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Recent genome-wide studies on nucleosome positioning in model organisms have shown strong evidence that nucle-
osome landscapes in the proximity of protein-coding genes exhibit regular characteristic patterns. Here, we propose
a computational framework to discover novel genes in the human malaria parasite genome P. falciparum using nu-
cleosome positioning inferred from MAINE-seq data. We rely on a classifier trained on the nucleosome landscape
profiles of experimentally verified genes, and then used to discover new genes (without considering the primary DNA
sequence). Cross-validation experiments show that our classifier is very accurate. About two thirds of the locations
reported by the classifier match experimentally determined expressed sequence tags in GenBank, for which no gene
has been annotated in the human malaria parasite.

1. INTRODUCTION

Gene Discovery. The first step after sequencing and

assembling a new genome involves annotating the ge-

nomic DNA with the predicted location of protein-

coding genes. For this reason, gene discovery has

been intensively studied in computational biology

(see, e.g., http://www.nslij-genetics.org/gene/

for an extensive bibliography). Existing techniques

are based on probabilistic models (also called ab ini-

tio), homology with other species, or take advantage

of expressed sequence tags (ESTs).

Methods using probabilistic models allow one

to distinguish between the genic and non-genic re-

gions using the structural features of genes based on

the primary DNA sequence. Hidden Markov mod-

els (HMMs)27 are perhaps the most widely used:

several HMM-based gene finding tools have been

developed, including GENSCAN9, GlimmerHMM22,

and Genie17. Other probabilistic models such as

Integrated Markov models10, Conditional Random

Fields7, and Dynamic Bayesian networks21, have also

been employed. The key strength of probabilistic

model-based approaches is that they can be effi-

ciently trained on relatively small labeled training

sets to extract the relevant features that characte-

rize genes. Such techniques, however, often suffer

from a high false positive rate because they have to

model the generative probability distribution for the

genic regions. In addition, these techniques perform

poorly in identifying genes which are not well repre-

sented in the training data. Gene predictors based on

inter-species homology make use of aligned DNA se-

quence from other genomes: alignments can increase

predictive accuracy since protein-coding genes ex-

hibit distinctive patterns of conservation. Rosetta6

and Cem4 are among the earliest methods for pre-

dicting human genes using alignments. The third

category of techniques exploits collections of previ-

ously sequenced ESTs, i.e., databases of portions

of transcribed sequences25. Several gene discovery

techniques2, 31, 11 and tools such as ProCrustes12,

GeneWise and GenomWise8, align ESTs (allowing

splicing) to the original genome to locate expressed

genes. The major drawback of EST-based techniques

is that they can only discover genes for which repre-

sentative ESTs exist in the database, thus they miss

genes which are rarely expressed.

All previously described techniques use the pri-

mary DNA sequence to annotate the location of the

genes. In this paper we investigate whether nucleo-

some positioning data alone can be used in genome

annotation processes. To our knowledge, our study

is the first one that takes advantage of nucleosome

positioning data for gene discovery.

Nucleosomes. In eukaryotic cells, genomic DNA or-

ganizes with various proteins in a complex structure

called chromatin. One of the main function of chro-
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matin is to package DNA into a smaller volume but

it also regulates all DNA related processes e.g., DNA

replication, DNA repair, and transcription.

The fundamental unit of chromatin is the nu-

cleosome, composed of 146±1 base pairs of DNA

wrapped 1.65 turns around a protein complex of

eight histones (Figure 1). Chromatin exists with

different degrees of condensation, from euchromatin

(relaxed) to heterochromatin (packed). This degree

of packaging directly depends on nucleosome distri-

bution and density. As a consequence, nucleosome

occupancy directly affects a variety of cellular and

metabolic processes including transcription (gene ex-

pression). The more the chromatin is condensed, the

harder it is for transcription factors and other pro-

teins to access the DNA and carry out their tasks.
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Fig. 1. Eight histones and 146 base pairs of DNA form the
nucleosome. The length of the spacer is organism specific.

Most of eukaryotic genomic DNA is organized

into nucleosomes. For example, it is estimated that

75-90% of the human DNA is wrapped into nucleo-

somes 5, 28. Nucleosomes tend to be regularly spaced

along the genome, at a distance from each other that

is organism-specific: about 18 bp in yeast18, 23, 29,

about 28 bp in drosophila24 and C. elegans32, and

about 38 bp in humans5, 28. Significantly longer

spacers or nucleosome-free regions (NFRs) tend to

occur at the beginning and the end of protein-coding

genes.

A handful of experimental techniques have been

developed for genome-wide mapping of nucleosomes.

One can isolate genomic regions that are bound

to histones typically via chromatin immunoprecip-

itation (chIP) or MNase-mediated purification of

mononucleosomes (MAINE) or can enrich for ge-

nomic regions that are free of nucleosomes typi-

cally via formaldehyde-assisted isolation of regula-

tory elements to extract protein-free DNA (FAIRE).

Then, tiling microarrays (chip) or high-throughput

sequencing (seq) are used to detect and identify

the isolated DNA. Finally, software tools are used

to process information from the tiling array or se-

quencing data and generate a map of nucleosome

positioning. Previous chIP-chip experiments gener-

ated genome-wide maps of nucleosome occupancy in

S. cerevisiae19, 18, 30, 16, 35, C. elegans15, P. falci-

parum34 and human28 in various cell types and un-

der a variety of physiological perturbations. More

recently high throughput sequencing was used to pro-

duce nucleosome maps for S. cerevisiae3, 29, 23, C. el-

egans32, P. falciparum26 and drosophila24 at single-

base resolution.
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Fig. 2. Nucleosome landscape of a typical P. falciparum

gene. The ovals above the chromosome represent nucleosomes.
The time series represents the likelihood of observing a nucle-
osome at that position.

Proposed approach. Recent nucleosome positioning

data generated from the studies mentioned above

strongly suggest that nucleosome occupancy land-

scapes in the proximity of genes exhibit regular pat-

terns. Figure 2 illustrates the nucleosome occupancy

landscape for typical genes in the human malaria

parasite. Two nucleosome-free regions (NFRs) are

located immediately upstream of the transcription

start site (TSS) or the beginning of the gene and

downstream of the end of each gene. A definite pat-

tern consisting of periodic and regularly spaced nu-

cleosome positioning is observed at the beginning of

protein-coding genes in S. cerevisiae23, 35, 14, C. el-

egans29, D. melanogaster24 and P. falciparum26.

Such a pattern of nucleosome distribution raises

an interesting question: can we exploit the correla-

tion between the nucleosome profiles in the vicinity

of protein-coding genes to detect novel genes? More

specifically, do nucleosome profiles contain enough

information to allow one to predict the boundaries of



gene models? To study these questions, we propose

to test a binary classifier trained on the nucleosome

profiles of experimentally verified genes. While the

focus of this paper is on the human malaria para-

site P. falciparum our method can be applied to any

other organisms for which nucleosome positioning

data with sufficient resolution are available. First,

we will show that our classifier is very accurate in

cross-validation experiments. Then, we will report

that our classifier can discover putative novel genes in

P. falciparum without considering the primary DNA

sequence. About two third of the locations reported

by the classifier as potential novel genes match ESTs

in GenBank. This suggests that we might have suc-

cessfully identified new genes in the human malaria

parasite. A validation of these putative novel genes

is currently under way.

2. DATA SOURCE, TRAINING SETS,

AND LEARNING

Data source. Nucleosome positioning data at single-

nucleotide resolution were previously generated by

micrococcal nuclease digestion of P. falciparum ge-

nomic DNA followed by high-throughput sequencing

(MAINE-seq)26. P. falciparum’s genome consists of

14 chromosomes for a total of about 24 Mb. We

generated seven distinct time series by counting the

number of sequenced reads that were mapped at each

position along each chromosome throughout the P.

falciparum intraerythrocytic infection cycle sampled

at six intervals (see Ref. 26 for more details). These

time series (or occupancy profiles) vary over time ac-

cording to the nucleosomal rearrangements that oc-

cur in the malaria parasite. Since our purpose is gene

discovery, regardless of any biologically relevant reg-

ulation process, we created a general profile of nucle-

osome occupancy by averaging the seven profiles at

every position in the genome.

Training Sets. The average general profile of nucle-

osome occupancy was used as input data to our clas-

sifier. The classifier was trained only on the high-

confidence genes in the genome. In P. falciparum,

only about a third of the genes are confidently anno-

tated (hereafter called “confirmed”, whereas the non-

confirmed will be called “others”). We also removed

the telomere regions from the training set because

the occupancy profiles in these regions were not re-

liable due to low sequencing depth. Out of the total

of 5460 genes in P. falciparum, 1995 were classified

as “confirmed”, and 3465 as “others”.

Averaged occupancy profiles representing nucle-

osome distributions are real-valued time series, de-

noted in the rest of the paper by S(i), where i is the

chromosome number (i = 1, 2, . . . , 14 for P. falci-

parum). We were also given a set of g annotated

genes (“confirmed” and “others”), which is repre-

sented by a set G(i) = {(s1, e1), (s2, e2), . . . , (sg, eg)}

containing start and end positions of each gene on

chromosome i. To simplify the notation, hereafter

we will drop the superscript i from S and G.

To apply traditional classification schemes on

these time series, we extracted fixed length subse-

quences of length w by sliding a window along S

with a sliding step of h ≥ 1 base. The resulting

number of windows is n = ⌈(|S| − w + 1)/h⌉. Each

time series S was thus converted into a set of win-

dows D = D1, D2, . . . , Dn, where each window Di is

a vector of length w. We used ai = (i − 1)h + 1 and

bi = (i − 1)h + w to denote the start and the end of

window Di. Inside each window [ai, bi] we identified

the central region of length m called margin, which

has coordinates [ai + w
2 − m

2 , ai + w
2 + m

2 ]. Figure 3

illustrates a window of length 1000 bp, centered at

the transcription start site, with a margin of 50 bp.

Specific choice for w and m will be discussed later in

the paper. The parameter h was set to one base.

start of the gene start of the gene

window (1000bp) window (1000bp)

margin (50bp) margin (50bp)

Fig. 3. Illustrating a window, margin and the start of a gene
in a nucleosomal landscape.

After extracting windows from S, we assigned

a label to each window depending on the presence

or absence of a gene in it. The labeling scheme de-

scribed below is designed to train a classifier to rec-

ognize the start of the genes. While the rest of the

discussion focuses on the start of the genes, a simi-

lar labeling scheme and training was used to detect



the end of the genes (see end of Section 3.2). The

labeling differentiates between windows that corre-

spond to “confirmed” genes as opposed to “other”

type of genes. Each window Di was assigned one of

the following labels:

• li = −1, if Di did not overlap any gene in G

(either “confirmed” or “other”)

• li = 1, if there was a “confirmed” gene

Gj ∈ G such that the start of Gj was within

the margin of window Di

• li = 2, if there was a “confirmed” gene

Gj ∈ G such that the start of Gj was within

the window but not inside the margin of Di

• li = 3, if there was a “confirmed” gene

Gj ∈ G such that the window overlapped

Gj (completely or partially) but it did not

overlap the start of any gene

• li = 4, if there was an “other” gene Gj ∈ G

such that the window overlapped Gj (com-

pletely or partially).

An example of windows labeling is illustrated in Fig-

ure 4.

Learning. We used labeled windows to train a bi-

nary classifier that discriminates between windows

with label 1 (positive windows) and windows with

label −1 (negative windows). Windows with labels

2, 3 and 4 were ignored for the training. A random

sample of positive and negative windows was used for

training. The choice of the sample size is discussed

later.

While in principle any binary classifier could be

used to discriminate between the two types of win-

dows, the performance of different classifiers may

vary due to the nature of the data. We tested a

variety of classifiers and focused on two, namely lo-

gistic regression and Radial Basis Function networks.

A logistic regression classifier models the posterior

probabilities of the two classes using linear functions

in the input1. A Radial Basis Function (RBF) is an

artificial neural network that uses radial basis func-

tions as activation functions13.

Fig. 4. Labels associated with the windows extracted from
a chromosome.

3. EXPERIMENTAL RESULTS

In order to discover novel genes in P. falciparum, we

extracted a set T of test windows from the time se-

ries S and assigned labels as discussed earlier. Each

test window Ti was then tested using the classifier.

The predicted label l̂i and the associated confidence

score λi was used to assign a secondary label βi as

follows:

βi =

{

1 if li = −1 and l̂i = 1 and λi ≥ δ

0 otherwise

where δ is a user defined threshold. If βi = 1, test

window Ti was not known to contain a gene but the

classifier predicted that it did, with confidence δ or

higher. Windows for which βi = 1 are called can-

didate windows. The entire test set of windows T

was thus processed and the set of candidate windows

was identified. Contiguous candidate windows were

merged, and any set that contained at least m win-

dows (the same value used for the margin width) be-

came a candidate segment. Observe that all of these

segments belong to the non-genic regions of the chro-

mosome and do not overlap with any genic region.

However, according to the classifier these segments

are highly likely to contain the start of a “missing”

gene. The parameter δ controls the overall “qual-

ity” of the segments in terms of the confidence of the

classifier.

In order to evaluate the performance of our

method, we employed first traditional metrics, such

as accuracy, precision and recall in a cross-validation

framework. This initial evaluation was essential to

choose the classification algorithm and the critical

parameters, such as window size, margin width, sam-

ple size, etc. Then, we validited the candidate seg-

ments by searching them in EST databases stored in

GenBank.



3.1. Cross-validation experiments

As said in Section 2, two classifiers were trained, one

for each strand of a chromosome. We observed that

the nucleosome occupancy profiles for genes located

in the forward strand is characteristically different

from the profiles for the reverse strand. However, the

performances of the classifier for forward and nega-

tive strands are identical. A classifier trained using

the forward genes is more likely to discover genes

that are located in the forward strand and a classifier

trained using the reverse genes is more likely to dis-

cover genes located in the reverse strand. However, a

classifier trained on forward genes can discover some

genes that are located in the reverse strand and vice

versa. In general, both classifiers should be used to

discover the complete set of genes.

We constructed two datasets of windows that

were used interchangeably as training set or test set.

One was obtained by extracting and labeling win-

dows from the seven odd chromosomes (i.e., chro-

mosome number 1, 3, 5, . . . ), while the other was

obtained from the seven even chromosomes of P.

falciparum. For each choice of the parameters, we

ran ten experiments. In five experiments we trained

on random samples from the windows on the odd

chromosomes, and tested on random samples of the

even chromosomes. In the other five experiments, we

switched training set and test set. For each choice

of the parameters, we computed mean and standard

deviation for the metrics discussed later in this sec-

tion.

Table 1 shows how the logistic regression clas-

sifier performed in terms of predicting labels for all

windows extracted from all fourteen chromosomes of

the malaria parasite (window size w = 1000, mar-

gin width m = 50 and sample size 6000). We will

discuss the impact of the parameters at the end of

this section. Each subtable in Table 1 shows the

results for each chromosome, where each row corre-

sponds to the labels predicted by the classifier and

each column corresponds to the actual labels. Cells

in boldface correspond to predicted value of 1 and ac-

tual value of -1, which represent the percentage can-

didate windows, i.e., potential new gene locations.

Observe that this value is fairly constant across all

chromosomes and conforms to our intuition that only

a small percentage of the chromosome should con-

tain new genes. The classifier was able to identify

the negative windows (true label -1) correctly over

90% of times for almost all of the chromosomes. The

classifier was also accurate in identifying the positive

windows (true label 1) correctly (> 80% for majority

of the chromosomes). The performance is worse in

identifying windows with true label 2 as positive, but

is still higher than 65% for most of the chromosomes.

This is because these windows contain the start of a

“confirmed” gene, but not within the margin, and

the classifier is trained to identify only those win-

dows that contain the start of the gene within the

margin. The classifier was not able to identify win-

dows that belonged to a genic region but did not

contain the start of a gene (true label 3) or windows

that belonged to the genic region of “other” genes

(true label 4). This indicates that windows that con-

tained the start of a “confirmed” gene were signifi-

cantly different from the windows that corresponded

to the non-start portions of “confirmed” genes, as

well “other” genes.

Once the number of true positive (tp), true neg-

ative (tn), false positive (fp) and false negative (fn)

is computed, the following metrics can be defined:

• Recall
(

tp
tp+fn

)

indicates how many of the

actually positive windows were predicted as

positive by the classifier. Alternatively, one

can also measure the recall for the negative

class
(

tn
tn+fp

)

.

• Precision
(

tp
tp+fp

)

indicates how many of

the positive labeled windows are actually

positive. Alternatively, one can also measure

the precision for the negative class
(

tn
tn+fn

)

.

• Accuracy
(

tp+tn
tp+fp+tn+fn

)

indicates the to-

tal number of windows that were correctly

labeled by the classifier.

Often, there is an inverse relationship between

these metrics, where it is possible to increase one

at the cost of reducing the other. In the context

of the problem of finding missing genes, we wanted

to have the highest possible recall for both positive

and negative class. For instance, when the classi-

fier is trained on a subset of the chromosomes and

then tested on remaining chromosomes, we expect all

windows overlapping known genes to be detected as



Table 1. Confusion matrices for our classifier’s predictions versus the actual labels associated with
the windows on all fourteen chromosomes. Cells in boldface highlight the % of windows that contain
potential new genes.

Chromosome 1

Actual Labels

Pred -1 1 2 3 4

1 0.09 0.80 0.55 0.54 0.44
-1 0.91 0.20 0.45 0.46 0.56

Chromosome 2

Actual Labels

Pred -1 1 2 3 4

1 0.09 0.74 0.69 0.53 0.55
-1 0.91 0.26 0.31 0.47 0.45

Chromosome 3

Actual Labels

Pred -1 1 2 3 4

1 0.05 0.90 0.65 0.51 0.43
-1 0.95 0.10 0.35 0.49 0.57

Chromosome 4

Actual Labels

Pred -1 1 2 3 4

1 0.08 0.80 0.69 0.64 0.53
-1 0.92 0.20 0.31 0.36 0.47

Chromosome 5

Actual Labels

Pred -1 1 2 3 4

1 0.06 0.82 0.62 0.53 0.42
-1 0.94 0.18 0.38 0.47 0.58

Chromosome 6

Actual Labels

Pred -1 1 2 3 4

1 0.07 0.89 0.75 0.55 0.54
-1 0.93 0.11 0.25 0.45 0.46

Chromosome 7

Actual Labels

Pred -1 1 2 3 4

1 0.08 0.89 0.63 0.53 0.42
-1 0.92 0.11 0.37 0.47 0.58

Chromosome 8

Actual Labels

Pred -1 1 2 3 4

1 0.12 0.96 0.79 0.59 0.53
-1 0.88 0.04 0.21 0.41 0.47

Chromosome 9

Actual Labels

Pred -1 1 2 3 4

1 0.04 0.89 0.63 0.52 0.40
-1 0.96 0.11 0.37 0.48 0.60

Chromosome 10

Actual Labels

Pred -1 1 2 3 4

1 0.08 0.91 0.67 0.61 0.55
-1 0.92 0.09 0.33 0.39 0.45

Chromosome 11

Actual Labels

Pred -1 1 2 3 4

1 0.06 0.87 0.66 0.48 0.41
-1 0.94 0.13 0.34 0.52 0.59

Chromosome 12

Actual Labels

Pred -1 1 2 3 4

1 0.06 0.91 0.74 0.59 0.53
-1 0.94 0.09 0.26 0.41 0.47

Chromosome 13

Actual Labels

Pred -1 1 2 3 4

1 0.05 0.85 0.61 0.48 0.38
-1 0.95 0.15 0.39 0.52 0.62

Chromosome 14

Actual Labels

Pred -1 1 2 3 4

1 0.07 0.90 0.71 0.61 0.48
-1 0.93 0.10 0.29 0.39 0.52

positive. Similarly, we wanted the recall on the neg-

ative class to be as high as possible. We wanted the

smallest proportion of test windows which are neg-

ative to contain the start of an undiscovered gene.

Due to these considerations we focused on the re-

call on both positive and the negative classes as the

primary metric to evaluate the performance of the

classifiers.

In the rest of this subsection, we report recall

values on positive and negative classes for a variety

of parameter choices (type of classifier, window size,

margin width, and training set sample size).

Logistic Regression vs. RBF Networks. Figure 5

shows the performance of Logistic Regression and

Radial Basis Function Network for different window

sizes (when the margin was m = 50 and the sample

size was 6000 windows). The relative performance of

the two classifiers is similar for other settings of the

parameters. We also experimented with other classi-

fiers such as Support Vector Machines and k Nearest

Neighbor classifier but their recall was significantly

worse. Logistic regression has an additional param-

eter for the underlying ridge regression step: we ex-

perimentally determined that the recall peaked when

the value of this parameter was about 10−8.



The results show that logistic regression is su-

perior to RBF in terms of recall for the positive as

well as the negative windows. The difference in per-

formance is more significant for negative windows,

i.e., RBF identifies a higher proportion of candidate

windows. This becomes an issue when testing on all

windows extracted from a genome, because a large

proportion of these windows will be declared candi-

date windows, and as a consequence a large number

of windows will have to be verified for the presence of

new genes, possibly resulting in waste of resources.

Since logistic regression maintains a low recall on

negative class, only a few but high quality candidate

windows will be generated which can be validated

more efficiently. Hence we conclude that logistic re-

gression is a better classifier than RBF in the context

of the proposed framework for P. falciparum.

1 1.5 2 2.5 3 3.5 4
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Window Size (w)

R
e

c
a

ll

 

 

Logistic − Pos

Logistic − Neg

RBF − Pos

RBF − Neg

Fig. 5. Recall for the positive and negative classes using
logistic regression and RBF network classifier for varying win-
dow sizes (in thousand base pairs) and margin width m = 50.

Training Sample Size. As mentioned earlier, we

chose a random sample from the set of labeled win-

dows as the training data. Figure 6 summarizes the

relationship between the size of the sample and the

performance of the logistic regression classifier. The

results indicate that sample size does not have sig-

nificant impact on the performance of the classifier.

While the variance is higher for smaller sample sizes,

the computational cost of training the classifier in-

creases with the sample size. We determined that a

good trade-off was a sample size of 6000 (3000 sam-

ples of each positive and negative class).

Observe that we used a balanced training set,

but the test set is very imbalanced because the vast

majority of the windows in a chromosome are not

genes. The imbalance in the test set should be re-

flected in the training set if the objective was to

maximize the convex combination of precision and

recall with the same weight. However, here we are

only interested in maximizing the recall equally well

for both positive and negative classes, and we com-

pletely disregard precision. In fact, when we used an

imbalanced training set, we observed an increase in

the recall for class with the majority of samples, but

a decrease in the minority class. In order to have

high recall for both positive and negative classes we

had to employ a balanced training set.
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Fig. 6. Recall for the positive and negative classes using lo-
gistic regression with training sample sizes for window size
w = 1000 and margin width m = 50.

Window Size. Observe that while short windows

might not be able to fully capture the context around

the start of a gene in the nucleosome position data,

long windows might result in increased computa-

tional complexity in dealing with high dimensional

spaces.

Figure 7 summarize the performance of logistic

regression for different window sizes w, when m = 50

and the sample size was 6000. The results indicate

that the recall on the positive class improves as the

window size increases, but the recall on the negative

class is not as sensitive to the window size. For a

window of 2000bp, the recall on both classes is good

but the space and time requirements for training are

also high. For w = 1000 the performance is reason-



ably good, and the space/time requirements are also

manageable. Hence, for further experiments we fixed

the window size to 1000 base pairs.
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Fig. 7. Recall for the positive and negative classes us-
ing logistic regression with varying window sizes and margin
m = 50.

Margin Width. Figure 8 summarizes the perfor-

mance of logistic regression for different choices of

margin widths m, when the window size was 1000

base pairs and the sample size was 6000. The results

in Figure 8 indicate that the performance of the logis-

tic regression classifier does not change significantly

when the margin width is changed.
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Fig. 8. Recall for the positive and negative classes using lo-
gistic regression with varying margin widths and window size
w = 1000.

3.2. Evaluating Candidate Segments

The traditional evaluation metrics are useful for

quantitatively assessing the performance of different

classifiers as well as studying the effect of different

parameter settings on the overall performance. But

such an evaluation does not fully answer the ques-

tion: how effective is the proposed framework in dis-

covering “missing” genes in the genome of P. fal-

ciparum? Recall that the final output is a set of

candidate segments which are likely to contain the

start of a novel gene. The true performance of the

proposed framework could be determined only if we

knew how many of the candidate segments actu-

ally contain a gene. To validate our findings, we

used BLAST to compare these candidate segments

with known expressed sequence tags (ESTs) stored in

GenBank. If the candidate segment matches known

ESTs, this gives an independent evidence that the

segment might indeed contain a new gene. At the

time of writing, a subset of these segments are being

validated in our wet lab.

Results obtained from querying GenBank EST

collection with the candidate segments are summa-

rized in Table 2. We considered only those can-

didate segments for which the corresponding can-

didate windows were predicted as positive with at

least δ=95% confidence. The table shows that out

of 223 segments identified by our method, 65% of

the segments matched one or more ESTs. Interest-

ingly, the majority of such segments matched ESTs

for P. falciparum, but we also found several seg-

ments that matched ESTs for other malaria parasite

species, like P. berghei, P. yoelii, P. berghei, and P.

vivax. We also found several segments that matched

ESTs from different organisms from unrelated genus

such as Neospora caninum (coccidian parasite), Vi-

tis vinifera (common grape vine), Arachis hypogaea

(peanut), Aplysia californica (California sea slug),

Citrullus lanatus (watermelon). The fact that there

are so many plants matching these segments is re-

markable since like most Apicomplexa, P. falciparum

harbor a plastid similar to plant chloroplasts.

Identification of End of Genes. All the discussion

so far has concentrated on the start of genes in P. fal-

ciparum. The same methodology can be applied to

identify other characteristics associated with genes,



Table 2. A chromosome-by-chromosome summary of the number of candidate segments for
the start of the genes, the proportion of those that matched an EST, and the source of the
matching ESTs.

# Segments with Matching Species
Chr. # # Segments matches in EST P. falciparum Other Plasmodium Others

1 4 3 1 1 1
2 28 13 11 2 0
3 4 3 1 1 1
4 17 7 5 1 1
5 9 5 2 1 2
6 12 7 5 2 0
7 11 7 5 0 2
8 19 15 15 0 0
9 4 4 4 0 0
10 28 19 18 1 0
11 16 10 8 2 0
12 24 20 17 3 0
13 17 12 8 0 4

14 30 21 18 1 2

Total: 223 146 118 15 13

such as end of genes and perhaps exon/intron bound-

ary, as long as the location of the target characteristic

exhibits a distinct nucleosome landscape. The pro-

posed methodology can be easily extended to identify

the end of genes. The experiments for identifying the

end of genes were conducted on averaged MAINE-

seq data sets, using logistic regression classifier with

window size 1000, margin width 50, and sample size

6000.

The results obtained from querying the candi-

date segments using BLAST are summarized in Ta-

ble 3. The table shows that out of 161 segments iden-

tified by our method, 70% of the segments matched

with one or more existing ESTs. We observed that

for many chromosomes if a segment identified as a

potential start of a gene matched a known EST, there

was almost always a corresponding segment obtained

for the end of genes.

4. CONCLUSIONS

We have proposed a machine learning framework

that exploits the relationship between nucleosome

occupancy profiles and gene locations to discover

missing genes, or to confirm gene annotations of the

existing ones. We have shown the applicability of

the framework in the context of the malaria para-

site, and our method can be extended to any other

eukaryotic organism, including humans, for which

high-resolution nucleosome positioning data is avail-

able.

We have shown that nucleosome positioning data

alone can indeed be used to predict the location of

genes. Experimental results show that our technique

is able to identify known genes in P. falciparum more

than 80% of the times. Furthermore, two-thirds of

the high quality segments reported by the classifier

matched one or more existing ESTs. At the time of

writing, some of these segments are being validated

in our wet lab.

The key challenge for our approach is how to

set the various parameters. Through experimental

analysis we empirically estimated the best choices for

parameters such as the window size, margin width,

training sample size and the classification algorithm.

It is very likely that these choices are specific to P.

falciparum data.

We also attempted to extract informative fea-

tures from the nucleosome occupancy profiles instead

of training on the original data. We used Principal

Component Analysis and Haar wavelet transform for

feature reduction but the performance of the clas-

sifier did not improve. We still believe that other

feature extraction techniques might be beneficial. In

particular, more experimental evaluation needs to be

done to correctly ascertain the effect of Haar decom-

position. Finally, since there is evidence that nucle-

osome occupancy profiles exhibit periodicity in the

proximity of the start of genes33, we also extracted

auto-correlation coefficients and used them as fea-

tures to our classifiers. Again, preliminary results

were not promising.



Table 3. A chromosome-by-chromosome summary of the number of candidate segments for the
end of the genes, the proportion of those that matched an EST, and the source of the matching
ESTs.

# Segments with Matching Species
Chr. # # Segments matches in EST P. falciparum Other Plasmodium Others

1 5 3 2 1 0
2 9 4 3 1 0
3 2 2 0 1 1
4 9 5 3 1 1
5 9 6 3 1 2
6 8 5 3 2 0
7 19 16 13 1 2
8 7 7 3 1 3
9 5 4 4 0 0

10 17 11 10 1 0
11 21 16 12 3 1
12 9 6 4 2 0
13 19 13 10 0 3
14 22 15 13 1 1

Total: 161 113 83 16 14

The methodology proposed in this paper is rel-

atively straightforward yet it has proved to be suc-

cessful in identifying potential new genes. Although

only wet lab experiments will be able fully validate

our predictions, the fact that our segments match to

sequenced ESTs provides strong evidence. The next

step would entail incorporating our classifier with a

sequence-based gene discovery tool that can accom-

modate additional evidence sources (e.g., Evigan20).
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