
Data Mining and Knowledge Discovery, 13, 11–40, 2006
c© 2006 Springer Science + Business Media, LLC. Manufactured in the United States.

DOI: 10.1007/s10618-005-0028-0

A Bit Level Representation for Time Series Data
Mining with Shape Based Similarity
ANTHONY BAGNALL ajb@cmp.uea.ac.uk
School of Computing Sciences, University of East Anglia, Norwich, UK

CHOTIRAT “ANN” RATANAMAHATANA ann@cp.eng.chula.ac.th
Department of Computer Engineering, Chulalongkorn University, Thailand

EAMONN KEOGH eamonn@cs.ucr.edu

STEFANO LONARDI stelo@cs.ucr.edu
Department of Computer Science and Engineering, University of California, Riverside, USA

GARETH JANACEK G.Janacek@uea.ac.uk
School of Computing Sciences, University of East Anglia, Norwich, UK

Received May 12, 2005; Accepted October 31, 2005

Published online: 12 May 2006

Abstract. Clipping is the process of transforming a real valued series into a sequence of bits representing
whether each data is above or below the average. In this paper, we argue that clipping is a useful and flexible
transformation for the exploratory analysis of large time dependent data sets. We demonstrate how time series
stored as bits can be very efficiently compressed and manipulated and that, under some assumptions, the
discriminatory power with clipped series is asymptotically equivalent to that achieved with the raw data.
Unlike other transformations, clipped series can be compared directly to the raw data series. We show that
this means we can form a tight lower bounding metric for Euclidean and Dynamic Time Warping distance
and hence efficiently query by content. Clipped data can be used in conjunction with a host of algorithms
and statistical tests that naturally follow from the binary nature of the data. A series of experiments illustrate
how clipped series can be used in increasingly complex ways to achieve better results than other popular
representations. The usefulness of the proposed representation is demonstrated by the fact that the results with
clipped data are consistently better than those achieved with a Wavelet or Discrete Fourier Transformation at
the same compression ratio for both clustering and query by content. The flexibility of the representation is
shown by the fact that we can take advantage of a variable Run Length Encoding of clipped series to define
an approximation of the Kolmogorov complexity and hence perform Kolmogorov based clustering.

Keywords: clipping, time series data mining, Kolmogorov complexity

1. Introduction

The increasing prevalence of longitudinal databases has led to a massive growth in
the amount of research being conducted into time series data mining (TSDM) (Aach
and Church, 2001; Berndt and Clifford, 1994; Chiu et al., 2003; Keogh, 2002; Yi
and Faloutsos, 2000). A key feature of many time series databases is their enormous
size. It is not uncommon in fields such as meteorology, medical imaging, or customer
relationship modeling to collect terrabytes or even petabytes of time-dependent data. A
proper analysis of these huge data sets is often impossible because of memory and time

12 BAGNALL ET AL.

Symbolic
Aggregate

Approximation

Time Series Representations

Data Adaptive on Data Adaptive

SpectralWavelets Piecewise
Aggregate

Approximation

Piecewise
Polynomial

SymbolicSingular
Value

Decomposition

Random
Mappings

Piecewise Linear
Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform

Haar Daubechies
dbn n > 1

Coiflets Symlets

Sorted

Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural

Language
Strings

Non Lower

Bounding

Chebyshev
Polynomials

Data DictatedModel Based

Hidden
Markov
Models

Statistical
Models

Value Based Slope Based

Clipped
Data

Symbolic
Aggregate

Approximation

Data Adaptiv onN Data Adaptive

SpectralWavelets Piecewise
Aggregate

Approximation

Piecewise
Polynomial

SymbolicSingular
Value

Decomposition

Random
Mappings

Piecewise Linear
Approximation

Adaptive
Piecewise
Constant

Approximation

Discrete
Fourier

Transform

Discrete
Cosine

Transform

Haar Daubechies
dbn n > 1

Coiflets Symlets

Sorted

Coefficients

Orthonormal Bi-Orthonormal

Interpolation Regression

Trees

Natural

Language
Strings

Non Lower

Bounding

Chebyshev
Polynomials

Data DictatedModel Based

Hidden
Markov
Models

Statistical
Models

Hidden
Markov
Models

Statistical
Models

Value Based Slope Based

Clipped
Data

Figure 1. A hierarchy of time series representations used for data mining.

constraints. Thus, one of the fundamental issues in any TSDM task is how to compress
the series while maintaining discriminatory power. Many transformations with associ-
ated compression schemes have been proposed, including Discrete Fourier Transforms
(DFT) (Agrawal et al., 1993; Bagnall et al., 2005); Discrete Wavelet Transforms
(DWT) (Chan and Fu, 1999); Principle Component Analysis (PCA) (Korn et al., 1997;
Basak et al., 2004); Piecewise Constant (PAA) (Keogh and Pazzani, 2000) and Linear
(PLA) (Morinaka et al., 2001) Approximations; Symbolic Aggregate Approximations
(SAX) (Lin et al., 2003); and Chebyshev polynomials (CHEB) (Cai and Ng, 2004). An
overview of the alternative representations is shown in Figure 1. This paper investigates
the application of a simple transformation, clipping, to TSDM problems.

The choice of representation is strongly influenced by the data mining task and
the similarity objective. The fundamental related issues in any TSDM task are: how to
measure the similarity between time series; how to compress the series while maintaining
discriminatory power; and what algorithm to use to perform a particular task. The choice
of similarity measure is problem dependent, but the types of similarity can be categorized
as follows:

• Similarity in time. If the similarity between series is strongly dependent on time, a
correlation or Euclidean based distance metric is normally used.

• Similarity in shape. The common characteristics that are being searched may only
be weakly dependent (or independent) of time. Recent research (Ratanamahatana
and Keogh, 2005) indicates that weak time dependent similarity is most successfully
measured using dynamic time warping.

• Similarity in change. Characterized by similarity in the autocorrelation structure (also
called structural similarity).

Since similarity in time is just a special case of similarity in shape, the two are often
grouped together as shape based similarity. We examine how clipping series effects
TSDM tasks with a shape based similarity objective. Clipped series are simply binary
series where each bit stores whether the raw data point is above or below the average.
Clipping, or hard limiting, a time series is the process of transforming a real valued time
series C into a binary series c, where 1 represents above the population average and 0
below, i.e., if µ is the population mean of series C, then

ct =
{

1 if Ct > µ

0 otherwise
(1)

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 13

C

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

C

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c

Figure 2. A time series of length 64, denoted C, is converted to the clipped representation, denoted c, simply
by observing the elements of C that are strictly above zero, then setting the corresponding bits in c to 1, and
to 0 otherwise.

Since we are not interested in detecting differences in population mean, we can assume
without loss of generality that µ = 0. As shown in Figure 2, clipping replaces each real
valued data point with a single bit.

Clipping is a very simple transformation that has been used in many other research
context (Kedem, 1980; Weld and de Kleer, 1990). It is also a transformation that data
mining practitioners may have found useful through experience. Our contribution is
to theoretically and experimentally examine the usefulness of the representation in the
context of time series data mining and to demonstrate its flexibility by showing how
clipped series can be used in conjunction with a variety of algorithms and statistical
tests.

Clipping a series can yield compression ratios from 32:1 to better than 1,000:1, while
still retaining a large amount of useful information, especially with long series. Clipping
series allows for extensive exploratory analysis of databases that otherwise may be
too large to analyze. Other compression schemes used in TSDM require the user to
make fundamental choices concerning what type of transformation to use and what
compression ratio to adopt. For example, an analyst wishing to compress a very large
data set prior to building a classifier must choose whether to use local approximations,
e.g., Wavelets, or a global method such as Discrete Fourier Transforms (DFT). Once a
type of transformation is chosen, the user then needs to select from a choice of methods
(such as Haar, Debuchies or Symlet Wavelets) and/or compression techniques (e.g.,
keep the first or largest DFT coefficients). There are then other parameters to set, not
least of which is the compression ratio. Often, all of these choices need to be made prior
to any real data mining, and the size of the data makes parameter tuning infeasible. In
contrast, clipping is a data dictated compression scheme. It is simple to perform, and
fundamental graphical characteristics of the original data are retained. Another benefit
of using binary series is that there are many procedures applicable to binary data but

14 BAGNALL ET AL.

not useable for TSDM with other representations. This means that clipped series can
often be employed to obtain results of higher quality than other techniques. Hence, the
central message of this paper is that because of the simplicity, flexibility, and quality of
the results obtained, clipping should be the first transformation used in an exploratory
analysis of very large time dependent data sets. This paper seeks to verify this claim
both theoretically and experimentally.

Bagnall and Janacek (2005) extend the work of Kedem (1980) to demonstrate the
advantages of clipping for clustering based on similarity in change. Bagnall and Janacek
(2005) prove that if the underlying series is stationary Autoregressive Moving Average
(ARMA), then, if we assume that the unclipped series is both Gaussian and stationary
to second order, the clipped series is asymptotically ARMA. They demonstrate experi-
mentally what this property means, and that clipped series can be used to find clusters
as accurate as those formed with the raw data but much faster. In this paper, we describe
how clipping can be used for shape based similarity for the TSDM tasks of clustering,
classification, and query by content (indexing). We show that:

1. Uniquely amongst the representations shown in Figure 1, clipped series can be
compared directly to the raw data series, as shown in Section 2.1. Additionally, we
show that we can form a tight lower bounding distance metric for Euclidean and
Dynamic Time Warping distance.

2. Under some basic assumptions, the difference in discriminatory power between
clipped and unclipped tends to zero as the series length tends to infinity (Section
2.2).

3. Clipped series can be very efficiently stored and manipulated, as described in Section
3. By using variable length prefix encoding (Huffman, 1952; Schwarz, 1964), we can
get compression ratios of up to 1,000:1 with a lossless compression of clipped data.

4. Run length encoding is just one way we can exploit the binary representation. In
Section 4, we describe some algorithms and statistics that can be adapted for use
with clipped series.

5. In Section 5, we compare using a clipped representation with two popular alternatives,
DFT and PAA (The PAA representation is equivalent to Haar wavelets when the
length of time series is a power of two (Keogh and Pazzani, 2000; Yi and Faloutsos,
2000).

The experiments in Section 5 demonstrate the benefits of clipping on a large number
of data sets. We use clipped series in increasingly complex ways to illustrate the great
flexibility of the representation. Section 5.1 shows that working directly with the clipped
series lead to better clustering on simulated and real world data sets, assuming a com-
pression ratio of 32:1. Section 5.2 demonstrates that variable run length encoded sliding
windows of clipped series (described in Section 3) leads to better indexing results when
the Euclidean distance lower bounding function defined in Section 2.1 is used. Section
5.3 illustrates that the Dynamic Time Warping of run length encoded sliding windows
of clipped series also performs better on the same data sets as used in Section 5.2. In
Section 5.4, we assess the performance of Kolmogorov complexity clustering (Li et al.,
2003) of clipped series, one of the most promising extensions described in Section 4.
Finally, in Section 6, we summarize our findings and highlight some future directions.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 15

2. Similarity measures for clipped series

The distance between series Q = Q1, Q2, . . . , Qn and C = C1, C2, . . . , Cn is most
commonly measured by the squared Euclidean distance, given in Eq. (2).

DE (Q, C) =
n∑

t=1

(Qt − Ct)
2 (2)

Equation (2) can be used to measure the Euclidean distance between two clipped
series, DE(c, q), and the bitwise representation can be exploited to calculate DE more
efficiently (see Section 3). DE(c, q) is the natural approximation of DE(C, Q) to use
with clustering. However, one of the advantages of clipping over other representations
is that Equation (2) can also be used if only one series is clipped. This is beneficial
for classification or query by content, particularly if it is prohibitively expensive to
transform the test data or candidate series. It also allows us to form tighter lower bounds
on the distance function for indexing (see Section 3.1).

For similarity in shape, Dynamic Time Warping (DTW) is commonly used to miti-
gate against distortions in the time axis (Ratanamahatana and Keogh, 2005). Suppose
M(Q, C) is the n × n pointwise distance matrix between Q and C, where Mi, j =
DE (Qi , C j). A warping path W = 〈(a1, b1), (a2, b2), . . . , (ak, bk)〉 is a set of points
that define a traversal of matrix M. A valid warping path must satisfy the conditions
(a1, b1) = (1, 1) and (ak, bk) = (n, n), and that 0 ≤ ak+1−ak ≤ 1 and 0 ≤ bk −bk+1 ≤ 1
for all k < n.

The DTW distance between series is the path through M that minimizes the total
distance, subject to constraints on the amount of warping allowed which is determined
by the warping window width parameter r. This places a constraint on the maximum
difference between the warping indexes ak and bk. A full window width (r ≥ n) means
all paths are considered whereas the minimum window width (r = 0) results in DTW
simplifying to Euclidean distance. Let Wr be the space of all feasible paths for warping
window r and w j = M(Qa j , Cb j) be the distance between element aj of Q and bj of C
for the j th pair of points in a warping path.

The distance for any path X is the sum of the distances between the points in that path

DX (Q, C) =
k∑

i=1

xi .

The DTW path Wr is the path that has the minimum distance for a given warping
window r, i.e.,

Wr = min
X∈W∇

(DX (Q, C)),

and hence the DTW distance between series is

DWr (Q, C) =
k∑

i=1

wi . (3)

16 BAGNALL ET AL.

The warping window is kept constant in experiments, hence we denote the DTW distance
between two series Q and C as DW (Q, C). As with Euclidean distance, the warped
distance between series can be calculated directly with the clipped series (DW (q, c)), or
if just one series is clipped (DW (Q, c) or DW (q, C)).

Note that this formulation only allows lower bounding where the two series Q and C
are of the same length. However, recent work (Ratanamahatana and Keogh, 2005) has
shown that we can re-interpolate two sequences of differing lengths to be equal length
with no measurable effect on accuracy of classification or precision/recall of indexing.

2.1. Lower bounding for indexing

In order to achieve efficient indexing with compressed series, it is essential that the
distance measure used lower bounds the distance for the uncompressed data (Agrawal
et al., 1993). However, for a query Q and candidate match C, it is clear that neither
DE(q, c) nor DE(Q, c) lower bound DE(Q, C). Equation (4) defines a distance function
that does lower bound Euclidean distance between C and Q.

LB clipped(Q, c) =
n∑

i=1

⎧⎪⎨
⎪⎩

Q2
i if Qi > 0 and ci = 0

Q2
i if Qi ≤ 0 and ci = 1

0 otherwise

(4)

Proposition 1. For any two time series Q and C of length n, LB clipped(Q, c) ≤
DE (Q, C).

Proof: Since the distance between any two points with either measure is non-negative,
it is sufficient to show that for any length 1 series x and y with two real values x1, y1

we have LB clipped(x, y) ≤ DE (x, c), where c is the clipped series of y, and so c1 is
the clipped value of the single element of y, y1 . The result for a series of n points then
naturally follows. Firstly, we note that by the definition of Euclidean distance, given in
Eq. (2), DE (x, y) ≥ 0 ∀xi , yi ∈ �. We then consider the four possible cases for single
value series.

(1) x1 > 0 and y1 > 0 (c1 = 1)
(2) x1 ≤ 0 and y1 ≤ 0 (c1 = 0)
(3) x1 > 0 and y1 ≤ 0 (c1 = 0)
(4) x1 ≤ 0 and y1 > 0 (c1 = 1)

�

In cases (1) and (2), LB clipped(x, y) = 0 by definition of Eq. (4), hence LB clipped
(x, y) ≤ DE (x, c). In cases (3) and (4), LB clipped(x, y) = x2

1 . DE (x, y) can be
rewritten as x2

1+y2
1−2x1 y1. The fact that y2

1 ≥ 0 and x1 y1 ≤ 0 means that y2
1−2x1 y1 ≥ 0.

Hence

LB clipped(x, y) = x2
1 ≤ x2

1 + y2
1 − 2x1 y1 = D(x, c).

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 17

Q

C
c

Q

C
c

Q

C
c

D(Q,C) LB_clipped(Q,c)

Q

C
c

Q

C
c

Q

C
c

D(Q,C) LB_clipped(Q,c)

Figure 3. The distance returned by both LB clipped(Q, c) and D(Q, C) is the sum of squared lengths of
the gray hatch lines. Because every hatch line for LB clipped(Q, c) is matched with the corresponding line in
D(Q, C) which is at least as long, we must have LB clipped(Q, c) ≤ D(Q, C) .

Thus, for any two series with a single real valued element, the clipped distance is less
than or equal to the Euclidean distance. Since both distance measures are metrics, the
distance between two points is never negative, hence LB clipped(Q, c) ≤ D(Q, C) for
any series of real numbers Q and C.

An intuitive example of why Proposition 2.1 is true is shown in Figure 3. Note that if
Q is also clipped, LB clipped(q, c) is identical to DE (q, c).

It is also true that the dynamic time warping distance between clipped series, DW (q, c)
does not lower bound the distance between the full series DW (Q, C). To find a distance
measure that does lower bound DW (Q, C), we first define two new sequences, U =
〈U1, U2, . . . , Un〉 and L = 〈L1, L2, . . . , Ln〉. Let K = {−r,−r + 1, . . . , r − 1, r}.
Then

Ui = max
k∈K

(Qi+k)

and

Li = min
k∈K

(Qi+k).

U and L form a bounding envelope that encloses Q from above and below (see Figure 4).
Given U and L, Eq. (5) defines a function LB Keogh clipped(Q, c) which lower

bounds DW (Q, C).

LB Keogh clipped(Q, c) =
n∑

i=1

⎧⎪⎨
⎪⎩

L2
i if Qi > 0 and ci = 0

U 2
i if Qi ≤ 0 and ci = 1

0 otherwise

(5)

The proof that LB Keogh clipped (Q, c) ≤ DW (Q, C) is a straightforward combina-
tion of the proof above and the proof in Keogh (2002); we omit it here for brevity.

18 BAGNALL ET AL.

Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

0000000000000000000000111111111111001000111111111111111111111111

c

L

U
Q

0 10 20 30 40 50 60

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2

c

L

U

Figure 4. The intuition behind the lower bounding function LB Keogh clipped(Q, c), which lower bounds
DTW(Q, C).

2.2. Asymptotic properties of clipped series

The fact we can lower bound both the Euclidean distance and the DTW distance without
transforming the query series supports the use of clipping with query by content. How-
ever, it does not tell us anything about the ability of the clipped distance to approximate
the true distance. We can relate the auto and cross correlations function to their clipped
series versions by using the following result.

Proposition 2.2. Suppose X and Y are bivariate normal with zero means and common
unit variances. Define the indicators Ix and Iy as

Ix = 1 when X > 0 and 0 otherwise

Iy = 1 when Y > 0 and 0 otherwise

then

E[Ix Iy] = 1

2π
arcsin (ρ)

where ρ is the correlation between X and Y.

Proof: The (X, Y) density function is

f (x, y) = 1

2π
√

1 − ρ2
exp

{
− 1

2(1 − ρ2)
(x2 + y2 − 2ρxy)

}

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 19

so

P[X > 0] = 1

2π
√

1 − ρ2

∫ ∞

0

∫ ∞

−∞
f (xy) dy dx = 1/2

and P[Y > 0] = 1/2 from symmetry.
In addition,

P[X > 0, Y > 0] = 1

2π
√

1 − ρ2

∫ ∞

0

∫ ∞

0
f (xy) dx dy

= 1

2π
√

1 − ρ2

∫ ∞

0

∫ π/2

0
r exp

{
− 1

2(1 − ρ2)
(1 − ρ sin 2θ)r2

}
dθdr

using polars. This gives

P[X > 0, Y > 0] = 1

2π
√

1 − ρ2

∫ π/2

0

1

1 − ρ sin 2θ
dθ

= 1

2π

{
π

2
+ arctan

(
ρ√

1 − ρ2

)}

It then follows that

E[Ix Iy] = 1

2π
arctan

(
ρ√

1 − ρ2

)

Since

arcsin(ρ) = arctan

(
ρ√

1 − ρ2

)

we have

E[Ix Iy] = 1

2π
arcsin(ρ)

and hence

correlation[Ix Iy] = 2

π
arcsin(ρ) (6)

�

This result establishes a one to one monotonic function between the correlation of
clipped and unclipped series. Suppose Xt and Yt are Gaussian time series, where each
observation is normally distributed, and that the clipped series are Ct and Dt. From
Eq. (6), we deduce that the cross correlation function, ρxy(k) is

20 BAGNALL ET AL.

ρcd (k) = 1

2π
arcsin(ρxy(k)) k = · · · ,−2,−1,−0, 1, · · · (7)

For clipped series, the Euclidean distance between two series is a linear function of
the correlation, if we assume a zero mean. This means that if we knew the correct
correlation between clipped series, we could detect differences between the series as
accurately with clipped data as with unclipped data. Of course, we never know the
true correlation. Instead, we estimate it from the data. Hence, to show that Euclidean
distance on clipped data can discriminate as accurately as on unclipped data, we have to
show that the estimate of the correlation tends asymptotically to the true value, i.e., the
estimator is unbiased and that the variance tends to zero as n increases, i.e., the estimator
is consistent. The common estimate cross-covariance γxy(y) between series is

γ̂xy(k) = 1

N

N−|k|∑
t=1

(Xt − X̄)(Yt − Ȳ)

with a cross correlation estimate of

ρ̂xy(k) = γ̂xy(k)/
√

γ̂xx (0)γ̂yy(0).

However, in the clipped case, we know that E[Ct] = 1/2 and that Var(Ct) = 1/4, so
our estimate will be

γ̂C D(k) = 1

N

N−|k|∑
t=1

(
Ct − 1

2

)(
Dt − 1

2

)

while

ρ̂C D(k) = 4γ̂C D(k)

Now, to show that our estimates are unbiased and consistent, we need to take expecta-
tions

E[γ̂C D(k)] = E
1

N

N−|k|∑
t=1

(
Ct − 1

2

) (
Dt − 1

2

)

= 1

N

N−|k|∑
t=1

γC D(k) =
(

1 − |k|
N

)
γC D(k)

which is asymptotically unbiased.
To prove consistency, we need to look at the variance of γ̂C D(k). This will involve at

some point the evaluation of terms of the form

E[Ct Dt+kCs Ds+k]

and orthant probabilities P[Xt ≥ 0, Yt+k ≥ 0, Xs ≥ 0, Ys+k ≥ 0]. The analytical eval-
uation of these has been an unsolved problem for many years. We can demonstrate the
consistency experimentally by repeatedly measuring the correlation between randomly
generated series of differing lengths. Figure 5 shows the variation of the estimate of the

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 21

0.48

0.49

0.5

0.51

0.52

0 10000 20000 30000 40000 50000 60000

Series length

C
or

re
la

tio
n

E
st

im
at

e

0

0.002

0.004

0.006

0.008

0.01

0.012

0.014

0.016

0.018

0 10000 20000 30000 40000 50000 60000
Series Length

V
ar

ia
nc

e
of

E
st

im
at

e
(a) (b)

Figure 5. Variation in the estimate of the correlation between series. Figure (a) shows the mean estimate
and one standard deviation above and below the mean (the true correlation between series is 0.5). Figure (b)
shows the variance of the estimate.

correlation over 100 repetitions of varying length series. It demonstrates clearly that,
firstly, the estimate is unbiased, and secondly that it is consistent.

The clipped series maintain the broad shape of the unclipped data, although of course
fine detail is lost. We can demonstrate this by considering the spectra. The clipped
spectrum is defined as

fy(ω) = 1

2π

∞∑
s=−∞

ρy(s)cos(sω)

so, from Eq. (7) and using the expansion for the arcsin, we have for the clipped series

fc(ω) = 1

2π

∞∑
s=−∞

ρc(s) cos(sω)

=
(

2

π

)
1

2π

∞∑
s=−∞

[
ρY (k) + 1

6
ρY (k)3 + · · ·

]
cos(sω)

so

fc(ω) =
(

2

π

) [
fy(ω) + 1

6
fy(ω) ∗ fy(ω) ∗ fy(ω) + · · ·

]

where ∗ indicates convolution. Thus, we see that the clipped series spectrum is the
unclipped spectrum smeared with the convolutions terms.

We have assumed normality, which commonly will be an invalid assumption. How-
ever, these results provide a theoretical basis for using clipped data for shape based
mining, because we know that under ideal conditions, mining with clipped data will
produce the same results as mining with the uncompressed data. We have concentrated
on the correlation between series, which is a measure of similarity in time. However,

22 BAGNALL ET AL.

the results generalize to the cross correlation and hence extend to the more general case
of mining based on similarity of shape. So, for example, dynamic time warping essen-
tially involves rescaling the time axes of the series to maximize the correlation. For any
particular pair of points considered in a warping path, we can relate the correlations of
the unclipped data to the clipped using Eq. (7). Hence, for any complete warping path,
we can theoretically link the correlations between the warped series and hence draw the
same conclusions as to the asymptotic properties of the clipped data.

3. Manipulation and storage of clipped series

One of the benefits of using the clipped representation is that binary series can be
manipulated and stored efficiently. The compression benefits of clipping are obvious. If
we assume that each data point in the raw time series requires 4 bytes (a conservative
estimate), then clipping achieves a 32:1 compression ratio. However, we can use various
techniques to achieve further compression. In Section 3.2, we describe how Run Length
Encoding (RLE) can improve the compression. We demonstrate that sliding window
representations of RLE time series can be quickly and efficiently generated, then show
how variable length prefix encoding of run lengths can be used to exploit regularity in
the data sets.

3.1. Bit comparison

Using clipped data can provide time improvements for many commonly used algorithms.
This is because the bit level representation allows for the utilization of bitwise operators.
For example, when clustering, it is necessary to measure the the distance between two
clipped series q and c using Eq. (2). DE (q, c) can be efficiently calculated by finding
the XOR of q and c then summing the number of 1s in the result, i.e.,

DE (q, c) =
n∑

i=1

qi

⊕
ci .

If binary series are packed into integers, we can find the terms in the summation very
quickly using bit operators. We can also speed up the operation to sum the bits. Any
algorithm to count the bits is O(n). However, we can improve the constant terms in the
time complexity function by using shift operators to evaluate the integer value of each
eight or sixteen bit sequence, then using a lookup table to find the number of bits in that
integer. This mechanism makes the distance calculation approximately five to ten times
faster even when the series are loaded into main memory.

3.2. Compression

Run Length Encoding (RLE) (Golomb, 1966) is a lossless compression scheme for
binary series that can achieve significant compression for periodic or seasonal data. For
example, consider the clipped series

0000000000000000000000111111111111001000111111111111111111111111

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 23

0 200 400 600 800 1000

0

Power Demand

0 200 400 600 800 1000

0

Power Demand

Figure 6. The first 512 data points of the Power Demand dataset prior to clipping.

0 100 200 300 400 500 600

during day shifts

between day shifts

weekends

0 100 200 300 400 500 600

during day shifts

between day shifts

weekends

Figure 7. The relative frequency of run lengths for the Power Demand dataset for a single year.

shown in Figure 4. This series could more compactly be written as 22#0, 11#1, 2#0,
1#1, 3#0, 24#1, (or equivalently as @22,11,2,1,3,24). Regularity in a series can be
exploited to gain greater compression benefits through encoding run lengths efficiently.
For example, Figure 6 shows a subsequence of the highly seasonal power-demand data.

We can usefully encode the run lengths with variable length encoding (prefix en-
coding) (Huffman, 1952; Schwarz, 1964). The distribution of run lengths is shown in
Figure 7. The most commonly occurring are runs of 43, 42 and 53, and these can be
encoded with a shorter length key. We use simple Huffman encoding (we found by
experimentation that the more complex arithmetic encoding in Rissanen and Langdon
(1979) yields only slightly more compact encodings). With an on-line implementation
of Huffman encoding (Knuth, 1985), only a single pass over the data is required. The
average Huffman code length obtained for the entire PowerDemand dataset is only 5.8
bits, giving a compression ratio of 281:1.

Sliding windows are commonly used in TSDM, particularly for streaming data
(Faloutsos et al., 1994; Keogh et al., 2000). With RLE clipped data, time series in
consecutive sliding windows are frequently identical except for differences in the first
and last run. This can be exploited to further compress the windows. For example, con-
sider the run length encoding @22,11,2,1,3,24 for the data shown in Figure 4. Suppose
the encoding of the next five sliding windows is:

@22, 11, 2, 1, 3, 24
@21, 11, 2, 1, 3, 25
@20, 11, 2, 1, 3, 26
@19, 11, 2, 1, 3, 27
@18, 11, 2, 1, 3, 27, 1
@17, 11, 2, 1, 3, 27, 2

24 BAGNALL ET AL.

The first four windows are very similar (changes are italicized for clarity) and can
be compressed. By introducing a new symbol $ to represent incrementing the last run
and decrementing first run by 1, this form of numerosity reduction results in the final
encoding

@22, 11, 2, 1, 3, 24$3@18, 11, 2, 1, 3, 27, 1$1.

With the Power Demand dataset which has 10,000 data points, numerosity reduction
together with Huffman coding yields a huge compression ratio of 1,057:1.

In Section 4, we describe various algorithms that can manipulate RLE clipped time
series.

4. Using clipped series in TSDM

In Section 5, we show that clipping often produces better results than other techniques.
This is not, however, the only benefit of clipping. Further advantages of using a clipped
representation include:

1. Many data mining algorithms are faster with binary attributes. For example, many
machine learning classification algorithms are designed specifically for categorical
data; splitting algorithms used with classification/decision trees such as Gini, Infor-
mation Gain, Chi-statistic, and Twoing all require discretization prior to splitting.

2. Clipped data can be used by algorithms designed to work on the raw data without
further parameterization. Clustering, classification, rule discovery, motif discovery,
visualization, and novelty detection with any shape based distance measure can be
performed with clipped data just as one would do with the raw data. Query by content
can be efficiently performed with the lower bounded distance metrics given by Eqs.
(4) and (5).

3. Algorithms designed specifically for binary series can be employed. Many of these
algorithms can work directly with RLE clipped data with no major time overhead.
For example, Kaufman and Rousseeuw (1990) describe a hierarchical clustering
algorithm called MONA (Monothetic Analyis), and Ordonez (2003) describes an
online, scalable and incremental version of k-means, both of which are designed
specifically for binary series and can work on RLE data. Another example is a
form of neural network called a Correlation Matrix Memory (CMM) Austin and
Lees (1998) used as part of the advanced uncertainty reasoning architecture (AURA)
(Austin, 1996). AURA has been used successfully in a variety of fields (Hodge and
Austin, 2003; Austin et al., 2005) but requires binary input vectors. A natural way
of applying CMM and AURA to time series would be to use it in conjunction with
RLE clipped data, with, for example, the k-NN binary classifier described in Austin
and Zhou (1998). More generally, there are numerous algorithms for clustering
categorical data that can be applied to clipped series (For example, Ganti et al., 1999;
Huang, 1998.)

4. Clipped series can be run length encoded. The fact that we can lossless compress
clipped data with a model based technique means that algorithms that are not appli-
cable to any other representation shown in Figure 1 can be used with clipped data.
This advantage is discussed in more detail in Sections 4.1 and 4.2.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 25

4.1. Kolmogorov complexity for RLE clipped series

Recently, Li et al. (2003) have proposed a clustering algorithm inspired by the concept
of Kolmogorov complexity. The Kolmogorov complexity K(x) of a string x is defined as
the length of the shortest program capable of producing x on a universal computer—such
as a Turing machine. Intuitively, K(x) is the minimal quantity of information required
to generate x by an algorithm. The conditional Kolmogorov complexity K (x | y) of x
given y is defined as the length of the shortest program that computes x when y is known.
If x and y are similar and y is known, then information present in y will mean that a
very short program can be used to generate x. Equation (8) shows that a distance metric
derived from the Kolmogorov complexity is based on the difference between K (x | y),
K (y | x) and K(xy), where K(xy) is the complexity of string x concatenated with string
y.

DK (x, y) = K (x | y) + K (y | x)

K (xy)
(8)

The Kolmogorov complexity is commonly estimated by standard off-the-shelf com-
pression algorithms, such as WinZip or Stuffit. If C(x) is the size of compressed string x
with the chosen compression algorithm and C(x | y) is the size of file x after compressing
it with the compression model built for y, then the distance between two strings is given
by Eq. (9).

DC (x, y) = C(x | y) + C(y | x)

C(xy)
(9)

Li and Vitanyi have shown that this distance measure works well for clustering data
from a wide range of domains, such as DNA strings, MIDI files, natural language text,
and computer programs. However, a key feature of using the estimate of the Kolmogorov
complexity given in Eq. (9) is that the compression algorithm must be lossless and use
a model learned from the data (typically a substitution dictionary). While there are a
host of compression algorithms for real-valued time series (DFT, DWT, SVD, etc.),
virtually all of them are lossy. The handful of lossless techniques (delta encoding, for
example) do not produce a compression model. However, compression of clipped data
with variable length RLE model described in Section 3.2 is both lossless and uses a
model. We can, therefore, define C(x | y) as the size of time series x when compressed
with the run length dictionary learned for time series y. In Section 5.4, we show how
this measure produces good clusters on a hard problem.

4.2. Statistical tests for RLE clipped series

The RLE gives us the runs of 1’s and 0’s together with their lengths. The frequency
distributions derived to form the variable length RLE can be the basis for statistical non
parametric procedures for run data. The most obvious way of using RLE clipped data is
for a run test for randomness of a single series (Bradley, 1968). Highly structured data
will have a regularity of pattern in runs of 1’s or 0’s not evident in random data. Rice’s
well known zero crossing result states that if D is the number of crossings of the mean
then the autocorrelation of order 1, ρ(1) is related to the expected value of D by

26 BAGNALL ET AL.

ρ(1) = cos

(
π E[D]

N − 1

)

(Rice, 1944) Figure 7 shows an example of a highly structured run length distribution
indicating extreme deviation from randomness. Figure 8 shows the distribution of run
length for a clipped AR1 process with parameter 0, 0.5, −0.5, and −0.9. A run test
would detect that Figures 8(b), (c), and (d) are significantly different from Figure 8(a).
We can also detect that, for example, Figure 8(b) is significantly different from Figures
8(d). Since we have the entire frequency distribution of run lengths, we can compare two
series by using a measure of discrepancy between their two run distributions. Any test
of distribution can be used to discriminate between series based on the run frequency.
For example, we currently use a Chi-squared criterion, but alternatives such as the
Kolmogorov-Smirnov distance may prove useful. Chi-squared statistic is a simple and
well used measure, and we are currently investigating the possibility of decomposing
it into orthogonal components to examine the moments of the observed frequencies
(Rayner and Best, 2001).

A recent statistical research direction directly applicable to query by content and
anomaly detection has been moved toward scan statistics (Glaz and Balakrishnan, 1999;
Glaz et al., 2001). Scan statistics relate to distributions over sliding windows. One of
the problems with scan statistics is that they can become difficult to calculate for real
valued series. For binary series, however, the estimates are much easier to calculate.
Furthermore, these statistics can be calculated directly from the numerosity reduced
variable run length encoded time series. This means it is feasible to apply this promising
technique to very long clipped time series.

2 4 6 8

0.
00

0.
15

Normal noise

run length

fr
eq

ue
nc

y

(a)

2 4 6 8 10 12 14

0.
00

0.
06

0.
12

AR1 Model parameter 0.5

run length

fr
eq

ue
nc

y

(b)

run length
(c)

run length
(d)

1 2 3 4 5

0.
0

0.
4

AR1 Model parameter –0.9

fr
eq

ue
nc

y

1 2 3 4 5

0.
0

0.
2

0.
4

AR1 Model parameter –0.5

fr
eq

ue
nc

y

Figure 8. Variation in the run lengths for different AR 1 models.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 27

5. Results

In this section, we will provide extensive empirical evidence of the benefits of clipping.
Our sequence of experiments is designed to show how the clipped representation can
be used to good effect in increasingly complex ways. The first experiments described in
Section 5.1 involve clustering clipped series directly with Eq. (2). Section 5.2 reports a
set of experiments assessing clipped representations with sliding windows and run length
encoding for query by content. The third set of experiments in Section 5.3 demonstrate
that clipped series give better indexing results when used with sliding windows, run
length encoding, and dynamic time warping. Section 5.4 summarizes the final set of
experiments which show how the variable length encoding methods can be employed
in conjunction with Kologorov based clustering to achieve better results.

Over 50 different data sets were used in the experiments, all freely available at (Keogh
and Folias, 2002). The data sets range from 66 kilobytes to 2 gigabytes in size.

The experiments are designed to remove the possibility for bias against either DFT or
PAA. For example, in PAA representation, if m (the number of constant approximations)
is less than two or does not evenly divide the length of the sliding window, we increase m
to two or to the next smallest integer that evenly divides the size of sliding window. This
is advantageous to PAA, as it will result in a lower compression ratio, but is justified by
the observation that since the data is normalized, having a single constant approximation
is not informative.

5.1. Clustering clipped series

We examine a class of problems where a DFT approach should produce good results and
show that clipping does better than the most commonly used DFT approach described
in Agrawal et al. (1993). The class of model we consider is generated from a mixture of
Sine waves. A generating model is of the form

M(t) =
r∑

j=1

a j · sin(b j + c j · t) (10)

The parameters a, b, and c control the amplitude, offset, and frequency of the curves,
respectively. Each can take a value on the range [0,1], but they are rescaled so that
any particular sine wave has a maximum amplitude of 2 and a maximum offset of
n/2 (where n is the series length). A frequency parameter of 0 means the sine wave
completes a single oscillation over the data length, and a frequency parameter of 1 means
the curve will complete n/4 cycles over the n data points. For a clustering experiment,
we generate k different models, M1, M2, . . . , Mk , then each time series from cluster c is
found by adding Gaussian noise to Mc. We wish to assess whether compressed data can
be clustered as accurately as the raw data. Our aim is to evaluate which representation
provides clusters as accurate as the baseline results on the class of model described.
Following the algorithm described in Agrawal et al. (1993), we cluster with DFT by
performing an O(n log n) FFT, retain the first fc coefficients (set to n/64 to achieve a
compression ratio of 32:1), then use Euclidean distance between the difference of the
coefficients as the clustering distance metric. We cluster data from eight clusters, with

28 BAGNALL ET AL.

0 100 200 300 400 500 600 700 800 900 1000

Figure 9. Example of sine wave data series from three separate cluster models.

five series in each cluster, generated from functions of the form given in Eq. (10) with
parameters randomly selected in the range [0,1], each model being a combination of
three sine waves (i.e., r = 3). We cluster with k-means restarted 100 times at random
initial centroids. Each series is 1,024 data points long. An example of the data from 6
series is shown in Figure 9.

The results for 20 randomly generated sets of models are shown in Table 1. Accuracies
are measured by enumerating all possible cluster labelings and comparing against the
known correct clustering. The clipped clusters are often identical to those found with
the raw data and the difference in mean accuracy is very small. On 12 out of the 20
runs, the clipped series found completely correct clusters, whereas the DFT approach,
in addition to having a significantly lower average accuracy, found the correct clustering
on a single occasion only.

Table 1. The mean accuracies for 20 randomly generated sets of models.

Mean accuracy Number of perfect clusterings

Raw 96.87% 15

Clipped 94.22% 12

DFT 81.56% 1

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 29

More recent DFT approaches such as those described in Morchen (2003) and Vlachos
et al. (2005) may perform better on the data used in these experiments. The choice
of how to compress the DFT coefficients is problem dependent. This demonstrates
one of the strengths of clipping, in that it is a very simple and robust procedure with
no need for parameterization. It clusters well in relation to using the raw data for all
parameter settings attempted, and has been shown to do well on data where a DFT
approach is not appropriate (see Bagnall and Janacek, 2004, 2005). To demonstrate how
clipping can help with a real world problem, especially in large data sets, we clustered
optical recording data from a bee’s olfactory system. Analysis of this data can help us
understand the mechanisms of the olfactory code and the temporal evolution of activity
patterns in the antennal lobe. Further information can be found in Galan et al. (2004).
The data consists of 980 images, each image containing 688 × 520 measurements. If we

Figure 10. Sixteen clusters produced using (a) the whole 2-gigabyte raw data (b) clipped series (c) DFT
series (d) PAA series. These pictures can be seen at http://www.cmp.uea.ac.uk/Research/kdd/.

30 BAGNALL ET AL.

consider each position in the image as a time series, the data consists of 357,760 time
series of length 980. Preliminary analysis has shown that clustering the series based
on similarity in time produces results that have a sensible physiological interpretation
(Galan et al., 2004). We cluster with k-means (with k set to 16) restarted 50 times from
random initial centroids, and take as the best clustering the one with the lowest within-
cluster variation. The dataset size is around 2 gigabytes, so clustering the raw data may
be prohibitively demanding of time and space resources. A single run of k-means takes
50 – 150 iterations to converge (taking hours to complete), and most machines do not
have 2 gigabytes of main memory. Hence, some form of data reduction is appropriate
for this problem. We use this data set to demonstrate that compressing the data through
clipping can produce clusters more similar to those produced with the whole data than
those found using DFT and PAA. We assume that clipping provides a compression ratio
of 32:1 (in practice, it may be much higher than this), and we set the parameters of DFT
and PAA to achieve a similar or smaller ratio. For PAA, we compress each series into
49 mean values (since the number of PAA coefficients must evenly divide the length
of each time series), giving a compression ratio of 20:1. For DFT, we pad the series to
length 1,024 and retain the first 17 DFT coefficients, giving 29.7:1 compression ratio.

The results for all four techniques are shown in Figure 10. It is clear from these plots
that the clusters with clipped series are much closer to those found with the raw data
than those formed with DFT and PAA. There are structural similarities between all
four clusterings, but the clipped clusterings are much more clearly defined than those
found with PAA and DFT. The only major difference between the unclipped and the
clipped clusters is an additional central cluster formed around position (325,450) with
the unclipped data. To measure the similarity between the clusterings, we use three well-
known measures based on the count of coincidence of common cluster membership:
the Jaccard coefficient (Milligan et al., 1983); the Randstatistic (Rand, 1971); and the
Folkes and Mallows index (Fowlkes and Mallows, 1983). For all three measures, higher
values indicate a greater degree of similarity. We randomly selected 10 clusterings from
the run of 50 for each experiment with clipped, DFT, and PAA compression. For each
of these 10 clusterings, we measure the similarity to 10 randomly selected clusterings
formed with the complete data, giving us 100 sets of comparisons for each technique.
The mean Jaccard, Rand, and Folkes and Mallows statistics, along with the standard
deviations, are shown in Table 2.

For each of the three measures, we can, at the 1% level, reject the null hypothesis
that (clipped, DFT), and (clipped, PAA) average similarity are the same (using a t-test
for the mean and a Mann-Whittley test for the median). This clearly demonstrates that,
when using restarted k-means with an objective to cluster based on similarity in time,
clipping is a more appropriate compression than DFT or PAA for this data set. This

Table 2. Average similarity and standard deviation between the clusters formed with the raw and compressed
data, comparing among10 clusterings for each technique.

Jaccard Rand Folkes and Mallows

Clipped 0.4456 ± 0.042 0.9469 ± 0.006 0.6156 ± 0.04

DFT 0.2108 ± 0.017 0.9118 ± 0.012 0.3425 ± 0.093

PAA 0.2761 ± 0.017 0.9227 ± 0.003 0.4327 ± 0.021

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 31

is true even though we have assumed the compression ratio is 32:1. In practice, as we
show in the following sections, much better compression can normally be achieved with
RLE.

5.2. Indexing sliding windows

We tested our approach for indexing on twelve datasets with a wide range of shape
properties, all available from the UCR Time Series Data Mining Archive (Keogh and
Folias, 2002). The sizes of the data sets range from 6,875 data points to 198,400 data
points. The problem is to assess which of the clipped, PAA and DFT techniques will
find the nearest neighbor to a query series in the shortest time.

Since disk I/O is known to dominate the query time and provide a good indication
of the tightness of the lower bound (Keogh and Kasetty, 2003), performance is mea-
sured by the number of I/O disk accesses required. This also avoids any possibility of
implementation bias.

For realism, we construct our experiment so that there is never an exact or a trivial
match in the database. We do this by removing a randomly selected section of size
query length plus 100, then forming a query by taking away the first and last 50 points.
The remaining data is then clipped, and the database to be queried is formed by using
a sliding window over the clipped series. So, for example, if the original series is of
length 1,000 and the query is size 200, the database will contain 500 binary series of

Anngun

Burst

Cstr

ERP_data

Foetal_ecg

Infrasound

Koski_ecg

Memory

Network

Power_data

Power_Italy

Winding

Anngun

Burst

Cstr

ERP_data

Foetal_ecg

Infrasound

Koski_ecg

Memory

Network

Power_data

Power_Italy

Winding

Figure 11. Sections of length 1,000 from each of the twelve data sets used in the experiments.

32 BAGNALL ET AL.

Table 3. Number of disk accesses required with Euclidean distance lower bounding.

Query size 256 Query size 512

Dataset Size Ratio Clipped PAA DFT Ratio Clipped PAA DFT

Anngun 10, 001 691.2 982 5478 1433 677.6 1053 5614 4656

Burst 9, 382 381.7 2298 4785 2644 498.9 5481 4086 4424

Cstr 22, 500 464 1885 6704 2433 608.8 2445 7533 2978

ERP data 198, 400 239.8 4897 17438 17701 321 8763 33210 1860

Foetal.ecg 20, 000 121.5 3034 7802 10141 157.3 3507 15641 16843

Infrasound 8, 192 390.8 1826 3778 1722 379.1 2474 3119 3263

Koski ecg 144, 002 419.2 3024 10098 2314 628.5 2931 28829 9386

Memory 6, 875 396.9 973 1882 439 715 1513 2739 1134

Network 18, 000 60.2 13421 16174 17084 62.4 12305 17074 17384

Power data 35, 040 437.3 1636 9071 4207 1089.5 708 9949 4214

Power Italy 29, 931 209.9 651 2919 3666 286 771 13430 16765

Winding 17,500 152.3 2090 5433 4214 176.1 2684 5257 6101

length 200. These series are run-length variable size encoded with numerosity reduction
(as described in Section 3.2). The data dictated compression ratio resulting from this
process is then used to determine the parameters for PAA and DFT. For the twelve
data sets considered, the compression ratios for clipped data range between 60.2:1 to
1,089.5:1 (the complete list is given in Table 3).

The nearest neighbor is found by first computing the lower bound distances between
a query and all the sequences in the database and then determining in ascending order
of lower bounded distance which sequence is the true nearest neighbor solution.

The lower bound distances for clipped data were calculated using Eq. (4); the lower
bounded distances for PAA and DFT were found by first transforming the query series
then calculating the Euclidean distance between retained parameters.

Table 3 gives the number of disk accesses for all the data sets. To allow a visual
comparison, Figures 12 and 13 present the results from Table 3 normalized by the worst
performing algorithm on each data set.

With query lengths of 256 and 512, clipped outperforms DFT and PAA on 10 out of
12 data sets. When considered in conjunction, clipped is always better with either query
length 256 or 512, and is better with both on 7 out of 12 data sets. It is worth emphasizing
that these experiments are designed to favor PAA and DFT; we have assumed PAA and
DFT variables can be stored in two bytes. In addition, we have rounded up the number of
coefficients to retain to the nearest whole integer and insisted on at least two per series
irrespective of the compression ratio. These results show that the shape information
retained by clipping and the ability to further lossless compress clipped series mean
that indexing on Eulcidean distance is more efficient with clipped data than with DFT
or PAA on these twelve series. The wide range of shapes displayed by the data sets
used (see Figure 11) indicates that this result should generalize to a wide class of data
distributions.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 33

Ann
gun

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki_

ec
g

M
em

or
y

Netw
or

k

Pow
er

_da
ta

Power
_it

al
y

W
ind

ing

Clipped_256

PAA_256
DFT_256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 12. Number of disk accesses with lower bounding of Euclidean distance, normalized by the worst
performing approach, using the three representations for the query length of 256 data points.

Ann
gun

Bur
st

Cst
r

ERP_d
at

a

Fo
et

al_
ec

g

In
fra

so
un

d

Kos
ki_

ec
g

M
em

or
y

Netw
or

k

Pow
er

_d
at

a

Power
_it

aly

W
ind

ing

Clipped_512
PAA_512

DFT_512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 13. Number of disk accesses with lower bounding of Euclidean distance, normalized by the worst
performing approach, using the three representations for the query length of 512 data points.

34 BAGNALL ET AL.

Table 4. Number of disk accesses required with DTW lower bounded distances.

Query size 256 Query size 512

Dataset Size Ratio Clipped PAA DFT Ratio Clipped PAA DFT

Anngun 10, 001 714.2 995 9411 3074 694.6 2 5614 9164

Burst 9, 382 390.3 1832 6607 4269 511.8 795 4086 6572

Cstr 22, 500 474.4 614 12291 7904 612.7 28 7533 10573

ERP data 198, 400 204.2 6 127520 122025 321.5 1 33210 92590

Foetal.ecg 20, 000 121.6 2 14394 11757 159.3 2 15641 6352

Infrasound 8, 192 401.1 1314 6262 4796 387.7 72 3119 968

Koski ecg 144, 002 419.8 370 40955 3759 629.5 711 28829 27215

Memory 6, 875 396.9 1271 2528 953 715.8 2293 2739 2454

Network 18, 000 60.3 434 17583 17441 63 91 17074 17388

Power data 35, 040 440.8 42 21260 15401 1103.9 6 9949 19174

Power Italy 29, 931 210 2 29534 29575 286.2 7 28412 28946

Winding 17, 500 154.3 1 16464 14367 178.2 1 5257 16864

5.3. Indexing sliding windows with DTW

We extended the results described in Section 5.2 by conducting identical experiments,
except lower bounded Dynamic Time Warping distance metrics were used. For clipped
series, we use the lower bounded defined in Eq. (3). We used the DFT and PAA lower
bounded distance defined in Zhu and Shasha (2003). Table 4 gives the number of disk
accesses and Figures 14 and 15 show the normalized graphs. The results are even more
conclusive than those with Euclidean distance. Clipping outperforms PAA and DFT on
11 out of 12 data sets with a query length of 256, and on all data sets with a query length
of 512. Furthermore, on most data sets, DTW requires several orders of magnitude fewer
disk accesses than both PAA and DFT. For example, Clipped outperforms the other two
approaches by 127,000 disk accesses on the ERP data.

5.4. Kolmogorov complexity distance

As discussed in Section 4, the ability to lossless compress clipped series means they
can be used in ways not possible with other representations. We demonstrate this
advantage by using a Kolmogorov estimate described in Section 4.1 to cluster time series.
These experiments serve to demonstrate the flexibility of the clipped representation
and highlight the usefulness of Kolmogorov complexity based clustering. To test the
discriminatory power of the distance metric defined by Eq. (9), we took several data sets
from the UCR Time Series Archive that have natural pairing. For example, in the Bouy
sensor dataset, there are two time series, East and North, and in the Great Lakes dataset,
there are two time series, Ontario and Erie. We would expect a clustering algorithm to
group these series together. We identified twenty-four pairs, from a diverse collection
of time series covering domains of finance, science, medicine and industry.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 35

Ann
gu

n

Bur
st

Cstr

ERP_d
ata

Foe
ta

l_e
cg

In
fra

so
un

d

Kos
ki_

ec
g

M
em

or
y

Net
work

Pow
er

_d
at

a

Pow
er

_it
al
y

W
ind

ing

Clipped_256
PAA_256

DFT_256

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 14. Number of disk accesses with lower bounding of DTW, normalized by the worst performing
approach, using the three representations for the query length of 256 data points.

Ann
gu

n

Bur
st

Cstr

ERP_d
ata

Foe
ta

l_e
cg

In
fra

so
un

d

Kos
ki_

ec
g

M
em

or
y

Net
work

Pow
er

_d
at

a

Pow
er

_it
aly

W
ind

ing

Clipped_512
PAA_512

DFT_512

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 15. Number of disk accesses with lower bounding of DTW, normalized by the worst performing
approach, using the three representations for the query length of 512 data points.

36 BAGNALL ET AL.

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

Chest Volume 1

Chest Volume 2

Network 1

Network 2

Buoy Sensor: North

Buoy Sensor: East

Balloon 1

Balloon 2 (lagged)

Great Lakes (Erie)

Great Lakes (Ontario)

Power : Jan-March Italian

Power : April-June Italian

Power : Jan-March Dutch

Power : April-June Dutch

Blood Oxygen 1

Blood Oxygen 2

Reel 2: angular speed

Reel 2: tension

Koski ECG: slow 1

Koski ECG: slow 2

Koski ECG: fast 1

Koski ECG: fast 2

Chaotic 1

Chaotic 2

Trace 1

Trace 2

Phone 1

Phone 2

Furnace: heating input

Evaporator: feed flow

Furnace: cooling input

Evaporator: vapor flow

Space Shuttle X-axis 1

Space Shuttle X-axis 2

Space Shuttle Z-axis 1

Space Shuttle Z-axis 2

Exchange Rate: Swiss

Exchange Rate: German

Sunspots: 1749 to 1869

Sunspots: 1869 to 1990

MotorCurrent: 2

MotorCurrent: 1

Video : Ann, gun

Video : Ann, no gun

Video : Eamonn, gun

Video : Eamonn, no gun

Aerospace L-1b

Aerospace L-1c

Figure 16. Forty-eight time series (in twenty-four pairs) clustered using the approach proposed in this paper.
Bold lines denote incorrect subtrees.

The dendrogram produced from clustering this data with single linkage hierarchical
clustering is shown in Figure 16. We have used a different clustering procedure to that
described in Section 5.1 to demonstrate that the superior results from clipping are not
an artifact of the algorithm used. The correct hierarchical clustering at the top of the
tree is somewhat subjective, but at the lower level of the tree, we would hope to find
a single bifurcation separating each pair in the dataset. Our metric, Q, for the quality

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 37

of clustering is therefore the number of such correct pairwise groupings divided by the
number of pairs. For a perfect clustering, Q = 1, and for a random clustering, we would
expect Q = 0 (the number of possible dendrograms of forty-eight objects is greater
than 2.2∗10,106). The clustering shown in Figure 16 has a performance measure of
Q = 0.875. The minor mistakes made, particularly with the grouping of the Furnace and
Evaporator sequences are reasonable and plausible. For comparison, Markov models
(Ge and Smyth, 2000) scored Q = 0.458, and ARIMA/ARMA models (Xiong and
Yeung, 2002) scored Q = 0.625. In the former case, it took considerable parameter
tuning to achieve this score, whereas our approach has no parameters. The Kolmogorov
clustering algorithm is a technique with great potential (see Keogh et al., 2004). However,
our primary purpose of using it in this paper is not to promote it as a clustering technique.
Instead, our objective is to demonstrate the flexibility of clipping. The fact that clipped
series can be lossless compressed with a model based algorithm means that a wide range
of algorithms that cannot be used with other algorithms can be swiftly and usefully
employed.

6. Conclusions

This paper assesses the usefulness of clipping for time series data mining based on
similarity in shape. The theoretical properties of clipped series are discussed in Sec-
tion 2. We show that under normality assumptions, distance measures on clipped data
are asymptotically equivalent to distances measured on the raw data. We also derive
lower bounding distance metrics for indexing that have the unique property that they
can be used without transforming the query series. The practical benefits of clipped
series are highlighted in Sections 3 and 4. Clipped series can be efficiently stored
and manipulated, further compressed with RLE, and can be used in conjunction with
a wide range of tests and algorithms specifically for binary data. These benefits are
demonstrated with a series of four experiments in Section 5. In Section 5.1, we demon-
strate that clipping series can produce better results than PAA and DFT at compres-
sion ratios of 32:1. Clipped series can be directly compared to uncompressed series
and efficiently compressed with a run-length encoding. In Sections 5.2 and 5.3, we
show that Euclidean and DTW distance based indexing with clipped series can be per-
formed with up to five orders of magnitude fewer disk accesses than with DFT and
PAA based indexing. In Section 5.4, we show that the fact a model based lossless
compression algorithm can be applied means that techniques based on estimating the
Kolmogorov complexity can be applied to clipped series. In the interests of competi-
tive scientific inquiry, all data sets used in this work are available by emailing author
Keogh.

These results demonstrate unequivocally that clipping is a useful transformation for
time series data mining based on similarity in structure.

Our advice to the data miner confronted with very large time dependent data set is
to start their analysis by clipping their data. It is an intuitive and simple transformation
that retains much of the fundamental shape and structural information in the data. It can
yield better results than more complex methods and can be used in conjunction with a
wide range of algorithms.

38 BAGNALL ET AL.

Acknowledgments

This research was partly funded by the National Science Foundation under grant IIS-
0237918 and by the UK Engineering and Physical Sciences Research Council under
grant GR/T18479/01. We would like to thank the anonymous reviewers for their helpful
comments.

References

Aach, J. and Church, G. 2001. Aligning gene expression time series with time warping algorithms. Bioinfor-
matics, 17:495–508.

Agrawal, R., Faloutsos, C., and Swami, A.N. 1993. Efficient similarity search in sequence databases. In
Proceedings of the 4th International Conference of Foundations of Data Organization and Algorithms
(FODO).

Austin, J. 1996. Distributed associative memories for high speed symbolic reasoning. International Journal of
Fuzzy Sets and Systems, 82:223–233.

Austin, J., Davis, R., Fletcher, M., Jackson, T., Jessop, M., Liang, B., and Pasley, A. 2005. DAME: Searching
large data sets within a grid-enabled engineering application. In Proceedings of the IEEE—Special Issue
on Grid Computing, 93(3):496–509.

Austin, J. and Lees, K. 1998. A novel search engine based on correlation matrix memories. In Proceedings of
the British Machine Vision Conference.

Austin, J. and Zhou, P. 1998. A binary correlation matrix memory k-nn classifier with hardware implementa-
tion. In Proceedings of the British Machine Vision Conference.

Bagnall, A.J. and Janacek, G.J. 2004. Clustering time series from ARMA models with clipped data. In Tenth
International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2004), pp.
49–58.

Bagnall, A.J. and Janacek, G.J. 2005. Clustering time series with clipped data. Machine Learning, 58(2):151–
178.

Bagnall, A.J., Janacek, G.J., and Powell, M. 2005. A likelihood ratio distance measure for the similarity
between the fourier transform of time series. In Proceedings of the Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2005).

Basak, J., Sudarshan, A., Trivedi, D., and Santhanam, M.S. 2004. Weather data mining using independent
component analysis. Journal of Machine Learning Research, 5:239–253.

Berndt, D. and Clifford, J. 1994. Using dynamic time warping to find patterns in time series. In Proceedings
of AAAI-94 Workshop on Knowledge Discovery in Databases, pp. 229–248.

Bradley, J.V. 1968. Distribution-Free Statistical Tests. Prentice Hall.
Cai, Y. and Ng, R.T. 2004. Indexing spatio-temporal trajectories with chebyshev polynomials. In Proceedings

of the ACM SIGMOD International Conference on Management of Data, pp. 599–610.
Chan, K.P. and Fu, A.W. 1999. Efficient time series matching with wavelets. In Proceedings of the 15th IEEE

Int’l Conference on Data Engineering.
Chiu, B., Keogh, E., and Lonardi, S. 2003. Probabilistic discovery of time series motifs. In Ninth International

Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2003).
Faloutsos, C. Ranganathan, M., and Manolopoulos, Y. 1994. Fast subsequence matching in time-series

databases. In Proc. ACM SIGMOD Conference, pp. 419–429.
Fowlkes, E. and Mallows, C. 1983. A method for comparing two hierarchical clusterings. Journal of the

American Statistical Association, 78:553–569.
Galan, R.F., Sachse, S., Galizia, C.G., and Herz, A.V.M. 2004. Odor-driven attractor dynamics in the antennal

lobe allow for simple and rapid olfactory pattern classification. Neural Computation, 16(1):999–1012.
Ganti, V., Gehrke, J., and Ramakrishnan, R. 1999. CACTUS-clustering categorical data using summaries. In

Fifth International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 1999),
pp. 73–83.

Ge, X. and Smyth, P. 2000. Deformable markov model templates for time-series pattern matching. In Sixth
International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2000), pp.
81–90.

BIT LEVEL REPRESENTATION FOR TIME SERIES DATA MINING 39

Glaz, J. and Balakrishnan, N. 1999. Scan Statistics and Applications. Birkhäuser.
Glaz, J., Naus, J., and Wallenstein, S. 2001. Scan Statistics, Springer.
Golomb, S.W. 1966. Run-length encodings. IEEE Trans. on Information Theory, 12(3):399–401.
Hodge, V.J. and Austin, J. 2003. An evaluation of standard spell checking algorithms and a binary neural

approach. IEEE Transactions on Knowledge and Data Engineering, 15(5).
Huang, Z. 1998. Extensions to the k-means algorithm for clustering large data sets with categorical values.

Data Mining and Knowledge Discovery, 2(3).
Huffman, D.A. 1952. A method for the construction of minimum-redundancy codes. Inst. Radio Eng.,

40:1098–1101.
Kaufman, L. and Rousseeuw, P.J. 1990. Finding Groups in Data: An Introduction to Cluster Analysis, John

Wiley & Sons.
Kedem, B. 1980. Estimation of the parameters in stationary autoregressive processes after hard limiting.

Journal of the American Statistical Association, 75:146–153.
Keogh, E. 2002. Exact indexing of dynamic time warping. In Proceedings of the 28th International Conference

on Very Large Data Bases (VLDB), pp. 406–417.
Keogh, E., Chakrabarti, K., Pazzani, M., and Mehrotra, S. 2000. Locally adaptive dimensionality reduction

for indexing large time series databases. In Proc. ACM SIGMOD Conference on Management of Data, pp.
151–162.

Keogh, E. and Folias, T. 2002. The UCR time series data mining archive. http://www.cs.ucr.
edu/eamonn/TSDMA.

Keogh, E. and Kasetty, S. 2003. On the need for time series data mining benchmarks: A survey and empirical
demonstration. Data Mining and Knowledge Discovery, 7(4).

Keogh, E., Lonardi, S., and Ratanamahatana, C.A. 2004. Towards parameter-free data mining. In Tenth
International Conference on Knowledge Discovery in Data and Data Mining (ACM SIGKDD 2004), pp.
206 – 215.

Keogh, E. and Pazzani, M. 2000. A simple dimensionality reduction technique for fast similarity search in
large time series databases. In 4th Pacific-Asia Conference on Knowledge Discovery and Data Mining,
PAKDD 2000.

Knuth, D.E. 1985. Dynamic huffman coding. J. of Algorithms, 6(2):163–180.
Korn, F., Jagadish, H., and Faloutsos, C. 1997. Efficiently supporting ad hoc queries in large data sets of time

sequences. In Proceedings of the ACM SIGMOD Int’l Conference on Management of Data.
Li, M., Chen, X., Li, X., Ma, B., and Vitanyi, P. 2003. The similarity metric. In Proceedings of the 14th annual

ACM-SIAM Symposium on Discrete Algorithms, pp. 863–872.
Lin, J., Keogh, E., Lonardi, S., and Chiu, B. 2003. A symbolic representation of time series, with implications

for streaming algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on Research Issues in Data
Mining and Knowledge Discovery.

Milligan, G.W., Sokol, L.M., and Soon, S.C. 1983. The effect of cluster size, dimensionality and the number
of clusters on recovery of true cluster structure. IEEE Trans. PAMI, 5(1):40–47.

Morchen, F. 2003. Time series feature extraction for data mining using DWT and DFT. Technical Report 3,
Departement of Mathematics and Computer Science Philipps-University Marburg.

Morinaka, Y., Yoshikawa, M., Amagasa, T., and Uemura, S. 2001. The L-index: An indexing structure for
efficient subsequence matching in time sequence databases. In Proceedings of 5th Pacific-Asia Conference
on Knowledge Discovery and Data Mining (PAKDD 2001).

Ordonez, C. 2003. Clustering binary data streams with k-means. In Proceedings of the 8th ACM SIGMOD
workshop on Research issues in data mining and knowledge discovery, pp. 12–19.

Rand, W.M. 1971. Objective criterion for evaluation of clustering methods. Journal of American Statistical
Association, 66:846–851.

Ratanamahatana, C.A. and Keogh, E. 2005. Three myths about dynamic time warping data mining. In
Proceedings of SIAM International Conference on Data Mining (SDM ’05).

Rayner, J.C. and Best, D.J. (eds.) 2001. A Contingency Table Approach to Non-parametric Testing. Chapman
and Hall.

Rice, S.O. 1944. Mathematical analysis of random noise. Bell Syst. Tech. J., 23:292–332.
Rissanen, J. and Langdon, G.G. 1979. Arithmetic coding. IBM J. of Res. and Dev., 23(2):149–

162.
Schwarz, E.S. 1964. An optimum encoding with minimum longest code and total number of digits. Inf. and

Control, 7:37–44.

40 BAGNALL ET AL.

Vlachos, M., Yu, P., and Castelli, V. 2005. On periodicity detection and structural periodic similarity. In
Proceedings of the Siam International conference on Data Mining (SDM 05).

Weld, D.S. and de Kleer, J. (eds.) 1990. Readings in qualitative reasoning about physical systems. Morgan
Kaufmann Publishers Inc.,

Xiong, Y. and Yeung, D.Y. 2002. Mixtures of ARMA models for model-based time series clustering. In IEEE
International Conference on Data Mining (ICDM’02).

Yi, B.K. and Faloutsos, C. 2000. Fast time sequence indexing for arbitrary Lp norms. In Proceedings of the
26th International Conference on Very Large Data Bases (VLDB), pp. 385–394.

Zhu, Y. and Shasha, D. 2003. Warping indexes with envelope transforms for query by humming. In Proceedings
of the ACM SIGMOD International Conference on Management of Data, pp. 181–192.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (None)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /SyntheticBoldness 1.00
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 524288
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org?)
 /PDFXTrapped /False

 /Description <<
 /DEU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e006700650072002d005600650072006c0061006700200047006d0062004800200061006e006400200049006d007000720065007300730065006400200047006d00620048000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e00640065002f007000640066002f000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c0065007200200036002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006400690067006900740061006c0020007000720069006e00740069006e006700200061006e00640020006f006e006c0069006e0065002000750073006100670065002e000d0028006300290020003200300030003400200053007000720069006e00670065007200200061006e006400200049006d007000720065007300730065006400200047006d00620048>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [2834.646 2834.646]
>> setpagedevice

