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Abstract The vast majority of data mining algorithms require the setting of
many input parameters. The dangers of working with parameter-laden algo-
rithms are twofold. First, incorrect settings may cause an algorithm to fail in
finding the true patterns. Second, a perhaps more insidious problem is that
the algorithm may report spurious patterns that do not really exist, or greatly
overestimate the significance of the reported patterns. This is especially likely
when the user fails to understand the role of parameters in the data mining
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process. Data mining algorithms should have as few parameters as possible.
A parameter-light algorithm would limit our ability to impose our prejudices,
expectations, and presumptions on the problem at hand, and would let the data
itself speak to us. In this work, we show that recent results in bioinformatics,
learning, and computational theory hold great promise for a parameter-light
data-mining paradigm. The results are strongly connected to Kolmogorov com-
plexity theory. However, as a practical matter, they can be implemented using
any off-the-shelf compression algorithm with the addition of just a dozen lines of
code. We will show that this approach is competitive or superior to many of the
state-of-the-art approaches in anomaly/interestingness detection, classification,
and clustering with empirical tests on time series/DNA/text/XML/video data-
sets. As a further evidence of the advantages of our method, we will demonstrate
its effectiveness to solve a real world classification problem in recommending
printing services and products.

Keywords Kolmogorov complexity - Parameter-free data mining - Anomaly
detection - Clustering

1 Introduction

Most data mining algorithms require the setting of many input parameters.
There are many dangers of working with parameter-laden algorithms. We may
fail to find true patterns because of poorly chosen parameter settings. A perhaps
more insidious problem is that we may find patterns that do not exist (Keogh
et al. 2003), or greatly overestimate the significance of a pattern because of a
failure to understand the role of parameter searching in the data mining pro-
cess (Domingos 1998; Elkan 2001). In addition, as we will show, it can be very
difficult to compare the results across methods or even to reproduce the results
of heavily parameterized algorithms.

Data mining algorithm should ideally have as few parameters as possible. A
parameter-free algorithm prevents us from imposing our prejudices and pre-
sumptions on the problem at hand, and lets the data itself speak to us.

In this work, we consider a data mining paradigm based on compression.
The work is motivated by results in bioinformatics, learning, and computational
theory that are not well known outside those communities. As we will demon-
strate here, our approach allows parameter-free or parameter-light solutions to
many classic data mining tasks, including clustering, classification, and anomaly
detection.

Our approach has the following advantages, which we will empirically dem-
onstrate with extensive experiments:

(1) It allows true exploratory data mining, rather than forcing us to impose
our presumptions on the data.

(2) The accuracy of our approach can be greatly superior to those of parame-
ter-laden algorithms, even if we allow these algorithms to search exhaus-
tively over their parameter spaces.
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(3) Our approach is based on compression as its cornerstone, and compres-
sion algorithms are typically space and time efficient. As a consequence,
our method can be much more efficient than other algorithms, in some
cases by three or four orders of magnitude.

(4) Many parameterized algorithms require the data to be in a special format.
For concreteness, consider time series data mining (Ge and Smyth 2000;
Keogh and Ka setty 2002). Here, the Euclidean distance requires that the
dimensionality of two instances being compared is exactly the same, and
Dynamic Time Warping (DTW) is not defined if a single data point is miss-
ing (Ratanamahatana and Keogh 2004). In contrast, our approach works
for time series of different lengths, sampling rates, dimensionalities, with
missing values, etc.

In this work, we decided to take the unusual step of reproducing our entire
actual code, rather than just the pseudocode. There are two reasons for doing
this. First, free access to the actual code combined with our policy of making all
data freely available allows independent confirmation of our results. Second, it
reinforces our claim that our methods are very simple to implement.

The rest of the paper is organized as follows. In Sect. 2, we discuss the results
in bioinformatics and computational theory that motivate this work. In Sect. 3,
we consider the minor changes and extensions necessary to extend these results
to the classic data mining tasks of anomaly/interestingness detection, classifi-
cation, and clustering. Section 4 sees an exhaustive empirical comparison, in
which we compare dozens of algorithms to our approach, on dozens of datasets
from several domains, including time series, video, DNA, and text. In Sect. 5,
we show preliminary results from a real world application of our technique in
the problem in recommending high-end printing services and products. Finally,
in Sect. 6, we discuss many avenues for possible extensions.

2 BACKGROUND AND RELATED WORK

We begin this section by arguing that a research contribution made by a param-
eter-laden algorithm can be difficult to evaluate. We review some background
material on Kolmogorov complexity, which motivates the parameter-free Com-
pression-based Dissimilarity Measure (CDM), the technique at the heart of this

paper.

2.1 The perils of parameter-laden algorithms

A recent paper in a top-tier journal introduced a new machine-learning frame-
work and noted that it “...abounds with parameters that can be tuned” (our
emphasis). It is surely more accurate to state that the approach has parameters
that must be tuned. When surveying the literature on this topic, we noted that
while there are many techniques for automatically tuning parameters, many of
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these techniques themselves have parameters, possibly resulting in an infinite
regression.

An additional problem of parameter-laden algorithms is that they make it
difficult to reproduce published experimental results and to understand the
contribution of a proposed algorithm.

A recently published paper introduced a new time series distance measure.
The algorithm requires the setting of two parameters, and the authors are to be
commended for showing the results of the cross-product: 16 by four possible
parameter choices. Of the 64 settings, 11 are slightly better than DTW, and
the authors conclude that their approach is superior to DTW. However, the
authors did not test over different parameters for DTW, and DTW does allow
a single parameter, the maximum temporal distortion (the “warping window”
(Ratanamahatana and Keogh 2004). The authors kindly provided us with the
exact data they used in the experiment, and we reproduced the experiment,
this time allowing a search over DTW’s single parameter. We discovered that
over a wide range of parameter choices, DTW produces a near perfect accuracy,
outperforming all 64 choices of the proposed algorithm.

Although the above is only one anecdotal piece of evidence, it does help
make the following point. It is very difficult to evaluate the contribution of
papers that introduce a parameter-laden algorithm.

In the case above, the authors’ commendable decision to make their data
public allows the community to discover that DTW is probably a better dis-
tance measure, but only at the expense of some effort on the readers’ behalf.
In general, the potential asymmetry in parameter tuning effort effectively pre-
vents us from evaluating the contribution of many papers. Here, the problem
is compounded by the fact that the authors themselves created the dataset in
question. Creating a dataset may be regarded as a form of meta-parameter
tuning, since we do not generally know if the very first dataset created was
used in the paper, or many datasets were created and only the most satisfactory
one was used. In any case, there clearly are problems in setting parameters
(training) and reporting results (testing) on the same dataset (Salzberg 1997).
In the field of neural networks, Flexer (1996) noted that 93% of the papers did
just that. While no such statistics are published for data mining, an informal
survey suggests a similar problem may exist here. In Sect. 4.2.2, we will empiri-
cally reinforce this point by showing that in the context of anomaly detection,
parameter-laden algorithms can have their parameters tuned to achieve excel-
lent performance on one dataset, but completely fail to generalize to a new but
very similar dataset.

Before leaving this section, it would be remiss of us not to note that many
papers by the authors of this manuscript also feature algorithms that have
(too) many parameters. Indeed, the frustration of using such algorithms is one
inspiration for this work.
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2.2 Kolmogorov complexity

The proposed method is based on the concept of Kolmogorov complexity, a
measure of randomness of strings based on their information content. It was
proposed by Kolmogorov in 1965 to quantify the randomness of strings and
other objects in an objective and absolute manner.

The Kolmogorov complexity K(x) of a string x is defined as the length of the
shortest program capable of producing x on a universal computer — such as a
Turing machine. Different programing languages will give rise to distinct values
of K(x), but one can prove that the differences are only up to a fixed additive
constant. Intuitively, K(x) is the minimal quantity of information required to
generate x by an algorithm.

Hereafter, we will follow the notation of Li et al. (2003), which was the main
inspiration of this work. The conditional Kolmogorov complexity K(x|y) of x
to y is defined as the length of the shortest program that computes x when y is
given as an auxiliary input to the program. The function K(xy) is the length of
the shortest program that outputs y concatenated to x.

In Li et al. (2001), the authors consider the distance between two strings, x
and y, defined as

K(xly) + K(y|x)

1
K(xy) M

di(x,y) =

which satisfies the triangle inequality, up to a small error term. A more math-
ematically precise distance was proposed in Li et al. (2003). Kolmogorov com-
plexity is without a doubt the ultimate lower bound among all measures of
information content. Unfortunately, it cannot be computed in the general case
Li and Vitanyi (1997). As a consequence, one must approximate this distance.

It is easy to realize that universal compression algorithms give an upper
bound to the Kolmogorov complexity. In fact, K(x) is the best compression
that one could possibly achieve for the text string x. Given a data compression
algorithm, we define C(x) as the size of the compressed size of x and C(x|y)
as the compression achieved by first training the compression on y, and then
compressing x. For example, if the compressor is based on a textual substitution
method, one could build the dictionary on y, and then use that dictionary to
compress X.

We can approximate (1) by the following distance measure

Cxly) + C(ylx)

2
C(xy) @

de(x,y) =

The better the compression algorithm, the better the approximation of d. for
dk is.

In Liet al. (2003) have shown that d_ is a similarity metric and can be success-
fully applied to clustering DNA and text. However, the measure would require
hacking the chosen compression algorithm in order to obtain C(x|y) and C(y|x).
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We therefore decided to simplify the distance even further. In the next section,
we will show that a simpler measure can be just as effective. A comparative
analysis of several compression-based distances has been recently carried out
in Sculley and Brodley (2006).

The idea of using data compression to classify sequences over finite alphabets
is not new. For example, in the early days of computational biology, lossless com-
pression was routinely used to classify and analyze DNA sequences. We refer to,
e.g., Allison et al. (2000), Baronchelli et al. (2005), Farach et al. (1995), Frank et
al. (2000), Gatlin (1972), Kennel (2004), Kit (1998), Loewenstern et al. (1995),
Loewenstern and Yianilos (1999), Mahnoney (2003, Unpublished), Needham
and Dowe (2001), Segen (1990), and Teahan et al. (2000), and references therein
for a sampler of the rich literature existing on this subject.

More recently, Benedetto et al. (2002) have shown how to use a compres-
sion-based measure to classify fifty languages. The paper was featured in several
scientific (and less-scientific) journals, including Nature, Science, and Wired. It
has also generated some controversies (see, e.g., Goodman 2002, Unpublished).

The use of data compression to classify sequences is also tightly connected
with the Minimum Description Length (MDL) and Minimum Message Length
(MML) principles. The MDL principle, introduced in the late 1970s by Rissanen
(1978), holds that the best explanation, given a limited set of observed data, is the
one that can be described as succinctly as possible, or equivalently that delivers
the greatest compression of the data. In other words, the more we are capable
to compress the data, the better the model we are building to “explain” the
data, and the more we are learning about the regularities underlying the data.
The MDL is not the first information-theoretic approach to machine learning.
In fact, (Wallace and Boulton 1968) proposed in 1968 a related concept called
Minimum Message Length (MML) (see also Needham and Dowe (2001)).

The MDL/MML principle has generated an extensive body of literature in the
data mining community. Without pretending to be exhaustive, example of appli-
cations ranges from inferring Mehta et al. (1995) and pruning Papadimitriou
et al. (2005) decision trees, to discovery of cross-associations (Chakrabarti et
al. 2004) or highly repetitive subgraphs in a labeled graph (Cook and Holder
2000), all the way to spatial data mining (Papadimitriou et al. 2005).

2.3 Compression-based dissimilarity measure

Given two strings, x and y, we define the CDM as follows

C(xy)

©)

The CDM dissimilarity is close to 1 when x and y are not related, and smaller
than one if x and y are related. The smaller the CDM(x, y), the more closely
related x and y are. Note that CDM(x, x) is not zero.
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Table 1 Compression-based dissimilarity measure (CDM)

function Dist = CDM(A,B)

save A.txtA-ASCII % Savevariable A as A.txt
zip(CA.zip’, "A.txt’); % Compress A.txt

A_file = dir(CA.zip’); % Get file information
save B.txt B—ASCII % Save variable B as B.txt
zip("B.zip’, B.txt’); % Compress B.txt

B_file = dir("B.zip’); % Get file information
A_n_B=[A;B]; % Concatenate A and B
save A_n_B.txt A_n_B —-ASCII % Save A_n_B.txt
zipCA_n_B.zip’, "A_n_B.txt’); % Compress A_n_B.txt
A_n_B_file = dir(CA_n_B.zip’); % Get file information

% Return CDM dissimilarity
dist = A_n_B_file.bytes / (A_file.bytes + B_file.bytes);

The dissimilarity measure can be easily implemented. The entire Matlab code
is shown in Table 1.

The inputs are the two matrices to be compared. These matrices can be
time series, DNA strings, images, natural language text, midi representations of
music, etc. The algorithm begins by saving the two objects to disk, compressing
them, and obtaining file information. The next step is to concatenate the two
objects (A_n_B = [A; B]); the resulting matrix is also saved, compressed, and
the file information is retrieved. At this point, we are almost done; we simply
return the size of the compressed concatenation over the size of the sum of the
two individual compressed files.

One could argue that CDM also has several parameters. In fact, CDM
depends on the choice of the specific compressor (gzip, compress, bzip2, etc.),
and on the compression parameters (for example, the sliding window size in
gzip). But because we are trying to get the best approximation of the Kolmogo-
rov complexity, one should just choose the best combination of compression
tool and compression parameters for the data. There is, in fact, no freedom in
the choice to be made. We simply run these compression algorithms on the data
to be classified and choose the one that gives the highest compression. For all
the experiments in this work, we simply use the default compression algorithm
used in Matlab, with the default parameters. The sole exception was for DNA,
where a compression algorithm optimized for the four-letter alphabet is known
to produce superior results.

2.4 Choosing the representation of the data

As we noted earlier, the only objective in CDM is to obtain good compression.
There are several ways to achieve this goal. First, one should evaluate several
compressors. If we have domain knowledge about the data under study, and
specific compressors are available for that type of data, we should use one of
those. For example, if we are clustering DNA, we should consider a compression
algorithm optimized for compressing DNA [see, e.g., (Benedetto et al. 2002)].
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A B C

0.13812500000000 0.51250000000000 0.49561523437690
0.04875000000000 0.50000000000000 0.49604248046834
0.10375000000000 0.50000000000000 0.49653076171875
0.17875000000000 0.47562500000000 0.49706481933594
0.24093750000000 0.45125000000000 0.49750732421875
0.29875000000000 0.45125000000000 0.49808715820312
0.37000000000000 0.47656250000000 0.49875854492187
0.48375000000000 0.50000000000000 0.49939941406230
0.55593750000000 0.48281250000000 0.50007080078125
0.64625000000000 0.48468750000000 0.50062011718750
0.70125000000000 0.46937500000000 0.50123046875826

Fig.1 The first ten data points of three ECGs

There is another way we can help improve the compression; we can simply
ensure that the data to be compared is in a format that can be readily and
meaningfully compressed. Consider the following example; Fig. 1 shows the
first ten data points of three Electrocardiograms from PhysioNet (Goldberger
et al. 2000) represented in textual form.

It happens to be the case that sequences A and C are both from patients with
supraventricular escape beats. If we are allowed to see a few hundred addi-
tional data points from these sequences, we can correctly group the sequences
((A,C),B) by eye, or with simple Euclidean distance.

Unfortunately, CDM may have difficulties with these datasets. The problem
is that although all sequences are stored with 16-digit precision, sequences A
and B were actually recorded with 8-digit precision and automatically converted
by the Rdsamp-O-Matic tool (Goldberger et al. 2000). Note that, to CDM, A
and B may have great similarity, because the many occurrences of 00000000’s
in both A and B will compress even better in each other’s company. In this
case, CDM is finding true similarity between these two sequences, but it is a
trivial formatting similarity, and not a meaningful measure of the structure of
the heartbeats. Similar remarks can be made for other formatting conventions
and hardware limitations; for example, one sensor’s number-rounding policy
might produce a surfeit of numbers ending with “5.”

Before explaining our simple solution to this problem, we want to emphasize
that CDM is extremely robust to it. For example, all the anomalies detected in
Sect. 4.2 can be easily discovered on the original data. However, addressing this
problem allows us to successfully apply CDM on much smaller datasets.

A simple solution to the problem noted above is to convert the data into a
discrete format, with a small alphabet size. In this case, every part of the repre-
sentation contributes about the same amount of information about the shape
of the time series. This opens the question of which symbolic representation of
time series to use. In this work, we use the SAX (Symbolic Aggregate ApproXi-
mation) representation of Lin et al. (2003). This representation has been shown
to produce competitive results for classifying and clustering time series, which
suggests that it preserves meaningful information from the original data. Fur-
thermore, the code is freely available from the authors’ website. While SAX
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does allow parameters, we use the parameterless version for all experiments
here.

Similar remarks can be made for other data types. For example, when clus-
tering WebPages, we may wish to strip out the HTML tags first. Imagine we
are trying to cluster WebPages based on authorship, and it happens that some
of the WebPages are graphic intensive. The irrelevant (for this task) similarity
of having many occurrences of “<IMG SRC...>” may dominate the overall
similarity. In Section 5, we encounter a very similar problem in our real world
application of CDM to clustering case logs.

3 Parameter-Free data mining

Most data mining algorithms, including classification (Domingos 1998), cluster-
ing (Gavrilov et al. 2000; Kalpakis et al. 2001; Keogh et al. 2003), anomaly/inter-
estingness detection(Shahabi et al. 2000; Ma and Perkins 2003; Christen and
Goiser 2005), reoccurring pattern (motif) discovery, similarly search (Wallace
and Boulton 1968), etc., use some form of similarity/dissimilarity measure as a
subroutine. We will consider just the first three tasks in this work.

3.1 Clustering

As CDM is a dissimilarity measure, we can simply use it directly in most stan-
dard clustering algorithms. For some partitional algorithms (Elkan 2003), it is
necessary to define the concept of cluster “center.” While we believe that we
can achieve this by extending the definition of CDM, or embedding it into a
metric space (Faloutsos and Lin 1995), for simplicity here, we will confine our
attention to hierarchical clustering.

3.2 Anomaly detection

The task of finding anomalies in data has been an area of active research, which
has long attracted the attention of researchers in biology, physics, astronomy,
and statistics, in addition to the more recent work by the data mining com-
munity (Shahabi et al. 2000; Ma and Perkins 2003; Christen and Goiser 2005).
While the word “anomaly” implies that a radically different subsection of the
data has been detected, we may actually be interested in more subtle devia-
tions in the data, as reflected by some of the synonyms for anomaly detection,
interestingness/deviation/surprise/novelty detection, etc.

For true parameter-free anomaly detection, we can use a divide-and-conquer
algorithm as shown in Table 2. The algorithm works as follows: Both the left and
right halves of the entire sequence being examined are compared to the entire
sequence using the CDM dissimilarity measure. The intuition is that the side
containing the most unusual section will be less similar to the global sequence
than the other half. Having identified the most interesting side, we can recur-
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Table 2 Parameter-free anomaly detection algorithm

function loc_of_anomaly = kolmogorov_anomaly(data)
loc_of_anomaly = 1;
while size(data,1) > 2
left_dist = CDM(data(1:floor(end/2),:),data);
right_dist = CDM(data(ceil(end/2):end,:),data);
if left_dist < right_dist
loc_of_anomaly = loc_of_anomaly + size(data,1) / 2;
data = data(ceil(end/2):end,:);
else
data = data(1:floor(end/2),:);
end
end

sively repeat the above, repeatedly dividing the most interesting section until
we can no longer divide the sequence.

This twelve-line algorithm appears trivial, yet as we shall see in Sect. 4.2,
it outperforms four state-of-the-art anomaly detection algorithms on a wide
variety of real and synthetic problems. The algorithm has another important
advantage; it can handle both single dimensional anomaly detection and multi-
dimensional anomaly detection without changing a single line of code. We will
demonstrate this ability in Sect. 4.2.3

While the algorithm above easily detects the anomalies in all the datasets
described in Sect. 4, there are two simple ways to greatly improve it further.
The first is to use the SAX representation when working with time series, as dis-
cussed in Sect. 2.4. The second is to introduce a simple and intuitive way to set a
single parameter. The algorithm in Table 2 allows several potential weaknesses
for the sake of simplicity. Firstly, it assumed a single anomaly in the dataset.
Second, in the first few iterations, the measure needs to note the difference a
small anomaly makes, even when masked by a large amount of surrounding
normal data. A simple solution to these problems is to set a parameter W,
for number of windows. We can divide the input sequence into W contiguous
sections, and assign the anomaly value of the ith window as CDM(W;, data). In
other words, we simply measure how well a small local section can match the
global sequence. Table 3 shows the entire Matlab code to achieve this.

Setting this parameter is not too burdensome for many problems. For exam-
ple of the ECG dataset discussed in Sect. 4.2, we found that we could find the
objectively correct answer if the size of the window ranged anywhere from a
1/4 heartbeat length to four heartbeats. For clarity, we call this slight variation
Window Comparison Anomaly Detection (WCAD).

3.3 Classification

Because CDM is a dissimilarity measure, we can trivially use it with a lazy-learn-
ing scheme. For simplicity, in this work, we will only consider the one-nearest-
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Table 3 Window comparison anomaly detection algorithm

function kolmogorov_anomaly_ WCAD (data)
W =16; % the number of windows, this is the only user defined parameter
anomaly_values = [];
fori=1:floor(size(data,1)/W) : (size(data,l) - floor(size(data,1)/W) )
temp = data;
sub = data(i : i + floor(size(data,1)/W),:);
temp(i : i + floor(size(data,1)/W),:) = [];
rest = temp;
anomaly_values = [ anomaly_values ; CDM(sub, rest)];
end;
[val,location] = max(anomaly_values);
disp(["The anomaly begins at location ’, int2str((location-1)*(size(data,1)/W)) ])

neighbor algorithm. Generally speaking, lazy learners using non-metric prox-
imity measures are forced to examine the entire dataset. However, one can use
an embedding technique such as FASTMAP (Faloutsos and Lin 1995) to map
the objects into a metric space, thus allowing indexing and faster classification.
For simplicity, we disregard this possibility in this work.

4 Empirical Evaluation

While this section shows the results of many experiments, it is actually only a
subset of the experiments conducted for this research project. We encourage
the interested reader to consult (Keogh 2004) for additional examples.

4.1 Clustering

While CDM can work with most clustering techniques, here we confine our
attention to hierarchal clustering, since it lends itself to immediate visual con-
firmation.

4.1.1 Clustering time series

In order to perform convincing experiments, we wanted to test our algorithm
against all reasonable alternatives. However, lack of space prevents us from ref-
erencing, much less explaining them. So, we re-implemented every time series
distance/dissimilarity/similarity measure that has appeared in the last decade in
any of the following conferences: SIGKDD, SIGMOD, ICDM, ICDE, VLDB,
ICML, SSDB, PKDD, and PAKDD. In total, we implemented 51 such mea-
sures, including the ten mentioned in Keogh and Ka setty (2002) and the eight
variations mentioned in Gavrilov et al. (2000). A list of all these measures can
be found in appendix [A]. For fairness, we should note that many of these mea-
sures are designed to deal with short time series, and make no claim about their
ability to handle longer time series. In addition to the above, we considered
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the classic Euclidean distance, DTW, the L; metric, the Li,; metric, and the
Longest Common Subsequence (LCSS), all of which are more than a decade
old. Some of these (Euclidean and the other L, metrics) are parameter free.
For measures that require a single parameter, we did an exhaustive search for
the best parameter. For measures requiring more than one parameters (one
method required seven!), we spent one hour of CPU time searching for the best
parameters using a genetic algorithm and independently spent 1h searching
manually for the best parameters. We then considered only the better of the
two.

For our first experiment, we examined the UCR Time Series Archive (Keogh
and Folias 2002) for datasets that come in pairs. For example, in the Foetal- ECG
dataset, there are two time series, thoracic and abdominal, and in the Dryer
dataset, there are two time series, hot gas exhaust and fuel flow rate. We were
able to identify 18 such pairs, from a diverse collection of time series covering
the domains of finance, science, medicine, industry, etc. Although our method
is able to deal with time series of different lengths, we truncated all time series
to length 1,000 to allow comparisons to methods that require equal length time
series.

While the correct hierarchical clustering at the top of the tree is somewhat
subjective, at the lower level of the tree, we would hope to find a single bifur-
cation separating each pair in the dataset. Our metric, Q, for the quality of
clustering is therefore the number of such correct bifurcations divided by 18,
the number of datasets. For a perfect clustering, Q = 1, and because the number
of dendrograms of 36 objects is greater than 3 x 10*°, for a random clustering,
we would expect Q =~ 0.

For each measure, we clustered using single linkage, complete linkage, group
average linkage, and wards methods, and reported only the best performing
result. Figure 2 shows the resulting dendrogram for our approach.

Our approach achieved a perfect clustering, with Q = 1. Although the higher
level clustering is subjective, here too our approach seems to do very well. For
example, the appearance of the Evaporator and Furnace datasets in the same
subtree is quite intuitive, and similar remarks can be made for the two Video
datasets and the two MotorCurrentdatasets.

More than 3/4 of the other approaches we tested scored Q = 0. Several of
the parameter-laden algorithms suffer from the following limitation. Although
their parameters could be carefully tuned to do well on one type of data, say
the relatively smooth MotorCurrent datasets, they achieve poor performance
on the more noisy datasets like Balloon. We could then tune the parameters to
do better on the noisy datasets, but immediately lose discriminatory power on
the smooth data.

The only measures performing significantly better than random were the
following. Euclidean distance had Q = 0.27. DTW was able to achieve Q = 0.33
after careful adjustment of its single parameter. The Hidden Markov Model
approach of Ge and Smyth (2000) had Q = 0 using the original piecewise linear
approximation of the time series. However, when using the SAX representa-
tion, its score jumped to Q = 0.33. The LPC Cepstra approach of Kalpakis et al.
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Fig. 2 Thirty-six time series (in 18 pairs) clustered using the approach proposed in this paper

(2001) and the similar Autocorrelation method of [55] both had Q = 0.16. LCSS
had O =0.33.

Our first experiment measured the quality of the clustering only at the leaf
level of the dendrogram. We also designed a simple experiment to test the qual-
ity of clustering at a higher level. We randomly extracted ten subsequences of
length 2,000 from two ECG databases. For this problem, the clustering at the
leaf level is subjective. However, the first bifurcation of the tree should divide

@ Springer



E. Keogh et al.

15 —] A N S S S Y VO Y
;g — }gh\r-l—-b-&—w
13*&\%%4—1—4—%&::H 13%
14 “Hrdrdd At~ o—— 16 At Attt
17 A b A A e 3 b bR A b S
18 6 Ao A b bk
12 bttt At~ 2 Ah A N A A
: B e e
8 hhhhhh A 20

5 hhddh b A h e Py 0 VAN Vv S S VA R I N Ry Py
P T P A U Vi A VA S S S 19 =ttt AL
7 bR b 15 ~dmabmdendmdmden et
6 AhAndhh A A ek R e S AT VRV PR A |
2 A A A 5 Aedo I A A b
10 ~Joho b b 10 Ao hhe oA
fc Y O VR VA VA VT T Y Y S 4 ~HAdh A S b
RS VNS SAS N DA DA S VU DU PR LI T e IV

Fig. 3 Two clusterings on samples from two records from the MIT-BIH Arrhythmia Database
(Left) Our approach (Right) Euclidean distance

the data into the two classes. (the probability of this happening by chance is
only 1 in 524,288.) Figure 3 shows the two best clusterings obtained.

In a sense, our exhaustive comparison to other similarity methods was unfair
to many of them, which can only measure the similarity of a few local shapes,
rather than the higher-level structural similarity required.

The following “trick” improved the results of most of the algorithms on both
problems above. To compare two time series A and B of length n, we can extract
a subsequence of length s from A, and compare it to every location in B, then
record the closest match as the overall distance between A and B. Although
this does help the majority of the similarity measures, we note the following.
It adds a new (and highly sensitive) parameter to set and increases the time
complexity by a factor of O(n?), and even after making this optimization, none
of the competing similarity measures come close to the performance of CDM.

We also conducted an experiment in clustering robotic sensors. The Sony
AIBO is a small, quadruped robot that comes equipped with a tri-axial acceler-
ometer. This accelerometer returns data at a rate of 125 Hz. The robotics group
at Carnegie Mellon University (CMU) (who graciously donated the data) made
the robot walk on two different surfaces.

e Field: The carpet used on a robot soccer field. It resembles a thin layer of
felt over an approximately 1cm foam backing.
e Cement: A cement floor.

The CMU group is interested in the problem of clustering the robots experi-
ence. The robot records three sensors (X, Y, Z). However, for simplicity, we
only consider the X-axis here. For this problem, the differences between the
two classes are very subtle, unlike the two problems considered above; we could
not visually distinguish between the two classes, even after very careful inspec-
tion on a high-resolution monitor. Figure 4 shows the result of clustering ten 8s
robot experiences (5 from each class).

On this problem, LPC Cepstra approach of Gavrilov et al. (2000) and the
Autocorrelation method of Quinlan and Rivest (1989) also performed much
better than random, but only CDM repeatedly produced perfect clusterings.
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Fig. 4 Robot sensors clustered using CDM
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Finally, while the results of these experiments are very promising for our
approach, some fraction of the success could be attributed to luck. To preempt
this possibility, we conducted many additional experiments, with essentially
identical results. These experiments are documented in Keogh (2004).

4.1.2 Clustering DNA and text

As a test of our ability to cluster text, we began by conducting experiments on
DNA strings. We took the first 16,300 symbols from the mitochondrial DNA of
twelve primates and one “outlier” species, and hierarchically clustered them. A
similar strategy was used in Li et al. (2003) on a different set of organisms. One
of the current authors, Lee, is an expert in primate evolution. She has compared
the tree to the state-of-the-art consensus in the primatology literature and notes
that while some of the branch lengths are still the subject of controversy, the
topography of the tree is correct (Figure 5).

We want to note that using a compressor optimized for DNA Benedetto et
al. (2002) was essential here. A standard dictionary-based compressor similar
to gzip, would give less meaningful distances.

We conducted additional experiments with a more diverse collection of ani-
mals; in every case, the clustering agreed with the current consensus on evolu-
tionary history Keogh (2004).

We also examined natural language text. A similar experiment is reported
in Benedetto et al. (2002). Here, we began by clustering the text of various
countries’ Yahoo portals. We only considered the first 1,615 characters, the size
of the smallest webpage (excluding white spaces). Figure 6 (left) shows the
clustering result. Note that the first bifurcation correctly divides the tree into
Germanic and Romance languages. While we striped out all HTML tags for this
experiment, we found that leaving them in made little difference, presumably
because they are more or less equally frequent across languages.
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Fig. 5 The clustering achieved by our approach on 16,300 symbols from the mitochondrial DNA
of 12 primates, and one “outlier” species

Surprisingly, the clustering shown is much better than that achieved by the
ubiquitous cosine similarity measure used at the word level. In retrospect, this
is hardly surprising.

Consider the following English, Norwegian, and Danish words taken from
the Yahoo portals:

English: {England, information, addresses}
Norwegian: {Storbritannia, informasjon, adressebok}
Danish: {Storbritannien, informationer, adressekartotek]}

Because there is no single word in common to all (even after applying Porters
algorithm), the three vectors are completely orthogonal to each other in vector

CDM N-gram CDM N-gram
USA Argentina Maori Danish
Germany Mexico English Norway
Sweden T ] Spain Latin German
Norway Brazil . Dutch
Denmark Catalan Italian French
. o Puten ltalian
Catalan Denmark French spanish
Brazil Norway R .
Spain Sweden erman Latin
Mexico USA Norway English
Argentina Germany Danish Maori

Fig. 6 (Left) The clustering achieved by our approach and N-Gram cosine measure on the text
from various Yahoo portals (January 15, 2004). The smallest webpage had 1,615 characters, exclud-
ing white spaces. (Right) The clustering achieved by our approach on the text from the first 50
chapters of Genesis. The smallest file had 132,307 characters, excluding white spaces. Maori, a
Malayo—Polynesian language, is clearly identified as an “outlier”
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space. However, any human inspection of the text is likely to correctly conclude
that Norwegian and Danish are much more similar to each other than they are
to English. Our approach can leverage off the same cues by finding repeated
structure within and across texts. To be fairer to the cosine measure, we also
tried an N-Gram approach at the character level. We tested all values of N
from 1 to 5, using all linkages methods from the following set {Wards, single,
complete, group}. The results are reported in Figure 6. While the best of these
results are produces an intuitive clustering, other settings do not.

We tried a similar experiment with text from various translations of the first
50 chapters of the bible, this time including what one would expect to be an out-
lier, the Maori language of the indigenous people of New Zealand. As shown
in Figure 6 (right) the clustering is correct, except for an inclusion of French in
the Germanic subtree.

Once again, we reiterate the following disclaimer. We are not suggesting that
our method replace the vector space model for indexing text, or a linguistic
aware method for tracing the evolution of languages. Our point is simply to
show that given a dataset which we know nothing about, we can expect our
approach to produce reasonable results that can be a starting point for future
study.

4.2 Anomaly detection

Although our approach can be used to find anomalies in text, video, images,
and other data sources, we will confine our attention here to time series, since
this domain has attracted the most attention in the data mining community and
readily lends itself to visual confirmation.

For all the problems shown below, we can objectively discover the anomaly
using the simple algorithm in Table 2. However, that algorithm only tells us the
location of the anomaly, without telling us anything about the relative strength of
the anomaly. For this reason, we use the Window Comparison Anomaly Detec-
tion (WCAD) variation discussed in Sect. 3.2 and shown in Table 3. This slight
variation allows us to determine the relative strength of the anomaly, which we
can visualize by mapping onto the line’s thickness. The level of novelty is simply
the value of CDM (sub, rest), where “sub” is the local subsection, and “rest”
is the entire rest of the time series (excluding sub), i.e., the value calculated in
line 9 of Table 3.

As noted in Sect. 3.2, WCAD does have one simple parameter to set, which
is W, the approximate size of the window we expect to find anomalies in. In
these experiments, we only count an experiment as a success for CDM if the
first window size we choose finds the anomaly, and if window sizes four times
and one quarter as large can also find the anomaly.

We consider four rival techniques. Here, we list them, and state the number
of parameters each requires in parentheses. We refer the interested reader to
the original papers for more details. We compared our approach to the Sup-
port Vector Machine (SVM) based approach of Ma and Perkins (2003) (6),
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Fig. 7 A comparison of five novelty detection algorithms on the synthetic sine problem of Ma and
Perkins (2003). The first 400 data points are used as training data. An “event” is embedded at time
point 600. a The approach proposed in this work; the thickness of the line encodes the level of
novelty. b SVM. ¢ IMM. d AR. e TSA

the Immunology (IMM) inspired approach of Christen and Goiser (2005) (5),
The Association Rule (AR) based approach of Yairi et al. (2001) (5), and the
TSA-tree Wavelet based approach of Shahabi et al. (2000) (3). As before, for
each experiment, we spent one hour of CPU time, and one hour of human time
trying to find the best parameters and only reported the best results.

4.2.1 A simple normalizing experiment

We begin our experiments with a simple sanity check, repeating the noisy sine
problem of Ma and Perkins (2003). Figure 7 shows the results.

Our approach easily finds the novelty, as did SVM with careful parame-
ter tuning. The IMM algorithm is stochastic, but was able to find the novelty
in the majority of runs. We were simply unable to make the AR approach
work. Finally, TSA does peak for the novelty, although its discriminatory power
appears weak.

The ability of our approach to simply match the prowess of SVM and IMM
on this problem may not seem like much of an achievement, even though we did
it orders of magnitude faster and without setting any parameters. However, the
real utility of our approach becomes evident when we see how the algorithms
generalize, or when we move from toy problems to real world problems. We
consider both cases below.

4.2.2 Generalizability experiment

To illustrate the dangers of working with parameter-laden algorithms, we exam-
ined a generalization of the last experiment. As shown in Figure 8, the training
data remains the same. However, in the test data, we changed the period of
the sine wave by a barely perceptible 5%, and added a much more obvious
“anomaly”, by replacing a half of a sine wave with its absolute value. To be
fair, we modified our algorithm to only use the training data as reference. To
do this, we compare each subsection of the test data, not with the rest of the
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Fig. 8 A comparison of five novelty detection algorithms on a generalization of the synthetic sine
problem. The first 400 data points are used as training data. In the rest of the time series, the period
of the sine wave was changed by 5%, and one half of a sine wave was replaced by its absolute
value. a The approach proposed in this work; the thickness of the line encodes the level of novelty.
b SVM. c IMM. d AR. e TSA

training data, but with all the training data. This is achieved by replacing line 9
of Table 3 with anomaly_values = [ anomaly_values ; CDM(sub, training_data)];.

The results are telling; while our algorithm easily finds the new anomaly, SVM
and IMM discover more important “anomalies” elsewhere. It may be argued
that the very slight change of period is the anomaly, and these algorithms did
the right thing. However, we get a similar inability to generalize if we instead
slightly change the amplitude of the sine waves, or if we add (or remove!) more
uniform noise or make any other innocuous changes, including ones that are
imperceptible to the human eye.

In case the preceding example was a coincidentally unfortunate dataset for
the other approaches, we conducted many other similar experiments. And since
creating our own dataset opens the possibly of data bias (Keogh and Ka setty
2002), we considered datasets created by others. We were fortunate enough to
obtain a set of 20 time series anomaly detection benchmark problems from the
Aerospace Corp. A subset of the data is shown in Fig. 9.

The TSA algorithm easily discovered the anomaly in the time series L-1j,
but not the other two time series. We found that both SVM and IMM could
have their parameters tuned to find the anomaly on any individual one of the

B
o L-1j

10
5 H L-1f
0 !

0 100 200 300 400 500 600 700 800 900 1000

Fig. 9 The results of applying our algorithm to (a subset of) a collection of anomaly detection
benchmark datasets from the Aerospace Corp. The thickness of the line encodes the level of
novelty. In every case, an anomaly was inserted beginning at time point 500
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Fig. 10 A small excerpt from dataset 118¢06 from the MIT-BIH Noise Stress Test Database. The
full dataset is 21,600 data points long. Here, we show only a subsection containing the two most
interesting events detected by our algorithm (the bolder the line, the more interesting the subse-
quence). The gray markers are independent annotations by a cardiologist indicating Premature
Ventricular Contractions

three sequences, but once the parameters were tuned on one dataset, they did
not generalize to the other two problems.

The objective of these experiments is to reinforce the main point of this work.
Given the large number of parameters to fit, it is nearly impossible to avoid
overfitting.

Before leaving this section we would like to briefly relate an anecdote as a
further support for our approach. For the above problem, we wrote a simple
Matlab script to read in the 20 datasets, run our anomaly detection algorithm,
and confirm that the most anomalous section was discovered within 25 points
of 500. After successfully testing our approach, we modified the script to con-
sider the other approaches but found that it always crashed when working with
dataset L-1s. After some careful debugging, we discovered that the artificial
anomaly in this sequence is some missing data points, which are encoded in
Matlab as the special character “NaN”. While none of the other algorithms are
defined for missing values (hence the crashing), and are not trivially extendible,
our approach was robust enough not to crash, and to find the right answer.

4.2.3 Real-world anomaly detection

We examined annotated datasets from the MIT-BIH Noise Stress Test Data-
base. For the algorithms which need a training/test split, we gave them 1/3 of
the dataset which had been annotated as normal. We then asked the algorithms
to examine the rest of the data to find the most interesting events, comparing
the results to the cardiologists’ annotations. Figure 10 shows the result of one
such experiment. Note that only a small excerpt from the full dataset is shown.
We only illustrate the performance of our approach in Fig. 10 because all the
other approaches produced results that were objectively (per the cardiologists’
annotations) and subjectively incorrect, in spite of careful parameter tuning.
Our final example illustrates the flexibility of our approach. None of the
approaches for anomaly detection in time series in the literature are defined
for multidimensional time series', in spite of an increasing general interest in
multidimensional time series (Vlachos et al. 2003). However, we can consider

1 This includes the four rival approaches considered here (Quinlan and Rivest 1989; Segen 1990;
Loewenstern et al. 1995; Christen and Goiser 2005). While the TSA-Wavelet approach was extended
to 2D, this extension is for spatial mining.
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Fig. 11 (Bottom) A typical video snippet from the Gun video is mapped onto a two-dimensional
time series (Center) by tracking the actor’s right hand. While the vast majority of the dataset looks
approximately like the first 200 data points, the section from about 300 to 450 looks somewhat
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multidimensional time series without changing a single line of code. In order to
have some strawman to compare to, for each of the four competing methods,
we adapted them so that although they work on each dimension individually,
we linearly combined their results into a single measure of novelty.

We experimented on a 2D time series that was collected for a different pur-
pose (in particular, a classification problem (Ratanamahatana and Keogh 2004).
The 2D time series was extracted from a video of an actor performing various
actions with and without a replica gun. Figure 11 (bottom) illustrates a typical
sequence. The actor draws a replica gun from a hip mounted holster, aims it at
a target, and returns it to the holster.

Watching the video, we discovered that at about 10s into the shoot, the actor
misses the holster when returning the gun. An off-camera (inaudible) remark is
made, the actor looks toward the video technician, and convulses with laughter.
At one point (frame 385), she is literally bent double with laughter. This is the
only interesting event in the dataset, and our approach easily finds it. The other
techniques returned results that do not seem truly anomalous, given a careful
inspection of both the time series and the original video.

We have not considered time efficiency as a metric in these experiments,
because we cannot guarantee that our implementations of the rival approaches
are as efficient as they might be, given careful optimization. However, our
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approach is reasonably fast, requiring less than ten seconds (on a 2.65 GHz
machine) to process a million data points.

4.3 Classification

In this section, we illustrate the utility of CDM for classification with the fol-
lowing simple experiment. We use the following similarity measures on four
datasets (Two each from two databases: ECG and Gun) and measure their
error rates:

Euclidean distance (Keogh and Ka setty 2002).
Dynamic time warping (DTW). Here, we exhaustively test all values of its
single parameter (warping window size [47]) and report only the best result,
and

e Compression-Based Dissimilarity Measure (CDM)

For brevity, in this section, we only compare CDM with DTW and Euclidean
Distance metric, since it has been shown in Keogh and Ka setty (2002) that
many of the more complex similarity measures proposed in other work have
higher error rates than a simple Euclidean Distance metric.

The ECG datasets are four-class problem derived from BIDMC Congestive
Heart Failure Database (Goldberger et al. 2000) of four patients. Since this
original database contains two ECG signals, we separate each signal and create
two datasets of one-dimensional time series in the following way. Each instance
of 3,200 contiguous data points (about 20 heartbeats) of each signal is ran-
domly extracted from each long ECG signals of each patient. Twenty instances
are extracted from each class (patient), giving eighty total instances for each
dataset.

The Gun datasets are time-series datasets extracted from video sequences of
two actors either aiming a gun or simply pointing at a target (Ratanamahatana
and Keogh 2004) (see also, Figure 11). We randomly extract twenty instances
of 1,000 contiguous data points (about seven reps) from each of the following
long time series:

(A) Actor 1 with gun
(B) Actor 1 without gun (point)
(C) Actor 2 with gun
(D) Actor 2 without gun (point)

The first dataset is a two-class problem of differentiating Actor 1 from Actor
2 — (A+B) vs. (C+D). The second dataset is a four-class problem of differ-
entiating each of the acts independently — A vs. B vs. C vs. D. In total, each
dataset contains eighty instances. Some samples from both databases are shown
in Fig. 12.

We measure the error rates on each dataset, using the one-nearest-neigh-
bor with ‘leaving-one-out’ evaluation method. The lower bounding technique
noted in Ratanamahatana and Keogh (2004) is also integrated in all the DTW
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Fig. 12 Some extracted time series from the gun datasets (left) and the ECG (sig.1) dataset (right)

Table 4 Classification error rates (%) for all four datasets

Euclidean DTW CDM(%)
(%) (best unif. window)
(%)
ECG: signal 1 4225 16.25 6.25
ECG: signal 2 47.50 11.25 7.50
Gun: two classes 5.00 0.00 0.00
Gun: four classes 37.50 12.5 5.00

calculations to help achieve speedup. The experimental results are summarized
in Table 4.

In all four datasets discussed above, Euclidean distance is extremely fast, yet
inaccurate. DTW with the best uniform window size greatly reduces the error
rates, but took several orders of magnitude longer. However, CDM outper-
forms both Euclidean and DTW in all datasets. Even though CDM is slower
than Euclidean distance, it is much faster than the highly optimized DTW.

We do not give exact times here since CDM is implemented in the rela-
tively lethargic Matlab, whereas DTW is implemented in highly optimized C++.
Nevertheless, even if we excluded the time taken to find search over DTW’s
single (and sensitive, see Ratanamahatana and Keogh (2004)) parameter, CDM
is still about 25 times faster than DTW.

5 A real world case study

Xerox Corporation sells printer systems and software to production print shops.
A production print shop is a business that provides printed hard-copy to end
customers. These may be internal organizations in a large corporation that pro-
duces manuals for its own use, for example, or a neighborhood printing business.
During the presale stage, sales analysts need to recommend a set of printers
and software to the print shops according to their printing requirements. A
consistent set of printers and software that meets a customer’s needs is called
a workflow configuration. Because there is a bewildering array of software and
printer configurations available for purchase, sales analysts use a web-based
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workflow configuration tool to elicit customer requirements and provide auto-
mated recommendations. The workflow configuration tool comprises a dynamic
questionnaire of the customer’s printing requirements, such as locations, prod-
ucts (e.g., direct mailings, brochures, catalogs), color specification, etc. The
questionnaire is dynamic in the sense that which questions to be presented
next depends on how previous questions were answered. Question responses
include yes/no, free text, multiple and single (radio-button) selections. After the
requirements are filled in, a rule-based workflow auto-generation module intel-
ligently generates a set of capability-equivalent workflow configurations based
upon the product and workflow knowledge patterns in a knowledge base. The
user then chooses one workflow that is most suitable to his or her requirements.
User requirements and the generated workflows are recorded by the tool as
case logs in XML format. Figure 13 shows a sample segment of a case log.

Xerox is primarily interested in whether the high-level workflow can be
detected from the questions and responses to validate the rule-based workflow
configuration system. Also, the tool can be augmented by using historical data
to classify new cases. An incoming case is classified in two simple steps.

e First, group existing case logs into some clusters and characterize each clus-
ter with its representative workflow configurations;

e Second, when a new case comes, classify it using one nearest neighbor and
recommend the representative workflows of that cluster.

The first step is essentially a clustering problem. However, case logs represent
a challenge for clustering because there are no obviously meaningful distance
measures. The usual vector space models for text do not apply here because
many of the responses are simply yes—no or true—false. Transformed term fre-

<?xml version="1.0" encoding="UTF-8" standalone="no" 7>
<GUlJspbean>

<GUIQuestionnaireQuestionnaireVector>

<GUIQuestionnaireLocalizableMessage>Printing Application Types (select all that apply)
</GUIQuestionnaireLocalizableMessage>
<GUIQuestionnaireSelectMultipleChoice isSelected="false">
<GUIQuestionnaireLocalizableMessage>General Commercial / Annual Reports
</GUIQuestionnaireLocalizableMessage>
</GUIQuestionnaireSelectMultipleChoice>

<GUIQuestionnaireSelectMultipleChoice isSelected="false">
<GUIQuestionnaireLocalizableMessage>Books</GUIQuestionnaireLocalizableMessage>

</GUIQuestionnaireSelectMultipleChoice>

</GUIQuestionnaireQuestionnaireVector>
<GUIJspbeanAllWorkflows>
<OntologyWorkflowName>POD::Color Split::iGen3/Nuvera::iWay</Ontology WorkflowName>

</GUlJspbeanAllWorkflows>
</GUlJspbean>

Fig. 13 A sample case log (abbreviated for brevity)
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quencies, however, are poor representations of case log content. String (or
graph) edit distance would seem to be another appropriate choice. However,
the logs, even with many XML tags stripped, are 10-24 kilobytes in size, pos-
ing computational problems. Due to the inapplicability of the classic distance
measurements, we decided to adopt CDM for our clustering task.

Note that the case logs are in XML format, relatively unstructured, and can
have widely varying lengths. The XML tags are for describing and formatting
purposes. They are not useful for our clustering task. Indeed, they are even
misleading: two XML documents may have the same XML tags but totally
different attributes and values. However, because there are so many tags and
the tags are long, they occupy a large fraction of the document. Thus, CDM may
regard these two documents as very similar to each other. In this case, CDM
is finding true similarity between these two XML documents, but it is a trivial
structure similarity, and not a meaningful measure of the requirements of the
users. This situation is analogous to the observation made for the time series
data in Fig. 1. Based on this observation, we strip out the XML tags from the
case logs and only keep the attribute-value pairs (in plain text format).

For simplicity, we confine our attention to hierarchical clustering. We consider
all the three most common linkage metrics, single linkage, complete linkage, and
average linkage. We convert the hierarchical clustering to k partitional clusters
by the well known technique of “cutting” the dendrogram into subtrees at the k
-1 internal nodes closest to the root. We compare our results to those achieved
by a highly tuned in-house approach based on probabilistic latent semantic anal-
ysis (PLSA) to see how our approach performs compared to a state-of-the-art
probabilistic document clustering approach (Gaussier et al. 2002).

We randomly selected 200 cases from January 13, 2005 to July 12, 2005. The
relatively small size of the dataset is due to the need to have human experts
annotate each record to obtain the ground truth.

We discovered that CDM-based hierarchical clustering methods are able to
distinguish workflow themes much better than PLSA. For example, when k =3,
the CDM hierarchical clustering methods discover three pure workflow themes,
POD and Bookprinting, Personalized and Transactional/Promotional, and no
workflow recommendation (this is the cluster where no workflow has been gen-
erated even though users have answered the questionnaire). Figure 14 shows
the dendrogram of the clusters generated by average linkage. In contrast, when
k = 3, PLSA only identified two workflow themes, mixing in the no workflow
recommendation with the other two classes.

The most surprising result is that the clustering method with CDM was able
to detect a previously unknown class when the user exits the tool prematurely.
These are (now) called “no workflow”. These cases cannot be detected purely
by length and they cannot be easily detected by inspection. There were 23 cases
of “no workflow”, ten of which were misclassified nearly uniformly among the
other classes: three as “Book,” three as “POD”, two as “Transactional/Promo-
tional”, and two as “Personalized”. Also, CDM with hierarchical agglomerative
clustering was able to detect the close relationship between the Book Printing
and POD workflows — customers buy similar product configurations for these.
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 Transactional/Promotional

Personalized

POD
Bookprinting

recommendation

no workflow

s

Fig. 14 The dendrogram of 200 cases obtained by CDM average linkage. The dendrogram is trun-
cated at level 30 for visual clarity. Note that below level 3, the dendrogram separates the data into
three pure classes

Table 5 Class distribution of the 200 case logs

Class Num of case logs
Bookprinting 47
No workflow recommendation 23
Personalized 33
POD 70
Transactional/promotional 27

Having clustered the case logs, it is possible for us to classify new case logs. For
simplicity, we consider the one-nearest-neighbor classification algorithm here.
The idea is straightforward: when a new case log comes, we compute the CDM
between it and all the logs in the case log database. Then we assign the new case
log to the cluster that its closest neighbor belongs to. One may notice that after
inserting a few case logs, the clusters assignment of the whole database may
change. To handle this, our solution is to use a classic idea in the database com-
munity, lazy update (Ferrandina et al. 1994). The basic idea is that, when a new
case log is added into the database, we simply use the current distance matrix
to classify it, and wait for an opportunity to recompute the distance matrix and
the clusters. For example, we can perform all the updates at a scheduled time
when we are unlikely to compete with human users for CPU time.

Again, we use our 200 case logs having XML tags being stripped out and
workflows being removed. Since we have the workflow information in the
original logs, we know that these 200 case logs fall into five classes, as shown in
Table 5.

We measure the error rates obtained by different clustering methods, using
the one-nearest-neighbor with “leaving-one-out” evaluation method. The
experimental results are summarized in Table 6 with boldface figures indicating
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Table 6 Classification error rates (%) for all methods

Complete Average Single PLSA(%)
linkage(%) linkage(%) linkage(%)

k=3 5 4% 11 26

k=4 5 4% 10.5 255

k=5 5 4% 10.5 16.5

k=6 4 4% 10.5 7

the winning method. In all the methods and cluster number settings, average
linkage always has the lowest error rates. Complete linkage is slightly worse, but
is still much better than single linkage and PLSA.

6 Conclusions and future work

In this work, we argued that data mining algorithms with many parameters are
burdensome to use, and make it difficult to compare results across different
methods. We further showed empirically that at least in the case of anomaly
detection, parameter-laden algorithms are particularly vulnerable to overfitting.
Sometimes they achieve perfect accuracy on one dataset, and then completely
fail to generalize to other very similar datasets (Elkan 2001).

As a step towards mitigating these problems, we showed that parameter-free
or parameter-light algorithms can compete with or outperform parameter-laden
algorithms on a wide variety of problems/data types.

Since the original conference version of this paper was published, several
industrial and academic groups have contacted us to report the utility of CDM
on various problems. For example, Christen and Goiser report success in using
CDM for data linkage and reduplication problems (Christen and Goiser 2005).
They consider whether our simpler formulation of compression based distance
loses any utility compare to the complicated (to implement) original formula-
tion (Li et al. 2003) and note “in most cases the CDM performs slightly better
than the NCD”. Mahoney and Chan of Interface & Control Systems, Inc. tested
the anomaly detection algorithm introduced in Sect. 3.2 on solenoid current
readings from Marotta series fuel control valves used on the Space Shuttle
(TEK dataset), and they “...confirmed its ability to detect anomalies in the TEK
series traces” (Mahoney and Chan 2005).

There are many directions in which this work may be extended. We intend to
perform a more rigorous theoretical analysis of the CDM measure. For example,
CDM is a dissimilarity measure; if it could be modified to be a distance measure,
or better still, a distance metric, we could avail of a wealth of pruning and index-
ing techniques to speed up classification Ratanamahatana and Keogh (2004),
clustering Elkan (2003), and similarity search Vlachos et al. (2003). While it
is unlikely that CDM can be transformed in a true metric, it may be possible
to prove a weaker version of the triangular inequality, which can be bounded
and used to prune the search space (Elkan 2003). A step in this direction is
demonstrated in the recent paper (Sculley and Brodley 2006).
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Finally, we note that our approach is clearly not suitable for classifying or
clustering low dimensionality data (although Fig. 2 shows exceptionally good
results on time series with only 1,000 data points). We plan to theoretically and
empirically investigate the limitations on object sizes that we can meaningfully
work with using our proposed approach.
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Appendix
A table of all time series distance/dissimilarity/similarity measures discussed in Sect. 4.1.1
Euclidean Manhattan Supremum Mahalanobis Correlation
LPC cepstra Autocorrela- Aligned subse- Piecewise Cepstrum
tion quence (Keogh normalization (Keogh and Ka
and Ka setty (Keogh and Ka setty 2002)
2002) setty 2002)
String  (suffix Important Edit distance String  signa- Cosine wave-
tree) (Keogh points (Keogh (Keogh and Ka ture  (Keogh lets  (Keogh
and Ka setty and Ka setty setty 2002) and Ka setty and Ka setty

2002)
Piecewise
probabilistic
(Keogh and Ka
setty 2002)
Important
points (pratt &
fink)

Rules (Geurts)

Symbolic
(MALM)
Atomic match-
ing
DTW-Supre-
mum

Kullback-Lie-
bler

2002)
LCSS (Vlachos
et al. 2003)

Important
points (Fu,
Chung, Ng and
Luk)

Rules (kadous)

Symbolic
(AIM)

Vector quanti-
zation
Chernoff infor-
mation diver-
gence

Bounding rect-
angles

Qualitative
similarity
index

HMM (Smyth
& Ge) (Li and
biswas)
Symbolic (IM-
PACTS)
Landmarks

Simple Linear
Regression
(Leietal.)

2002)
Shape descrip-
tion language

Feature Base
approach
(alcock)

HMM

Symbolic Boz-
kaya et. al
Random map-
ping

Itakura Mea-
sure

2002)
Multiscale
matching

ARIMA

Segment-
based-warping

Symbolic (Sig-
nature Files)
Wavelet corre-
lation
Gavrilov et al.
Euclidean vari-
ants (Domin-
gos 1998)
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