learning Vector Quantization) 
algorithm to construct the codebook for data compression. Our 
results show that the LVQ learning process can further 
improve the codebook for high compression precision.  
   b) We introduce the concept of two-level regression for 
higher precision compression. The two-level regression is 
applied to the codebook update in order to save more 
bandwidth while keeping the codebook updated with high 
precision. 
   c) We consider the problem of dynamic allocation of 
bandwidth in wireless sensor networks. We present a new 
algorithm, DBA (Dynamic Bandwidth Allocation), which 
works in combination with our compression algorithm, and 
dynamically allocates bandwidth among channel sharing 
sensors. The algorithm uses the recent history to predict future 
bandwidth requirements and balance the expected loss for the 
different sensors. 

The rest of this paper is organized as follows. Section II 
states the background and definition of our problem. In 
Section III we present the related work and we describe our 
ALVQ algorithm in Section IV. Dynamic bandwidth 
allocation problem is addressed in section V. In Section VI we 
provide our experimental results. Finally, we conclude our 
remarks and future work in Section VII. 

 
II.      PROBLEM DEFINITION 

A sensor node S is equipped with a measuring system 
which generates a data record r = (t, val1, val2,…) every ε 
seconds, where t is the timestamp on which the record was 
generated, and (val1, val2,…) are the measurements at that 
time instance. The sensor has its local data buffer B which 
stores these records. When B is full, the sensor compresses the 
data and transfers the compression representative to the sink. 
In this paper, we address the following two problems: 
 
Problem I: Given a one dimensional time series data X 
collected by a sensor, the goal is to find a proper encoder 
function F making Y = F(X) and a decoder function G, so that  

a) | X | / | Y | ≥ R and b) || X - G(Y) || is minimized.    
In a) R is the compressing rate determined by to application 

specifications. In b) the distance between the retrieval values 
from the compressed information and the original values is 
minimized. 
 
Problem II:  Given a sensor network cluster C with k sensors, 
given the historical compression and transmission statistics in 
the cluster, the goal is to dynamically allocate different 
bandwidth to different sensors, such that the overall 
compression qualities of all k sensors in the cluster are 
maximized and balanced. 
 

III.      DICTIONARY LOOKUP SCHEMES 
In high rate lossy compressions, Dictionary Lookup 

schemes [4] are widely used in graphics, pattern recognition, 

etc. In such schemes, there is a codebook (or base signal) that 
captures the prominent patterns of the data. For each data 
piece to be compressed, we “look up” the codebook, find the 
best approximation pattern and then use the approximation 
parameters to represent the original data piece.  

The characteristics of sensor data make the Dictionary 
Lookup Scheme very appealing. Firstly, the data in sensor 
networks is collected from the environment and therefore is 
likely to show similar patterns over time. Secondly, some 
sensor nodes collect different measurements at the same time. 
These measurements show intrinsic correlation between each 
other, as is the case between pressure and humidity in weather 
monitoring systems. 

Therefore, Dictionary Lookup Scheme is a good choice for 
historical information compression in sensor networks. 

 
A.   Piece-wise Approximation  

In sensor networks, many physical quantities are correlated, 
like air temperature, pressure etc. Therefore we can use piece-
wise linear regression to capture those properties. 

1)   Piece-wise Linear Regression: Given two time series 
data pieces, X and Y, we use X to approximate Y by piece-
wise linear regression, that is Y’ = a*X + b so that the 
regression error || Y - Y’ || is minimized. In sensor networks, 
many quantities show strong linear relationships between each 
other and the quantities themselves show similar patterns over 
time. Therefore if we choose the most prominent patterns, we 
can piece-wise approximate other patterns with high precision.  
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     Figure 3.  Piece-wise approximation 

In Figure 3, there are two time series X and Y. If we let Y’ = 
3X – 8, then Y’ is a good approximation of Y. 

2)  2-level Piece-wise Linear Regression: Given three 
vectors of same size, X, Y and Z, we could use linear 
combination of X and Y to approximate Z:  
1. We piece-wise approximate Z by X, that is Z’ = a*X + b 

so that the regression error || Z - Z’ || is minimized.  
2. We construct a new vector D to store the difference of 

Vector Z and the approximation vector Z’, D = Z - Z’.  
3. Employ Y to approximate the difference vector D we 

obtained above, that is D’ = c*Y + d, so that the 
regression error || D - D’ || is minimized.  

4. The compression parameters a, b, c, d are transmitted as 
the compression representative of Z. 

It should be noted that 2-level Piece-wise Linear Regression 
is at least as good as standard Piece-wise Linear Regression. 



Usually it is much more precise than its 1-level counterpart. It 
could be utilized in applications where higher compression 
precision is required. 
 
B.   Previous Work: LVQ (Learning Vector Quantization) 

LVQ algorithm [8] is used in many applications such as 
image and voice compression, voice recognition, etc.  

Assume there is a training data set with n vectors in k 
classes. Each vector has the class label indicating which class 
it belongs to. We want to construct a set of representative 
codeword vectors (called codebook) to classify the data in real 
world. Each new vector to be classified finds the nearest 
codeword vector in the codebook and is assigned the same 
class as that codebook vector.   

Unfortunately designing a codebook that best represents the 
set of training vectors is NP-hard [14]. We therefore resort to a 
suboptimal codebook design scheme − LVQ (Learning Vector 
Quantization). First, we randomly select a training vector from 
each class. We denote theses vectors as m1,...mk and take them 
as initial codebook. For every other training vector x we 
perform the following learning process:    
   for  i = 1, … k,  

mi = mi + a(t)[x - mi]  if x and mi are in the same class; 
mi = mi − a(t)[x - mi]  if x and mi are in different classes; 

Here 0<a(t)<1, and a(t) may be constant or decrease 
monotonically with time. 
    LVQ continuously adjusts its codebook with all the training 
data, so that the codebook is trained nearer to the optimal 
representative of each class. 
 
C.   Previous Work:  SBR (Self Based Regression) 

Because the historical information in sensor networks 
shows similar patterns over time and different measurements 
show natural correlation between each other, the SBR (Self 
Based Regression) algorithm was recently proposed in [6] to 
exploit these characteristics of the data. The authors show it 
outperforms other standard approximation techniques such as 
DCT, Wavelets and Histograms in precision. The SBR 
algorithm extracts the prominent feature from the training data 
to construct the codebook and the base station keeps a 
codebook for each sensor. When the data buffer at some 
sensor node is full, the collected data is compressed by piece-
wise regression and the update codebook data piece is 
calculated. These results are then transmitted to the base 
station where the approximation of sensor data is retrieved.  

Compared with SBR, our ALVQ algorithm increases the 
compression precision by improve the codebook accuracy. In 
addition, ALVQ compresses the update of codebook too, 
which saves bandwidth for data transmission and increases the 
quality of the approximation. 

 
IV.      THE ALVQ FRAMEWORK 

    We now present the Adoptive LVQ (ALVQ) algorithm for 
compressing historical information in sensor networks.  
    The ALVQ algorithm receives as input the latest n (size of 
data buffer in sensor node) data values, a bandwidth constraint 
TotalBand (number of values to transmit, including any 

codebook update values), the maximum size of the codebook 
Mcode and the current codebook Cbase of size |Cbase| < Mcode.  

Our ALVQ algorithm works in the following ways: First, in 
the codebook construction, ALVQ performs a LVQ (Learning 
Vector Quantization) learning process on the codebook, which 
adjusts the codebook, to be nearer to the optimal codebook. 
Second, for codebook updates, ALVQ compresses the 
codebook update data pieces and transfers the compressed 
information to the base station. Using 2-level piece-wise 
regression, ALVQ can compress the update with high 
precision while saving more bandwidth for data transmission 
in order to increase the quality of the approximation. 

 
A.   Codebook Construction from Training Dataset  

A training dataset is needed to construct the original 
codebook. The training dataset can be sampled from the 
environment as follows. We divide the data into several Data 
Pieces (DPs) each with same size W (W = n1/2). Each DP could 
then be approximated by another DP using piece-wise 
regression. According to the memory limitations of the sensor 
nodes and base station, the size of codebook is restricted to 
some limitation Mcode. We take the first (Mcode/W) DPs that 
can best approximate the other DPs by piece-wise regression 
as the “raw” codebook. This is implemented by repeatedly 
finding in the training dataset the top DP that can improve the 
approximation precision most if inserted into the codebook. 

When the “raw” codebook is full, we perform the following 
LVQ learning process to polish the codebook: 

For each DP X in the training dataset, we find the best CDP 
(Codebook Data Piece) in the codebook that can approximate 
it with the smallest error. We denote this DP in the codebook 
as CDPi, and update CDPi:   

CDPi = CDPi + α [(X-b)/a- CDPi], 
where a, b are the regression parameters; and 0 <α< 1 is the 
training parameter.  

After all the DPs in the training dataset have been tested, 
the codebook is adjusted and transmitted to the base station. 

 
B.   Compressing time series data in real world 

After the training process is finished, the sensor node 
collects measured data continuously and adds it to its buffer. 
When the buffer is full, it divides the buffer data into several 
intervals each having the same size W (n1/2). First, it maps 
each interval to the best CDP (Codebook Data Piece) in the 
codebook using piece-wise regression. Then it finds the 
interval with the largest regression error and divides it into 
half. If the data interval size is smaller than W, it can shift in 
the CDP until the best approximation is achieved. We keep 
dividing the intervals with the highest error until the maximum 
number of intervals is achieved (depending on the bandwidth 
and the buffer size). Then the approximation parameters are 
transmitted to the base station as compression representation.  

 
C.   Codebook Update 

Because the environmental data feature may change over 
time, as a new data stream is collected at the sensor node, old 
data patterns in the codebook may become out of date and 



inappropriate for the new data regression. Thus we need to 
insert new frequently occurring patterns into the codebook and 
remove out-of-date patterns. Please note that it is not always 
desirable to update the codebook with too many new patterns. 
Since the transmission bandwidth to the base station is upper 
bounded by TotalBand, the more new DPs we use to update 
codebook, the less bandwidth there is left that can be utilized 
for data transmission.  

The algorithm works as follows: 
1. Similar to [6], ALVQ found the set of CDPs to be 

inserted into the codebook, a 2-level regression subroutine is 
called to compress these CDPs and the compression repre-
sentatives are transmitted to the sink.  

2. The out-of-date CDPs are found using Least Frequently 
Used (LFU) policy and their ids are transmitted to the sink.  

3. When transmission is finished, the sink first replaces out-
of-date codebook with the newly transmitted CDPs to update 
the codebook. Then it utilizes the new codebook and the 
compression representatives to approximate the original 
values at the sensor node. 
 
D.   Computing Complexity of ALVQ 

According to [6], the time complexity of SBR is O(n1.5) 
where n is the size of data buffer in sensor node. In ALVQ, for 
each DP in the buffer, our learning process finds the best 
codebook data piece CDP and adjust CDP in O(W) time. In 
addition, the compression of codebook update takes 
O(Mbase·W). Therefore, the running time complexity of ALVQ 
is O(n1.5+ W·W+ Mbase·W) = O(n1.5) which is the same as SBR 
and is acceptable for real sensors. 

 
V.      DYNAMIC BANDWIDTH ASSIGNMENT IN WSN 

Now let us consider the problem in a general case where we 
want to gather the historical information from all the sensors 
in the sensor network. Recently a large amount of energy-
saving algorithms have been proposed for efficient routing in 
sensor networks. Algorithms [5][7][10][11][12][13] are based 
on the collect and send scheme, treat all the sensors equally in 
the data transmission scheduling. In our collect-compress-
transmit scenario, as the compression qualities show variances 
at different sensors, to assign more bandwidth priorities to 
low-compression-quality sensors is more appealing. 
 
A.   Network Topology: The LEACH Framework 

LEACH (Low-Energy Adaptive Clustering Hierarchy) [7] 
and its variants [10][11] are among the most popular 
hierarchical routing algorithms for sensor networks. The idea 
is to form clusters of the sensor nodes based on the received 
signal strength and use local cluster heads as routers to the 
sink. The cluster heads are elected from sensor nodes 
randomly over time in order to balance the energy dissipation 
of nodes. 

As described in Figure 1, in LEACH, all the sensor nodes 
send packages directly to its local cluster head and the cluster 
head transmits these packages to the sink through multi hops 
in the sensor network. Since the communication between the 
sensor node and the cluster head is wireless, the commu-

nication channel of the cluster head is the bottleneck of the 
total data transmission of all the sensors in the cluster. In 
LEACH, all the sensors in the cluster share the communication 
channel of cluster head evenly (for example TDMA schedule), 
namely, they share the same communication bandwidth of 
transmission data to the cluster head. 

 
Figure 4.  Dynamic Bandwidth Assignment model     

    As different sensors usually collect different data, it is 
highly possible that the compression qualities at different 
sensors are different even given same compression rate. Since 
LEACH assigns same transmission bandwidth for all the 
sensors in the cluster, the compression rates for these sensor 
nodes are the same. Therefore, the compression qualities of 
different sensors cannot be maximized and balanced well in 
LEACH.  
    In applications where similar compression qualities are 
required for all the sensors, different compression rate should 
be assigned to different sensors in order to maximize the 
overall compression qualities. As all the sensor nodes share 
the communication channel of the cluster head, we can take 
better advantage of it. We can let the cluster head assign its 
communication channel unevenly and dynamically to different 
sensors. For those sensors with low compression qualities, 
cluster head assigns more bandwidth to them; for those 
sensors with high compression qualities, less bandwidth are 
assigned. Therefore, with different transmission bandwidth, 
similar compression qualities of sensors are achieved. 
    This can be done by changing the channel schedule. For 
example, in TDMA mechanism, sensors that need more 
bandwidth can use the communication channel longer.  
 
B.   Dynamic Bandwidth Assignment (DBA) 
    Here we introduce the Dynamic Bandwidth Assignment 
Algorithm (Figure 4) for sensor information transmission and 
compression qualities balancing in sensor networks.   

Our algorithm works as follows: After setting up of a 
cluster (with k sensors), the cluster head collects the 
compression quality of each sensor Q1, Q2…Qk, and the 
bandwidth assigned to them B1,B2…Bk of last transmission 
between these sensors and the cluster head.  

Then the average compression quality for all these sensors 
are computed QA= ∑i=1…k Qi/k. For data transmitted later, the 
cluster head assigns bandwidth to sensor i as Bi – α(Qi-QA), 
where α is the bandwidth adjusting parameter. 
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Figure 5 Varying Compression Rate 
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Figure 6 Transmitted Data Size 
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Figure 7 Varying Codebook Size 

 
Figure 8 Maximum Errors on Synthetic Dataset  

 
Figure 9 Average Errors on Synthetic Dataset 

 
Figure 10 Maximum Errors on Real World Dataset 

 

 
Figure 11 Average Errors on Real World Dataset 
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Figure 12 Maximum Errors with Varied Bandwidth 
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Figure 13 Average Errors with Varied Bandwidth

With the dynamic bandwidth assignment to different 
sensors, those sensors with low approximation quality can get 
more bandwidth and those with high quality will get less 
bandwidth. Therefore, the compression qualities for all the 
sensor nodes are balanced well. 

 

VI.      EXPERIMENTAL EVALUATION 

A.   Description of the Dataset 
We provide a thorough experimental evaluation of our 

ALVQ and DBA technique on real world data set. To better 
demonstrate the advantage of DBA, we evaluate our DBA 
algorithm on synthetic dataset, too. 

For synthetic data set, there are totally 300k synthetic data 
records generated for 8 sensors. To simulate the real sensor 
measurements at different spots, we generate data records with 
different variation for different sensors. In addition, some 
sharp changes are embedded to simulate the exception or 
abnormal events in the environment. 

For real world data set, we utilize Atmo - a real dataset of 
atmospheric data collected at 32 sites in Washington and 
Oregon. More specifically, each of the 32 sites maintains the 
average temperature on an hourly basis for 208 days between 

June 2003 and June 2004. We connect these sites by a network 
(like in Figure 3) according their positions, and use the DBA 
technique to minimize the compression error given a 
bandwidth constraint.  

 
B.  Data Compression w ithin a Sensor 

 and SBR [6] on the 

 and codebook 2KB, we 
va

We compare the performance of ALVQ
Atmo data set using the same network constraints and com-
pression parameters. The main objective of our experimental 
work is to quantify the advantage of ALVQ, namely, quantify 
the advantage of employing LVQ learning process in the 
construction of the codebook, and the transmission of com-
pressed updates. We only compare with SBR because (1) The 
two techniques (SBR and ALVQ) are using the same frame-
work and (2) the experimental results of [5] show that SBR 
outperforms other techniques in the sensor networks’ setting.  

1)  Varying the Compression Rate 
With 3.6k data items in the buffer
ry the compression rate from 4% to 20%. Figure 5 shows 

that the compression precision decreases gradually as the 
compression rate increases for both SBR and ALVQ. In 
addition, ALVQ improves the overall precision over SBR by 
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an average of 15% for all the compression rates, which is due 
to the higher accuracy of the codebook in ALVQ. 

2)  Comparing the Transmission Data Size 
  As time goes on, more data is received and transmitted to 
th ion rate as 5%, 
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e base station. We fix the SBR compress
codebook size as 2KB and try to find the minimum size of 
transmitted data by ALVQ to achieve the same compression 
error. Figure 6 shows that with the same error constraint, 
ALVQ transfers less data than SBR, which means ALVQ 
achieves a higher compression rate and uses less network 
communications than SBR. 

3)  Varying the Codebook Size 
We varied the codebook 
ing the compression rate to 5%

gure 7 shows that the higher the codebook size, the more 
precise compression is achieved for both SBR and ALVQ. 
This is because data can be aggregated more accurately if we 
have more patterns in the codebook. On average, our ALVQ 
algorithm improved the compression precision of SBR by 
around 15% for different codebook sizes.  
 
C.   Maximizing Overall Data Compression
 
the same network settings. The main objective of our work is
to quantify the advantage of DBA algorithm over LEACH, 
namely, quantifying how well DBA algorithm can maximize 
and balance the compression qualities among different sensors. 

1)  Data Compression at different time moments 
 We evaluate the performances of DBA and LEACH on 

h synthetic and real world data sets. For synthetic
it is assumed that the data record is generated every second 
and the sensors transfer their compressed information every 
1000 seconds. The bandwidth between sensors is set as 64 
Kbps which is a typical sensor node setting. For real world 
data set, each measuring site is taken as a sensor and the 32 
sites are assigned to 4 clusters (with 8 sensors each) according 
to their positions. We try to compare the maximum and 
average compression errors within a cluster under DBA and 
LEACH model. As is shown in Figure 8, 9, 10 and 11, the 
DBA algorithm is always consistent with small error as time 
goes on, while the LEACH approach which just divides the 
bandwidth evenly to all the sensors is sometimes good (if all 
the sensors need the same bandwidth), but sometimes very bad. 
This is because LEACH can not adjust bandwidth to achieve 
global optimization as in DBA for biased data distribution 
among sensors.  

2)  Varying the Bandwidth of Channel 
 With the real

y the communication bandwidth betwe
k s to 96 kbps. Figure 12 and Figure 13 show that DBA 
outperforms LEACH in maximum and average compression 
errors under all circumstances. As the bandwidth become 
smaller, the advantage of DBA over LEACH is more obvious 
although the compression errors for both model increase. 

VII.      CONCLUSIONS 

We present a new data compression technique, designe
h ompressi

collected data into va
codes each of them by an artificially constructed codebook. 

The values of the codebook are extracted from the training 
dataset and maintained dynamically as data changes. The LVQ 
learning process is employed to polish the codebook in the 
codebook construction step and codebook’s updates are 
compressed to save bandwidth for sensor data transmission. In 
the last section, we propose a DBA algorithm to dynamically 
adjust communication bandwidth in order to maximize and 
balance compression qualities of different sensors. 

In our experiments on synthetic datasets and real datasets, 
we show that both our ALVQ technique and DBA algorithm 
improve the overall precisions of the approxima

nsor networks.  
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