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Abstract

Background: The majority of eukaryotic genomes are unfinished due to the algorithmic challenges of assembling
them. A variety of assembly and scaffolding tools are available, but it is not always obvious which tool or parameters
to use for a specific genome size and complexity. It is, therefore, common practice to produce multiple assemblies
using different assemblers and parameters, then select the best one for public release. A more compelling approach
would allow one to merge multiple assemblies with the intent of producing a higher quality consensus assembly,
which is the objective of assembly reconciliation.

Results: Several assembly reconciliation tools have been proposed in the literature, but their strengths and
weaknesses have never been compared on a common dataset. We fill this need with this work, in which we report on
an extensive comparative evaluation of several tools. Specifically, we evaluate contiguity, correctness, coverage, and
the duplication ratio of the merged assembly compared to the individual assemblies provided as input.

Conclusions: None of the tools we tested consistently improved the quality of the input GAGE and synthetic
assemblies. Our experiments show an increase in contiguity in the consensus assembly when the original assemblies
already have high quality. In terms of correctness, the quality of the results depends on the specific tool, as well as on
the quality and the ranking of the input assemblies. In general, the number of misassemblies ranges from being
comparable to the best of the input assembly to being comparable to the worst of the input assembly.
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Background
Despite the prodigious throughput of the sequencing
instruments currently on the market, the assembly prob-
lem remains very challenging, mainly due to the repetitive
content of large genomes, uneven sequencing coverage,
and the presence of (non-uniform) sequencing errors and
chimeric reads. The third generation of sequencing tech-
nology, e.g., Pacific Biosciences [1] and Oxford Nanopore
[2], offers very long reads at a higher cost per base, but the
sequencing error rate is much higher.

A significant number of de novo genome assemblers
are available to the community. The choice of the most
appropriate assembler depends on the size and com-
plexity (repeat content, ploidy, etc.) of the genome to
be assembled, the type of sequencing technology used
to produce the input reads (e.g., Sanger, 454, Illumina,
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PacBio, Nanopore, etc.), and the availability of paired-end
or long-insert mate-pair reads. Each assembler imple-
ments slightly different heuristics to deal with repetitions
in the genome, uneven coverage, sequencing errors and
chimeric reads. The final assembly is very rarely entirely
finished, with one solid sequence per chromosome.
Instead, the typical output is an unordered/unoriented
set of contiguous regions called contigs. If paired-end
or mate-pair reads are available, some of the contigs
can be ordered and oriented by anchoring paired-end
reads to contigs. In some cases, the length of the gaps
between contigs can be estimated and contigs can be
joined together to create scaffolds.

As said, selecting which assembler to use to produce the
best quality assembly is not a trivial task. Assembly com-
petitions such as the Genome Assembly Gold-Standard
Evaluation (GAGE) [3] and Assemblathon [4] have been
held to evaluate multiple assemblers on common datasets.
Such comparative evaluations can provide general guide-
lines, but there is no systematic way to determine which
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assembler and what parameter settings to use to produce
the best assembly for a specific genome and a specific
dataset. As a consequence, it is common practice to gen-
erate multiple genome assemblies from a few different
assemblers and/or parameters (e.g., the k-mer size for the
de Bruijn graph), and then try to guess the best assem-
bly based on assembly statistics, spot-checking, homol-
ogy analysis, agreement with physical, genetic, or optical
maps, etc.

In fact, the notion of best assembly is not well defined.
Since it is unlikely that one can obtain a perfect assem-
bly that covers the entire genome with no assembly
errors, one has to decide whether it is more important
to maximize contig and scaffold length (at the expense
of possibly introducing more misassemblies) or mini-
mize the number of misassemblies (at the expense of
possibly generating shorter contigs and scaffolds). Typi-
cally, the quality assessment for draft assemblies is car-
ried out via statistical measurements and alignment to
a reference genome (if one is available). N50 is a met-
ric widely used to assess the contiguity of an assembly,
which is defined by the length of the shortest contig
for which longer and equal length contigs cover at least
50 % of the assembly. NG50 resembles N50 except the
metric relates to the genome size rather than the assem-
bly size. NA50 and NGA50 are analogous to N50 and
NG50 where the contigs are replaced by blocks that
can be aligned to the reference. Correctness is mea-
sured by detecting misassemblies such as mismatches,
indels, and misjoins. Misjoins are considered the least
desirable type of misassemblies [5], where loci that are
far apart in the genome are improperly joined in the
assembly. Misjoins include inversions, relocations, and
translocations. An inversion occurs when the orienta-
tion of a contig is inverted with respect to the refer-
ence. A relocation occurs when a contig is misplaced
within the chromosome it belongs to, and a transloca-
tion occurs when a contig is misplaced into a different
chromosome.

Assembly reconciliation algorithms attempt to take
one step further toward a finished genome. Rather
than arbitrarily trying to guess the best assemblies
among several draft assemblies, assembly reconcilia-
tion tools offer compelling alternatives. These tools
promise to produce a higher quality consensus assem-
bly by merging two or more draft assemblies. The
main goal of assembly reconciliation algorithms is to
enhance the contiguity of the resulting assembly while
at the same time avoiding the introduction of assem-
bly errors. In this paper, we carry out the first com-
prehensive evaluation of assembly reconciliation tools
by measuring the quality of the consensus assembly on
several common input datasets with different quality
attributes.

Assembly reconciliation tools
The concept of assembly reconciliation was first intro-
duced by Zimin et al. [6]. In that work, the authors
also introduced an assembly reconciliation tool called
RECONCILIATOR, which is no longer maintained (last
updated in 2007). Other reconciliation tools in the lit-
erature that are no longer maintained and/or have no
documentation were excluded from our evaluation. We
also excluded GAM, because it was superseded by
GAM_NGS. Other tools such as eRGA [7], MAIA [8],
RAGOUT [9], and Minimus2 [10] were also not included
in our comparative evaluation because these tools address
different problems. Reference-guided assembly (eRGA,
RAGOUT, and MAIA) and hybrid assembly (Minimus2)
are related to the problem of assembly reconciliation,
but it is not quite the same. The former uses a closely
related reference to assemble the conserved regions
of the genome, which reduces the complexity of de
novo assembly to the non-conserved portions. Hybrid
assembly allows users to incorporate reads from differ-
ent sequencing technologies (e.g., short Illumina reads
with long PacBio reads). MAIA has also the ability to
merge de novo assemblies if several closely related ref-
erence genomes are available. QuickMerge [11] is a tool
that allows users to merge an assembly obtained from
Pacific Bioscience reads with another assembly based
on second-generation reads. We excluded QuickMerge
from our evaluations due to the lack of publicly avail-
able PacBio-based assemblies with a corresponding high-
quality reference genome that would allow us to assess the
results.

In this work, we benchmarked seven assembly recon-
ciliation tools, namely CISA, GAA, GAM_NGS, GARM,
Metassembler, MIX, and ZORRO, which are briefly
described next. Table 1 summarizes the main goals and
features of the seven assembly reconciliation tools. Several
of these algorithms use the compression–expansion (CE)
statistic to detect assembly compression (due to an incor-
rect deletion) or assembly expansion (due to an incorrect
insertion) [6]. To obtain the CE statistic, paired-end or
mate-pair reads are mapped to the assembly to be eval-
uated. The CE statistic is computed by comparing the
distance between the mapped mates and the expected
insert size.

The objective of CISA is to reconcile bacterial genome
assemblies [12]. Given the contigs for each of the input
draft assemblies, CISA selects representative contigs (i.e.,
the longest contigs) and discards (nearly) contained con-
tigs. CISA then tries to extend representative contigs,
and detects misassembly in the representative contigs
by aligning them to query contigs. Contigs that align
to multiple positions are considered misassembled and
another representative contig is selected. Contigs with an
unaligned portion are split. Finally, the resulting contigs
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Table 1 Features of the assembly reconciliation tools evaluated in this study

CISA GAA GAM_NGS GARM Metassembler MIX ZORRO

Inputs

Contigs allowed � � �a � � � �
Scaffolds allowed � �b �a � �
Short reads allowed �a

Paired-end reads allowed �a �
Mate-pair reads allowed �a �
Alignments allowed � �
Reads required �a � �
Reference input assembly required � �
Input assemblies treated symmetrically � �
Only two input assemblies � � � �c �
More than two input assemblies � �
Can handle bacterial/small genomes � � � � � � �
Can handle large eukaryotic genomes � � � � �

Goals

To increase assembly contiguity � � � � � � �
To decrease number of assembly errors � �

Methods

Compression-expansion statistic � � �
Scaffolding information � �
Use single reads �
Use paired-end/mate-pair reads � � � �
Can split assembly misjoin � �
Can detect/avoid repetitive regions � � �

Output

Contigs � � �
Scaffolds � � � �d � � �

aOptional, as GAM_NGS requires an alignment file
bScaffolds should be broken into contigs. A gap file and contig naming convey scaffolding information
cPerforms iterative pairwise
dWhen the input contains scaffolds

are iteratively merged. We should note that CISA’s objec-
tive is to merge more than two assemblies, but we have
also tested it on two inputs for consistency with other
tools. CISA was used in [13] and [14] to merge assem-
blies produced by three different assemblers. In [15],
it was used to integrate multiple Newbler (454/Roche)
assemblies.

Users of GAA have to specify a target and a query
assembly [16] where the target assembly is expected to be
of higher quality. The objective of GAA is to close gaps
in the target assembly using the query assembly. Query

contigs that are not anchored to at least two contigs tar-
get are disregarded. GAA was used (i) in [17] to merge
a SOAPdenovo assembly with a Newbler assembly, (ii) in
[18] to merge a Newbler assembly with a PCAP assembly
[19], and (iii) in [20] to merge an ABySS assembly with a
CLC assembly [21].

The input to GAM_NGS is one or more alignments
between each library of reads and each input assembly
[22]. GAM_NGS first identifies maximal portions of both
input assemblies (called blocks) that share the same set
of uniquely mapped reads. GAM_NGS then constructs
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a weighted undirected graph where each vertex corre-
sponds to a contig, and an edge connects two contigs
if (i) they belong to different assemblies and (ii) they
share at least one block. From this graph, GAM_NGS
computes a consistent ordering and orientation of blocks
with respect to both input assemblies. Then, GAM_NGS
builds another directed weighted graph (called the assem-
bly graph) where each vertex represents a block, and each
edge connects two blocks if they belong to the same
contig. After resolving conflicts in the assembly graph,
GAM_NGS computes a semi-global alignment between
any two contigs that share at least one block. If two contigs
have at least 95 % identity, GAM_NGS merges the assem-
blies by selecting the assembly with the best CE statistic.
GAM_NGS was used in [23] to merge three assemblies
created using Velvet-SC [24], SPAdes [25], and IDBA-UD
[26]. In [27], it was used to merge a Newbler assembly with
a SOAPdenovo assembly.

GARM [28] also manipulates assemblies asymmetri-
cally, but users do not need to know in advance which
one is the better assembly. The tool decides which is the
reference assembly based on a variety of assembly statis-
tics. GARM then (i) aligns the assemblies to each other to
detect overlaps (using nucmer [29]), (ii) removes ambigu-
ous overlaps and contigs that are (nearly) completely
contained in each another, (iii) generates layout and con-
sensus scores, (iv) merges contigs, and (v) orders merged
contigs to match the order and the orientation of the orig-
inal scaffolds (if scaffolds are available). If a contig that is a
part of a scaffold is not merged, the contig is placed within
the resulting scaffold in a location that corresponds to the
original scaffold and the gap length is recomputed. GARM
was used in [30] to merge a IDBA-UD assembly with a
Newbler assembly.

CE statistics on the two input assemblies are also used
in Metassembler [31]. First, Metassembler uses nucmer
[29] to align the two input assemblies. The boundaries
of these alignments are called break points. For each
region between the break points, one of two assemblies
is selected based on its CE statistic. Metassembler allows
users to input more than two assemblies, but merges them
in a progressive pairwise fashion. In [32], Metassembler
was used to merge an ALLPATHS-LG assembly with an
assembly based on Illumina Moleculo [33] synthetic long
reads.

MIX [5] uses a directed weighted graph called an exten-
sion graph, which is annotated with a variety of weights
to represent prefix–suffix overlaps between contigs in
the input assemblies. MIX determines a set of non-
overlapping maximal independent longest paths on the
extension graph to merge contigs. Contigs not included in
any path are examined for duplications. Contigs that are
contained or nearly contained are removed, and the rest
are added to the assembly. MIX does not perform error

correction, but rather focuses on enhancing contiguity.
MIX was used in [34] and [35] to merge two assemblies
and in [36] to merge three assemblies.

ZORRO [37] starts by masking repetitive regions, which
are identified using k-mer statistics. Once the repeti-
tive regions are masked, the overlap between the two
assemblies is detected using Minimus [10]. ZORRO then
unmasks the repetitive regions and merges overlapping
contigs. Lastly, ZORRO uses the tool Bambus [38] to order
and orient contigs using paired-end reads. ZORRO was
used in [39] and [40] to merge two assemblies.

While one would expect assembly reconciliation tools
to be particularly beneficial for large complex (eukaryotic)
genomes, many bacterial genome assembly projects have
taken advantage of these tools. For instance, CISA was
used in the assembly of Xylella fastidiosa [13] and Paeni-
bacillus polymyxa [14]. MIX was employed for Acidibacil-
lus ferrooxidans [34], Piscirickettsia salmonis [35], and
Cupriavidus sp. Strain SK-3 [36]. GAM_NGS was used in
the assembly of Coxiella burnetii [23], GARM was used
for Wolbachia [30], and ZORRO was used for Desulfurella
amilsii [39].

Results
Datasets and experimental results
Since the quality of the input assemblies is expected to
directly affect the quality of the final merged assembly, we
explored the performance of assembly reconciliation tools
under different input quality.

To carry out a comparative evaluation of the seven
assembly reconciliation tools listed above, we used pub-
licly available assemblies created for the GAGE compe-
tition [3] and we created synthetic assemblies of Sac-
charomyces cerevisiae S288c [37] including structural
variants. The motivation for this choice of the GAGE
assemblies was that this dataset has been the most com-
monly used for assembly reconciliation tools. The authors
of GAM_NGS used this dataset in their experimental
results, CISA was tested on assemblies of Staphylococcus
aureus and Rhodobacter sphaeroides, and MIX used
GAGE_B [41], which includes the assemblies of S. aureus
and R. sphaeroides. Other assembly reconciliation tools
used the Assemblathon dataset [4], which was a similar
assembly competition to GAGE. For instance, Metassem-
bler used both the Assemblathon 1 and Assemblathon 2
datasets.

All assembly reconciliation tools were run with default
parameters, and Quast [42] was used to gather extensive
assembly statistics (see Methods for details). A complete
report on all these statistics is reported in Additional
file 1: Note 3 and Additional file 1: Table S1–S19. Here,
we only summarize the results using a graphical rep-
resentation of the contiguity/correctness tradeoff. Input
and output assemblies are represented as points on the
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scatter plot where the x-coordinate represents the con-
tiguity (NGA50), and the y-coordinate is the number of
misassemblies. Figure 1 illustrates how to interpret the
plots. We expect assembly reconciliation tools to “move”
the input points towards the bottom right corner of the
plot, i.e., increase the contiguity and reduce the number
of assembly errors (as shown in the example in Fig. 1).
Experimental results are summarized in Figs. 2, 3, 4 and 5.

A detailed analysis of run time, memory consumption,
CPU utilization for all the tools is available in Additional
file 1: Note 4. A companion website http://reconciliation.
cs.ucr.edu/ provides links to the all the datasets and the
scripts used in this study.

GAGE assemblies
The GAGE competition evaluated eight assemblers
(ABySS [43], ALLPATHS-LG [44], Bambus2 [38], Celera
Assembler [45, 46], MaSuRCA [47], SGA [48], SOAPde-
novo [49], and Velvet [50]) on whole-genome shotgun
sequence data of four genomes, namely S. aureus (genome
size ≈2.8 Mbp), R. sphaeroides (≈4.6 Mbp), Homo sapi-
ens chromosome 14 (≈88 Mbp), and Bombus impatiens
(≈250 Mbp). S. aureus has one main chromosome and a
small plasmid, while R. sphaeroides has two chromosomes
and five plasmids. In our experiments, we mainly used
the first three genomes, because at the time of writing
Bombus impatiens did not have a high-quality reference
genome. We used the assemblies for Bombus impatiens
only to determine which tools would be able to handle

Fig. 1 Performance of assembly reconciliation algorithms
summarized as points on a 2D scatter plot. The x-axis represents
contiguity (NGA50) and the y-axis is the number of misassemblies. In
this example, input assembly 1 has fewer assembly errors than
assembly 2, but assembly 2 is more contiguous. The output assembly
is better than both inputs

large inputs (see Additional file 1: Note 5). Out of the 4×8
genome-assembler pairs, the GAGE competition included
27 assemblies (available from http://gage.cbcb.umd.edu).

Running each assembly reconciliation tool on all pairs
of assemblies (out of the 27 available) would generate sev-
eral hundred merged assemblies and it would be difficult
to draw general conclusions. We decided instead to select
input assembly pairs based on six different criteria and
compare the results on the selected pairs. To streamline
the presentation, we will not comment on tools that did
not run successfully. Other practical limitations related to
the execution of these tools are reported in Additional
file 1: Note 6. Finally, some of tools can take advantage
of the raw reads, in addition to the corresponding assem-
blies. The use of raw reads is explained in Additional file 1:
Note 7.

High-contiguity and high-correctness inputs (GAGE)
In the first set of experiments, the objective was to
explore the contiguity/correctness tradeoff. Specifically,
we wanted to test the ability of reconciliation tools to
take advantage of the contiguity of the first input assem-
bly and the correctness of the second to create a merged
assembly with a number of misassemblies comparable to
the second assembly and a contiguity comparable to the
first assembly. The two input assemblies to be merged
were chosen so that one had high N50 value (but possi-
bly a relatively high number of misassembly errors) and
the other had few misassembly errors (and possibly a
lower N50).

Figure 2 and Additional file 1: Table S4 report the results
of merging the SOAPdenovo assembly (high N50) with
the ABySS assembly (low misassembly errors) for the
three chosen genomes. Since the assembly produced by
ABySS on the R. sphaeroides genome has more misassem-
bly errors than the assembly generated by SOAPdenovo,
we reported in Additional file 1: Table S5 the results on
ALLPATHS-LG and SGA’s assembly of R. sphaeroides.
The SOAPdenovo assembly was used as the master
assembly in all tools that require a ranking of the inputs.

Observe in Fig. 2 that for the S. aureus genome, all
tools increased the contiguity marginally (by less than
3 %). While none of the tools was able to improve assem-
bly errors compared to the ABySS assembly, GAA and
MIX produced more errors than SOAPdenovo. CISA pro-
duced the lowest number of misassemblies (27 misas-
semblies compared to 31 with SOAPdenovo). Otherwise,
GAM_NGS and Metassembler maintained the quality
statistics close to that of SOAPdenovo.

GAA created a merged assembly in which the num-
ber of misassemblies was very close to the sum of those
statistics for the input assemblies. In terms of NGA50, the
contiguity was at least as good as the most contiguous
input assembly.

http://reconciliation.cs.ucr.edu/
http://reconciliation.cs.ucr.edu/
http://gage.cbcb.umd.edu
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Fig. 2 Contiguity–correctness experimental results. Inputs are contigs (top row) or scaffolds (bottom row). Assembly reconciliation tools are given
two assembled genomes to merge (from Homo sapiens, chromosome 14, Rhodobacter sphaeroides, or Staphylococcus aureus), in which the first
assembly has high contiguity, the second has high correctness. The tools were run using default parameters

When the input was composed of scaffolds (Fig. 2 bot-
tom row), all tools improved contiguity marginally (by less
than 5 %). Additional file 1: Table S4 show that GARM’s
and MIX’s merged assemblies covered less than 50 % of the
reference sequence. None of the tools was able to reduce

the number of misassembly errors compared to ABySS; in
fact, CISA produced more errors than SOAPdenovo.

Despite that the ABySS assembly for R. sphaeroides
had a higher number of errors than SOAPdenovo, none
of the tools improved on the number of misassemblies

Fig. 3 Experimental results on merging high-quality assemblies (top row for input contigs and bottom row for input scaffolds). Tools were run using
default parameters
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Fig. 4 Experimental results on merging highly fragmented assemblies (top row for input contigs and bottom row for input scaffolds). Tools were run
using default parameters

compared to SOAPdenovo. With the exception of GAA,
the number of misassembly errors produced by all tools
was closer to the master (SOAPdenovo). As expected,
tools that relied on a master assembly had a lower num-
ber of misassemblies than those that did not rank the
inputs. With scaffolds as inputs, changes in NGA50 were
negligible for all tools except for CISA. With contigs as
inputs, GAM_NGS improved the contiguity by at most
11 %, Metassembler and MIX increased it by 2 %, and
CISA dropped it by 85 %. MIX, Metassembler, and GARM
maintained the same NGA50 as SOAPdenovo.

In the majority of cases, the experimental results
obtained with ALLPATHS-LG (high N50) and SGA
(low misassembly errors) on the R. sphaeroides genome

(reported in Additional file 1: Table S5) followed similar
patterns to the ones in Fig. 2. CISA decreased the con-
tiguity (although the reduction was far less this time).
GAA followed the same general pattern mentioned earlier.
GAM_NGS did not increase contiguity but rather main-
tained it close to that of the master assembly. Metassem-
bler and MIX also did not increase contiguity. ZORRO
worked for this experiment: while it decreased contigu-
ity by 10 %, it produced a smaller number of misassembly
errors than ALLPATHS-LG (but still higher than SGA).

With scaffolds as inputs, GAM_NGS retained the qual-
ity statistics of the master assembly. Observe in Fig. 2
that GARM retained NGA50 close to SOAPdenovo (the
master assembly). Also observe in Additional file 1: Table

Fig. 5 Experimental results on merging multiple assemblies of Staphylococcus aureus (black diamonds). The input order was determined using the
feature response score (see text for details). Integer labels indicate successive merging steps. Tools were run using default parameters
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S5 that GARM maintained ALLPATHS-LG’s contiguity
statistics.

The experimental results for Homo sapiens, chromo-
some 14 (Hg_chr14) with contigs as input assemblies
(Fig. 2), show that (i) GAM_NGS slightly improved con-
tiguity, (ii) Metassembler maintained the same contiguity,
(iii) GAA crashed, and in general, (iv) the number of mis-
assemblies was closer to SOAPdenovo. With scaffolds as
inputs, GAM_NGS and Metassembler produced assem-
blies with quality statistics close to SOAPdenovo.

Reordering the inputs (GAGE)
As mentioned above, some of the assembly reconciliation
tools assume that the first input assembly is the master
assembly, and should be trusted more (we called these
tools asymmetric). The goal of this set of experiments
was to determine how the quality of the merged assembly
depended on the specific input order.

To determine how the ranking affected the results, we
repeated the same experiments reported in the previous
section but switched the order of the inputs. A compara-
tive analysis of Additional file 1: Figure S11 and Additional
file 1: Table S6 with the results discussed in the previous
section prompts a few observations. First, we note that
CISA, MIX, and GARM are symmetric (i.e., they do not
require users to rank the inputs, see Table 1), hence they
are expected to be unaffected by the reordering. Experi-
mental results confirm that CISA and GARM are indeed
unaffected. The reordering, however, affected the MIX
results, albeit only slightly.

For S. aureus, MIX’s contiguity statistics (N50 and
NGA50) were not affected by the reordering of the inputs.
However, we observed a small change in the number of
misassemblies, although still higher than SOAPdenovo in
both cases.

For R. sphaeroides, all statistics remained unchanged
except for the number of misassemblies, which increased
after reordering. In addition, with contigs as inputs, we did
not observe an increase in NGA50 after the reordering.

Despite that GAA requires input ranking, the results for
S. aureus and R. sphaeroides were similar in both order-
ings. The output statistics of GAA followed the general
pattern mentioned in the previous section. For Hg_chr14,
GAA crashed in one ordering but not on the other. For all
three genomes, GAM_NGS and Metassembler produced
consensus assemblies with quality statistics close to the
master assembly.

Note that the merged assemblies have higher contiguity
in Fig. 2, in which the master has higher N50. In contrast,
the number of misassemblies was lower in Additional
file 1: Figure S11 for both S. aureus and Hg_chr14, in
which the master had lower errors (with the exception of
MIX). Merged assemblies for R. sphaeroides had higher
contiguity and a lower number of misassemblies when the

master had higher N50 and a lower number of misassem-
blies (see Fig. 2).

High-quality inputs (GAGE)
In the third set of experiments, we tested the ability of
the reconciliation tools to merge two high-quality assem-
blies. We selected two highly contiguous assemblies (i.e.,
a small number of contigs and scaffolds, high N50 val-
ues) and a low number of misassembly errors. Figure 3
and Additional file 1: Table S7 show the result of merging
assemblies produced by ALLPATHS-LG as first input and
either MSR-CA, SOAPdenovo, or CABOG as the second
input assembly.

Observe that for S. aureus with contigs as inputs,
GAM_NGS produced an improved assembly that had no
misassemblies, and was 66 % more contiguous. The next
best assembly was by Metassembler with a 107 % increase,
but it had a slight increase in the number of misassemblies
compared to ALLPATHS-LG. MIX produced a high num-
ber of misassemblies (higher than MSR-CA) but managed
to increase contiguity by 4 %. CISA improved contiguity
by 11 %, but it produced more errors than ALLPATHS-
LG. ZORRO decreased contiguity by 30 %.

With scaffolds as inputs, ALLPATHS-LG had no
misassemblies and a higher NGA50 than MSR-
CA. In general, asymmetric tools produced a lower
number of misassemblies and decreased the N50. For
instance, GAM_NGS maintained the quality statistics
of ALLPATHS-LG. Although ZORRO is asymmetric,
it decreased contiguity by more than 90 %. On the
other hand, symmetric tools had a higher number of
misassemblies. GARM achieved the highest increase of
NGA50 (16 %).

The contiguity of the merged assemblies improved 11–
108 % with the exception of ZORRO, which decreased the
contiguity by 30 %. GARM increased contiguity the most
(108 %) at the expense of a number of misassemblies close
to MSR-CA. MIX introduced no misassemblies, but cov-
ered only 25 % of the genome sequence. Notably, both
GAM_NGS and Metassembler improved contiguity by
66.5 % and introduced no misassemblies. These are two
rare examples in which we observed an unquestionable
improvement in the merged assembly.

For the R. sphaeroides genome, the two input assem-
blies had almost the same number of misassemblies but
the assembly produced by SOAPdenovo was much less
fragmented. Only Metassembler increased NGA50 sig-
nificantly. All other tools decreased the contiguity. In
terms of correctness, ZORRO and CISA (using scaf-
folds as inputs) reduced the number of misassem-
blies but also decreased the contiguity, by 99 % and
60 %, respectively. Other tools produced merged assem-
blies with the number of misassemblies no better than
the inputs.
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GARM improved the contiguity by 38 % while CISA
increased it by less than 2 %. MIX was the only tool
that reduced the number of misassemblies, but again its
assembly only covered about half of the genome. None
of the tools improved both contiguity and the number of
misassemblies.

For Hg_chr14, GAA improved the NGA50 by 76 %, but
it produced a number of misassemblies equal to the sum
of misassemblies in the inputs. GAM_NGS improved the
contiguity (28 % increase in NGA50) and slightly reduced
the number of misassemblies. Metassembler produced
quality statistics that were very close to ALLPATHS-LG.

With scaffolds as inputs, GAM_NGS and Metassembler
maintained similar quality statistics to ALLPATHS-LG.
GARM decreased NGA50 by 9 %. It also increased the
number of misassemblies.

Highly fragmented inputs (GAGE)
The goal of this set of experiments was to evaluate the
performance of assembly reconciliation tools when pro-
vided with two highly fragmented input assemblies. Input
assemblies were selected to have a high percentage of con-
tigs shorter than 200 bps, a high number of contigs and
scaffolds, and low N50.

Figure 4 and Additional file 1: Table S8 show the
results of merging the ABySS assembly and SGA assem-
bly. Observe that when we used contigs as inputs, ABySS
had a higher contiguity than SGA (except for Hg_chr14).
The opposite, however, was observed when scaffolds
were provided as input. For S. aureus and R. sphaeroides
with contigs as inputs, only asymmetric tools maintained
or improved NGA50 of the better input assembly (for
S. aureus, we observed up to an 8 % increase, and up to
17 % for R. sphaeroides). However, for Hg_chr14 (with
contigs as inputs), GAA produced a 123 % increase over
SGA, while GAM_NGS did not improve NGA50 over
SGA, but it increased it 33 % over ABySS.

With scaffolds as inputs, we observed a decrease in
NGA50 except for MIX and GARM (when SGA inputs
are scaffolds). MIX, GARM, and CISA are symmetric
tools, hence they were expected to perform better than
other tools when the non-master input has better qual-
ity. CISA, however, produced inferior results with scaf-
folds as inputs in most experiments. We discovered that
CISA with default parameters breaks scaffolds into con-
tigs when a scaffold contains more than ten consecutive
N’s. MIX maintained the NGA50 of SGA, while GARM
slightly decreased it compared to SGA (yet it was still
higher than ABySS).

De Bruijn vs string graph assembly (GAGE)
Here we tested the effect of merging assemblies gen-
erated using different assembly strategies. Specifically,
we merged an assembly generated by an assembler that

uses de Bruijn graphs with an assembly produced by an
assembler based on the string graph. Additional file 1:
Figure S12 and Table S5 show the result of merging an
assembly produced by ALLPATHS-LG (based on a de
Bruijn graph) with an assembly produced by SGA (based
on a string graph). Overall, GAM_NGS, Metassem-
bler, and MIX maintained similar assembly statistics as
ALLPATHS-LG.

Note that S. aureus input assemblies (as contigs) had
only one misassembly. The merged assemblies also had
one misassembly, with the exception of GAA (two) and
ZORRO (none). ZORRO corrected the assembly error
without affecting NGA50. CISA decreased NGA50 by
49 %. With scaffolds as inputs, ALLPATHS-LG’s assembly
had no assembly errors. In fact, observe that all merged
assemblies did not have any misassemblies. GARM kept
NGA50 close to that of ALLPATHS-LG. CISA covered
less than 40 % of the genome, while ZORRO decreased the
contiguity by 99 %.

For R. sphaeroides with contigs as inputs, CISA and
ZORRO decreased the contiguity by 34 % and 10 %,
respectively. GAM_NGS and Metassembler maintained
ALLPATHS-LG’s quality statistics. All tools produced a
relatively high number of misassemblies (like ALLPATHS-
LG). With scaffolds as inputs, CISA, ZORRO, and
GARM’s assembly statistics were like the statistics of
S. aureus. All assemblies, with the exception of CISA and
ZORRO, had the number of misassemblies closer to that
of ALLPATHS-LG. CISA again covered less than one-
fifth of the genome and ZORRO decreased the contiguity
by 99 %. GAM_NGS, Metassembler, and MIX produced
consensus assemblies with quality statistics comparable to
that of ALLPATHS-LG.

For Hg_chr14 (with contigs as inputs), GAM_NGS
increased NGA50 by 2 %. With scaffolds as inputs,
GAM_NGS and Metassembler maintained the contigu-
ity and number of misassemblies close to ALLPATHS-LG.
GARM increased the number of misassemblies to 496
(compared to 455 with ALLPATHS-LG) and decreased
NGA50 by 9 %.

Multiple inputs (GAGE)
In this set of experiments, we tested the ability of the tools
to merge more than two assemblies. When an assembly
reconciliation tool allowed no more than two assemblies
as input (see Table 1 for a list), we merged them in an
iterative fashion. For instance, to merge three assemblies,
we first merged two assemblies, then merged the result to
the third assembly. Metassembler uses a similar strategy:
when the user provides multiple assemblies, the tool iter-
atively performs pairwise reconciliation, where the output
of one iteration is the input of the next. We ordered the
input assemblies based on the feature response curve (FR
curve), which is an assembly quality metric proposed in
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[51]. The FR curve represents the dependency between
contigs that contain no more than τ features and the
corresponding genome coverage. The x-axis represents τ

and the y-axis represent genome coverage: the steeper the
curve, the better the assembly. We used the FR curves
in [22] to determine the merging order of the GAGE
assemblies, starting with the assemblies with highest qual-
ity. The results for an alternative ordering are discussed
in Additional file 1: Note 3.7. and the corresponding
Additional file 1: Tables S15–S18. For tools that allowed us
to merge more than two assemblies (e.g., CISA and MIX),
the merging was done in one step from the original assem-
blies. Here we were interested in measuring the contiguity
and correctness of the resulting assemblies as the number
of input assemblies increased.

Figure 5, Additional file 1: Figure S1, and Figure S2
show experimental results for S. aureus, R. sphaeroides,
and Hg_chr14, respectively, when the inputs are contigs.
First observe that in several cases, the process of iterative
merging did not complete.

For S. aureus and R. sphaeroides, CISA generally
improved the contiguity as the number of merged assem-
blies increased. The number of errors fluctuated over the
iterations. GAA did not produce assembly files for the first
iteration. Although GAA did not work for this particular
ordering, it produced results for the alternative ordering
reported in Additional file 1: Note 3.7.

For S. aureus and R. sphaeroides, GAM_NGS’s contigu-
ity improved over successive iterations, but the number of
misassemblies errors did not decrease (it remained close
to the first master input in all iterations). For Hg_chr14,
the number of misassemblies was also relatively high.
GAM_NGS increased NGA50 by at least 70 % compared
to CABOG.

For S. aureus, Metassembler’s contiguity improved over
successive iterations, but the number of misassemblies
also increased. For R. sphaeroides, Metassembler’s assem-
bly did not improve after the fourth iteration. Note that
NGA50 was lower for Bambus2 and SOAPdenovo. The
number of misassemblies for Metassembler was about the
average of the inputs. For Hg_chr14, the number of mis-
assembly errors was low and decreased over successive
iterations. The contiguity was high, but slightly decreased
over successive iterations.

MIX maintained a low number of misassemblies in most
iterations but suffered from relatively poor NGA50. Since
the genome coverage in most iterations was less than
50 %, no NGA50 was reported for those iterations. For the
S. aureus genome, the coverage was less than 50 % in all
iterations but it steadily improved with increasing num-
ber of inputs. For R. sphaeroides, the genome coverage was
below 50 % with four or more inputs.

ZORRO frequently failed to produce results. When
it worked, the contiguity usually started high, then

fluctuated over successive iterations. ZORRO produced
a relatively high number of misassemblies, between the
number of misassemblies of the inputs.

We repeated the same experiment but with scaffolds
as inputs. The results are reported in Additional file 1:
Tables S12, S13, and S14 and Additional file 1: Figures
S3, S4, and S5. CISA’s results show that after a certain
number of input assemblies, increasing the number of
inputs did not affect the results significantly. From that
point forward, it generally improved the contiguity and
reduced the number of contigs as the number of merged
assemblies increased. The number of misassemblies was
within the range of input assemblies. CISA reached sta-
bility with four inputs for S. aureus and three inputs for
R. sphaeroides.

For S. aureus, MIX produced a high number of mis-
assemblies, which generally increased as the number
of inputs increased. It maintained high genome cover-
age. It also maintained high contiguity except for the
last iteration. For R. sphaeroides, the number of mis-
assemblies was also relatively high but it fluctuated
as the number of inputs increased. It also maintained
high contiguity, achieving the best NGA50 for less than
five inputs. ZORRO produced a low number of mis-
assemblies for S. aureus and R. sphaeroides. Contigu-
ity was poor and generally decreased over successive
iterations.

GAM_NGS maintained results very close to the
first input throughout all iterations for S. aureus,
R. sphaeroides, and Hg_chr14. In the latter genome,
GAM_NGS’s contiguity generally improved in successive
iterations but so did the number of misassemblies.

Metassembler maintained similar quality statistics to
CABOG for Hg_chr14. For R. sphaeroides, Metassembler
also maintained CABOG’s quality statistics with a slight
decrease in the number of misassemblies and contigu-
ity as the number of iterations increased. For S. aureus,
Metassembler also maintained quality statistics close but
not identical to those of MSR-CA. In general, as the num-
ber of inputs increased, the number of misassemblies
slightly decreased and the contiguity slightly improved.

Synthetic assemblies
In this set of experiments we tested assembly reconcilia-
tion tools on synthetic assemblies of Saccharomyces cere-
visiae embedded with specific structural variations (see
Methods for details). Decipher [54] was used to generate
synteny plots displayed as gradients. When reference and
query disagree, the gradients are interrupted. Gray regions
indicate blocks that do not match the reference.

In each experiment we merged two inputs, namely (1)
chromosomes 4 and 15 of the yeast genome and (2) a
flawed version of (1) produced by RSVSim containing one
structural variation, i.e., either a deletion, an inversion
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(reversal), or a translocation. RSVSim does not allow de
novo insertions. For asymmetric tools, the flawed assem-
blies were used as the master assemblies to model the
worst case. We introduced deletions and inversions of var-
ious sizes (50, 100, 200, and 500 kbp) into chromosome
4, and generated translocations of various sizes (again,
50, 100, 200, and 500 kbp) from chromosome 4 into
chromosome 15.

Figure 6 (top row) show that CISA resolved the dele-
tion but did not output chromosome 15. It produced two
extra sequences that did not align to the reference. GARM
did not output chromosome 4. GAM_NGS, Metassem-
bler, and MIX produced assemblies like the flawed input
assembly. ZORRO broke the assembly at the position
of the deletion, produced three individual contigs, and
omitted the deleted sequence.

Figure 6 (middle row) shows that only CISA resolved
the inversion but did not output chromosome 15. GAA
did not correct the inversion, and generated a merged
assembly that was like the flawed input assembly with two
additional sequences that did not align to the reference.
Again, GAM_NGS, Metassembler, and MIX produced
assemblies like the flawed assembly. ZORRO broke the

inversion by producing three contigs for chromosome 4,
and an additional contig representing chromosome 15.

For translocations, the behavior of the reconciliation
tools depended on the size of the translocation, as shown
in Fig. 6 (bottom row). For translocations of 50, 100,
and 200 kbp, CISA, GAA, and GAM_NGS produced the
correct version of chromosome 4. CISA did not pro-
duce chromosome 15 and GAA and GAM_NGS pro-
duced chromosome 15 with an unaligned sequence at the
location of the insertion. As before, GAA produced two
additional sequences. GARM did produce any merged
assembly. Metassembler’s and MIX’s outputs were like the
flawed input assembly. ZORRO split the assembly over
structural variation breaking points. For 200 and 500 kbp,
ZORRO was stopped after allocating more than 350 GB
of RAM. None of the tools managed to correct the 500
kbp translocations. CISA and GAA produced the flawed
version of chromosome 15. Again, GAA produced the
correct version of chromosome 4, but two extraneous
sequences. GAM_NGS’s output was very like the input
flawed assembly. Metassembler and MIX produced chro-
mosome 4 without the deleted fragment and a flawed
version of chromosome 15.

Fig. 6 Results for the eight assembly reconciliation tools. They were given as input (1) chromosomes 4 and 15 of the yeast genome and (2) a flawed
version of (1) produced by RSVSim containing a deletion in chromosome 4 (top row), an inversion in chromosome 4 (middle row), or a translocation
from chromosome 4 to chromosome 15 (bottom row). (1) and (2) are the first two rows in each plot. Decipher was used to detect synteny blocks
between the reference and the outputs and to generate synteny plots displayed as gradients. When the reference and output disagree, the
gradients are interrupted. Gray regions indicate blocks that do not match the reference
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To test whether read coverage had any impact on the
quality of merged assemblies for assembly reconciliation
tools that require reads as input, we ran several experi-
ments on the same synthetic assemblies with increasing
read fold coverage (15× to 75×). Additional file 1: Figure
S13 shows that read coverage did not affect the quality of
the results.

Discussion and conclusions
Given the practical challenges of de novo assembly, the
idea of assembly reconciliation is very appealing. One
could generate multiple assemblies on the same dataset
using various assembly tools and/or parameters, then use
an assembly reconciliation tool to merge all the assem-
blies to obtain a high-quality consensus assembly. Regard-
ing the outcome, the expectation is that the quality of
the merged assembly should be at least as good as the
best assembly in the input. In fact, if both input assem-
blies have some good quality assembly statistics (e.g.,
one is more contiguous while the other has fewer misas-
semblies), one should expect the consensus assembly to
inherit the good qualities from both inputs. The reality
is that it seems very hard to produce a merged assem-
bly that is consistently better than (or at least as good
as) both input assemblies. The extensive set of experi-
ments reported in this manuscript showed that none of
the tools we evaluated was able to consistently achieve
this goal. There were a few cases in which the con-
sensus assembly was better than both inputs, but for
the vast majority of the inputs, the merged assembly
was not.

Despite the inability of these assembly tools to solve
the general assembly reconciliation problem, each tool
demonstrated some strengths that could lead to algo-
rithmic advances for this problem. For instance, CISA
generally was able to correct most structural varia-
tions and to ignore duplications in the input assemblies
(however, its duplication rate increased as the num-
ber of merged assemblies increased). GAA and GARM
often improved the contiguity (but often introduced
more misassembly errors and increased the duplication
ratio). GAM_NGS typically produced consensus assem-
blies very close to the quality of the reference (but not
much better), and it was able to resolve translocations.
MIX generally improved the contiguity modestly (but
its number of misassemblies was usually close to or
higher than the most erroneous input, and its genome
coverage dropped in some cases). Metassembler often
produced a consensus assembly with a very low num-
ber of misassembly errors, sometimes even lower than
both input assemblies (however, it did not consistently
increase N50). Finally, ZORRO generally maintained a
high genome coverage (but it did not significantly increase
contiguity).

Methods
All experiments were performed on a Linux Ubuntu 12.10
server with a 20 cores Intel Xeon CPU 3GHz and 512GB
of RAM. Multithreading was used when available.

Assembly reconciliation tools were ran with default
parameters, unless otherwise noted. In Additional file 1:
Note 1 and corresponding Tables in Additional file 1,
we explored how other parameter settings affected the
experimental results. Since some assembly reconciliation
tools can take advantage of scaffold information, we car-
ried out experiments on both contig-based assemblies and
scaffold-based assemblies.

Outputs of assembly reconciliation tools were pro-
cessed by our scripts, then fed into Quast [42] (GAGE
option activated) to obtain assembly statistics. We col-
lected assembly statistics related to contiguity, namely
N50, number of contigs, longest contig, and total assembly
size. By comparing the assemblies to the reference genome
we also collected NGA50, number of misassemblies, the
total length of contigs affected by misassemblies, the num-
ber of mismatches and indels between the assembly and
the reference, the percentage of the reference genome cov-
ered by the assembly, and the duplication ratio. Quality
scores were computed using Quast on the input assem-
blies. In addition to genome-wide analyses, we also stud-
ied the ability of assembly reconciliation tools to assemble
the primary sequence of annotated genes. Specifically, we
computed the fraction of each gene sequence covered by
contigs, for both input and merged assemblies. Details
about the procedure used to compute gene coverage can
be found in Additional file 1: Note 2.

Synthetic assemblies were generated using RSVSim [52].
We used RSVSim to introduce specific structural varia-
tions into the reference genome of Saccharomyces cere-
visiae [37]. For tools that required reads, we generated
synthetic reads using ART [53]. The output of the seven
assembly reconciliation tools was fed into Decipher [54].
Decipher detects synteny blocks between a reference and
a query sequence, and generates synteny plots displayed
as gradients.

Additional file

Additional file 1: Contains Supplementary Notes 1–7, Supplementary
Tables 1–19 and Supplementary Figures 1–13. (PDF 1250 kb)
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