
Gridding and Compression of Microarray Images

Stefano Lonardi and Yu Luo
Department of Computer Science and Engineering

University of California, Riverside
{stelo|yuluo}@cs.ucr.edu

Abstract

With the recent explosion of interest in microarray tech-
nology, massive amounts of microarray images are cur-
rently being produced. The storage and the transmission
of this type of data are becoming increasingly challenging.
Here we propose lossless and lossy compression algorithms
for microarray images originally digitized at 16 bpp (bits
per pixels) that achieve an average of 9.5–11.5 bpp (loss-
less) and 4.6–6.7 bpp (lossy, with a PSNR of 63 dB). The
lossy compression is applied only on the background of the
image, thereby preserving the regions of interest. The meth-
ods are based on a completely automatic gridding proce-
dure of the image.

1. Introduction

Microarray is a technology which allows biologists to
potentially monitor the activity of all the genes of an or-
ganism. Microarrays are relatively new (papers [15, 4] are
among the first published on the subject), but they are al-
ready extremely popular. Biologists and physicians have en-
thusiastically embraced this technology, and they are cur-
rently producing an unprecedented quantity of microarray
data. As of November 2001, for example, the Stanford Mi-
croarray Database contained sets of images for about 18,000
experiments [16]. The database has been growing exponen-
tially fast in the last five years.

The output of a single microarray experiment is a pair
of 16 bits per pixels (bpp) digital images whose total size
is typically in the tens of MB. The information extracted
from images comes almost exclusively from the intensities
of a small specific subset of the pixels, called spots. There
is, however, still a debate in the scientific community on
the analytic method that should be used to process the im-
ages. It is believed crucial, therefore, to keep the raw image
data in some permanent storage medium. Simply discarding
the raw data and repeating the experiment is not an option
because of the high costs associated with this new technol-

ogy. Given the massive amount of data currently produced,
and the need of long-term storage and efficient transmis-
sion, an ad-hoc compression method is becoming more and
more needed.

A microarray experiment is based on an hybridiza-
tion process with a two dye-tagged probes (e.g., the
red-fluorescent dye Cy5 and the green-fluorescent dye
Cy3) or other labeling methods [15, 4]. The microar-
ray chip is then scanned to generate two digital im-
ages, each corresponding to one of the colors [19, 12].
As said, they are typically captured at 16 bpp contain-
ing as many as 20 millions pixels [7]. Microarray im-
ages are highly structured and appear like a field of spots
arranged on a regular grid. The whole image is com-
posed by a matrix of equally spaced blocks called subgrids,
each of which consists of the same number of rows and
columns. A microarray may have several subgrids. For ex-
ample, Figure 1 shows a microarray with 16 subgrids for
a total of about 9,000 spots. The spots in a subgrid are ar-
ranged in a relatively uniform spacing with each other.
They have a roughly circular shape, though some show sig-
nificant deviations from this shape due to the experimental
variation of the spotting procedure.

The objective here is to design a fully automatic mi-
croarray image compression method that does not require
any input and/or human intervention. Transform-based im-
age compression methods do not perform well on microar-
ray images because of the high content of high-frequency
components (due to the presence of thousands of spots on a
black background) [9]. In order to achieve better compres-
sion than general purpose compression methods, we need
to exploit the geometric structure of the microarray image.
The spots are the regions of interest (or the foreground) of
the image. It is easy to realize that the pixels in the fore-
ground have similar characteristics, which are quite differ-
ent from that of the pixels in the background. The general
strategy here is to separate pixels in set of classes, such that
within each class the intensities of the pixels are similar.
Currently, we compress the Cy5 and Cy3 image channels
separately. We can expect that exploiting the strong correla-

Figure 1. A typical microarray image, with
�����

subgrids. Each subgrid is composed by a matrix� ��� � �
of spots. The resolution of this image is ���
	 � � ������ pixels, 16 bpp

tion between the images, the compression will improve con-
siderably.

The compression tool, called MICROZIP, works as fol-
lows (see Figure 2 for the flowchart). First, we determine
the geometry of the microarray image, by solving the grid-
ding or spot finding problem [1]. We find the number of sub-
grids and their location, as well as the number of spots in
each subgrid and their location. The contribution of our al-
gorithm is that we recover the grid geometry without any in-
put from the user. All other microarray image analysis tools
that we tested require the user to describe the parameters of
the grid (i.e., number of rows and columns and the position
of one of the corners of the grid). Once we have obtained
the geometry, we separate the foreground (spots) from the
background and then we compress the foreground and back-
ground separately (see e.g., [17]).

Because the information extracted from the image is ob-
tained almost exclusively by processing the intensity of the
spots, we propose an hybrid lossy/lossless approach. We
compress the pixels of the spots without loss of data, and
the pixels in the background within some controlled loss of

data. This has the effect of improving dramatically the com-
pression, without affecting the region of interest of the im-
age. In Section 3 we also report the results of purely loss-
less compression of microarray images.

2. Gridding and Spots Finding

Images from microarray experiments are highly struc-
tured since they are composed by high intensity spots lo-
cated on a regular grid. The shape of the spots is roughly
circular, although variations are possible. The ideal microar-
ray image has the following properties [12]: (1) all the sub-
grids are of the same size; (2) the spacing between subgrids
is regular; (3) the location of the spots is centered on the in-
tersections of the lines of the subgrid; (4) the size and shape
of the spots are perfectly circular and it is the same for all
the spots; (5) the location of the grids is fixed in images for
a given type of slides; (6) no dust or contamination is on
the slide; (7) there is minimal and uniform background in-
tensity across the image. It goes without saying that almost
all real microarray images violate at least one of these these

Compressed
File

 Microarrays
 Original

 Image
Grid finding Spot finding

MSB/Lossless

LSB
Lossless/lossy

Foreground
(Spots)

Background

MSB/Lossless

LSB/Lossless

 Header
Lossless

Figure 2. A flow chart of MICROZIP

conditions. In fact, we frequently observed variations on the
spot position, irregularities on the spot shape and size, con-
tamination, and global problems that affect multiple spots.
In general, the shape and the size of the spots may fluctu-
ate significantly across the array.

Because of the variations on microarray images it is
sometimes non-trivial to decide where is the border of a sub-
grid or the border of a spot. Several methods have been pro-
posed (see, e.g., [3, 7, 19, 18]) and software tools have been
developed. However, all the software systems we tested re-
quire human intervention. At the minimum, they require the
user to specify the geometry of the array, such as the num-
ber of grids, number of rows and columns, etc. (see, for
example, SPOT from UCSF [7], IMAGENE from BioDis-
cover [12] and DAPPLE from University of Washington [1]).
Given that this is the first step for a data compression tool,
we cannot rely on human intervention because it would be
not only time-consuming but also quite impractical. To be
make the comparison more fair, we should remark that our
gridding procedure does not need to be as accurate as the
software tools mentioned above. In fact, if we happen to
slightly misalign a grid, we may lose some compression
performance, but the image will be perfectly reconstructed
anyway.

As said, a distinguished feature of our algorithm is that
of requiring only the image as an input. No other parame-
ter is necessary. Currently, the method assumes the axis of
grids to be parallel to the borders of the image. If a rota-
tion of the grids was occurred during the digitization pro-
cess, we may not be able to retrieve correctly the position
of the grid. We are currently working on extending our tech-
nique to this case.

The algorithm is actually used twice. We first apply it to
the whole image in order to find the positions of the sub-
grid. Then we use it again on each subgrid to find the po-
sition of the spots. To make the presentation consistent, we
use the word cell to denote either the rectangle enclosing a
spot or the rectangle enclosing a subgrid, and the word line

to denote the boundary of a collection of cells.

The first step is to compute the average intensities row-
by-row and column-by-column on the whole image. We
then apply a low-pass filter to remove the noise (see Fig-
ure 3). The smoothing window is 25 pixels when searching
for the subgrids, 4 pixels when searching for the spots.

Because of the structure of the microarray image, we can
assume that the distance between adjacent cells should be
approximately equal. Initially we “guess” the positions �
of the cells by finding the minima of the graph for the aver-
age intensity. We also compute the average value � of these
minima, which will become the reference background. Note
that these initial positions � may not form a regular grid of
cells. Before we start refining the positions � , we temporar-
ily remove the cell positions in first column, the last column,
the first row and the last row of cells. The reason is that these
rows and columns are very unreliable, which is due to the
way microarray slides are spotted. In order to distinguish
minima due to the grid boundaries from minima due to spot
boundaries, we check the amount of variation of pixel in-
tensities around the position of the minimum. If the intensi-
ties of the pixels in a window of 25 pixels centered around
the position of the minimum shows little variation, we de-
clare this minimum to be the position of a grid line. The re-
finement process which is then applied to � to correct pos-
sible mistakes is described next. Only after we get a reg-
ular grid, the first and last row/columns are added back to

� .

The method needs to be flexible enough to be able to
adapt to the variety of situations that we may encounter
when processing microarray images. Typically, the posi-
tions guessed initially may contain extra/missing lines. We
can have an extra line because of noise or contamination in
the microarray images that result in high intensities along a
row or a column, and we can have a missing line when all
the spots in a row/column happen to have low intensities.
The iterative refinement tries to adjust the initial guess �
to these situations. The first objective is to obtain the most

1000

1500

2000

2500

3000

3500

4000

4500

5000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

16
bi

t V
al

ue

Pixel

Average Data

"MEWAverageData.txt"

Average data of whole image

1000

1500

2000

2500

3000

3500

4000

0 200 400 600 800 1000 1200 1400 1600 1800 2000

16
bi

t V
al

ue

Pixel

Average Data

"FNew.txt"

Smoothed average data of whole image

1000

2000

3000

4000

5000

6000

7000

8000

0 50 100 150 200 250 300 350 400 450

16
bi

t V
al

ue

Pixel

Average Data

"MEWAverageData.txt"

Raw average data of one subgrid

1000

2000

3000

4000

5000

6000

7000

0 50 100 150 200 250 300 350 400 450

16
bi

t V
al

ue

Pixel

Average Data

"FNew.txt"

Smoothed average data of one subgrid

Figure 3. The effect of the smoothing step on average intensities

precise estimate of the correct distance between adjacent
lines. In order to do this we run the iterative algorithm RE-
FINE GRID described in Figure 4.

The distance � computed by REFINE GRID is finally
used to insert missing lines or delete extra lines in the set
of positions � . The value � is also used to adjust the po-
sition of the first row/column, and the last row/column. An
example of the refinement process is shown in Figure 5. Fig-
ure 6 illustrates an example of the iterative procedure.

The method have been tested on several microarray im-
ages, and we have found that it is quite effective in han-
dling noises and contaminations in the microarray images.
The subgrid and spots positions are correct in the vast ma-
jority of the cases, even for poor quality images (see Fig-
ure 8 for an example).

Once the subgrid position has been computed we classify
the pixels of the spot in each cell. This is done by comparing
the intensity of a pixel against the the background reference

� . We assign a pixel to the background when its intensity is
below � , otherwise it is classified as foreground. Among all
the pixels that we classify as a foreground, we find the cen-

ter ������ ��	� by computing the average of the � -coordinate and
the � -coordinate of the pixels in the foreground.

We then search for the smallest enclosing circle of each
spot. We fit each spot with a circle with growing diame-
ter, checking at each choice whether the average intensity
of the pixels on the circle goes below the value
 � (see
Figure 7-(a)). As soon as this happen, we fix the value of
the diameter � . We finally extract all the pixels which be-
longs to disk centered in ������ ��	� with diameter � . The infor-
mation ������ ��� � � of each spot is saved in the header chan-
nel.

The identification of the borders of the spot can also be
achieved using adaptive shape segmentation methods, such
as seeded region growing. Although the shape that these
methods can produce is much more accurate, one needs
more bits to save it. We chose a circle to describe a spot be-
cause it can be described by only three parameters. We are
planning to experiment with ellipses. A result of our grid-
ding procedure is shown in Figure 7-(b) and Figure 7-(c). A
complete example is shown in Figure 8.

real REFINE GRID � � �
1 ������� � average distance between adjacent cells on �
2 repeat
3 � � � �����
4 �

� � �
5 repeat
6 � � distance between a pair of adjacent lines
7 if �	��
 � then remove a line from �

�
8 if �	���� then add a line to �

�
9 until all lines have been considered
10 ������� � average distance between adjacent cells on �

�
11 until � ��������� �����
 �
12 return �

Figure 4. The iterative refinement algorithm (we use
������ � , �� ��� � , and
������ ��)

(3)

(1)

(2)

(4)

Correct line

Missing line

Noisy line
Extra line

Figure 5. An example of refinement process. (1) the input of the problem; (2) we merge the lines which
are very close to each other together; (3) we remove the incorrect lines; (4) we add back the miss-
ing lines

3. Compression and Experimental Results

Once the grid has been found, we assign the pixels to dif-
ferent channels depending on their class. If they belong to
a spot, they are assigned to the foreground channel. If they
do not, they go to the background channel. For our conve-
nience, the background and foreground channels are actu-
ally divided in two subchannels: the most significant eight
bits (MSB) and the least significant eight bits (LSB). A fifth
channel is used to store the information about the geome-
try of the grid and its position as well as the position of the
center and the diameter of each spot. The reference back-
ground intensities � for each subgrid is also saved in this
latter channel.

We first employed an entropy-minimizing lossless coder
to encode the five channels. Since adjacent pixels should be
correlated we also considered encoding the differences, i.e.,
using delta encoding. Surprisingly, our experiments shows

that delta encoding does not improve compression. Good re-
sults were obtained using arithmetic coding directly on the
stream of pixels, although better results were obtained us-
ing Burrows-Wheeler transform (BWT) [2]. The five com-
pressed channels are finally combined together in the fi-
nal compressed file. This format is also convenient for any
downstream program that needs to extract information from
the image, since a first step in the “parsing” of the image is
already done.

The compression performance depends directly on the
accuracy of the algorithm for finding the spots. The higher
is the precision in classifying pixels as foreground or back-
ground, the better is the compression. We tested our soft-
ware, called MICROZIP, on the image in Figure 1 which
is a ���
	 � � ��� ��� pixels 16 bpp microarray image (called
Array1) and two larger images (Array2 and Array3).
The three images are available from http://www.cs.
ucr.edu/˜yuluo/MicroZip/ to allow future com-

(2)
Correct line

(1)

(3)

Incorrect Line

Figure 6. An example of the iterative method. (1) The input of the problem. First, we compute the av-
erage distance � between adjacent lines; (2) according to value of � (smaller than the “true” value),
the algorithm may determine that the second correct line from the left is incorrect line and remove
it; the new average distance � � will be bigger than � ; (3) according to the new value of � � , we look
again at the original input and now the algorithm removes the two incorrect lines and keeps the sec-
ond correct line. The iterative procedure stops when the difference between � and � � are less than

� � .

(a) finding the spot using
increasing diameters (b) finding the grid (c) finding the spots

Figure 7. Finding the grid and the spots

parisons.

Table 1 shows the compression achieved on Array1
by using arithmetic coding and BWT on the five channels.
Note how the two channels for the least significant bit are
the least compressible. This appears consistent with what
the authors of [9] found. They report the least significant
bits are “almost random”, probably due to the noise intro-
duced in the digitization process. They argue that it will be
very unlikely to compress microarray images (without loss
of data) more than 50%, i.e., less than 8 bpp.

After we combine the five compressed channels with the
header containing the geometry of the grids, the final com-
pression for Array1 is 73% of the original size for arith-
metic coding and 72% for BWT. Images Array2 and
Array3 can be compressed more. In Table 2 we compare
this performance with some other general purpose com-

pression tools, like GZIP, lossless wavelets and JPEG-LS.
JPEG-LS is the basis for new lossless/near-lossless com-
pression standard for continuous-tone images incorporated
in JPEG 2000. The standard is based on the LOCO-I algo-
rithm (LOw COmplexity LOssless COmpression for Im-
ages) [13]. JPEG-LS achieves 78% whereas GZIP only
achieves 84% (GZIP is the tool currently used by the Stan-
ford Microarray Database administrators [16]).

The running time of MICROZIP is quite reasonable. On
an AMD Athlon 1.4GHz PC running Linux, MICROZIP

compresses about 256 Kb of data each second, including
I/O access. Since our tool does not require any human inter-
vention, it can automatically process a batch of microarray
images very easily and quickly.

As one can see from Table 2, there is a quite marginal
advantage in using MICROZIP over off-the-shelf lossless

Figure 8. The image of Figure 1 with the grids and spots found by MICROZIP

BWT Arithmetic coding
channel original size compressed size % compressed size %

Background (MSB) 2,697,081 1,043,306 38.68% 921,589 34.17%
Background (LSB) 2,697,081 2,708,422 100.42% 2,699,930 100.42%
Foreground (MSB) 889,671 566,566 63.68% 606,705 68.19%
Foreground (LSB) 889,671 893,914 100.48% 890,646 100.11%

Header 47,218 28,193 59.71% 32,604 69.05%

Table 1. Arithmetic coding and BWT encoding of each individual channel for the image in Figure 1

methods. This is due to the difficulty in compressing the
LSB channel for the background. Not only it cannot be com-
pressed, but it accounts for more than one half of the final
size. Luckily, it is also the least “important” portion of the
image. If we lose some data in the least significant bit of the
background, the image will be almost unaffected. In addi-
tion to this, we are guaranteed that the foreground will be
perfectly preserved.

One should, in fact, keep in mind that microarray images
are just an intermediate step in the long process of data col-
lection for microarray experiments. These images are pro-

cessed by a combination of image analysis software and hu-
man interaction, to obtain a single real value for each spot.
Whereas it may be hard to convince biologists to use lossy
compression on the whole image, it would be much eas-
ier to argue about the advantages of lossy compression at
least for the background.

In view of the considerations above, and in order to
achieve a higher compression, we implemented an hybrid
lossy/lossless compression. We use lossless compression
on the pixels of the foreground (which contains the spots)
and we use lossy compression on the LSB of background

Array1 Array2 Array3
lossless method size % bpp size bpp size bpp

Original 7,173,504 100% 16 21,500,352 16 13,985,250 16
GZIP 6,001,931 83.67% 13.39 15,402,872 11.46 9,061,450 10.37
Arith. Coding (AC) 5,919,755 82.52% 13.20 15,344,285 11.42 9,092,298 10.40
JPEG-LS � 5,580,041 77.79% 12.45 14,399,970 10.72 7,704,829 8.81
MICROZIP (AC) 5,240,078 73.05% 11.69 13,107,348 9.75 7,269,855 8.32
MICROZIP (BWT) 5,150,642 71.80% 11.49 12,861,078 9.57 7,407,677 8.47

Table 2. Comparing the results of lossless MICROZIP with some general purpose lossless compres-
sion methods on microarray image in Figure 1 (Array1) and two other images (Array2 and Array3).

�
JPEG-LS results have been obtained by compression separately the LSB and the MSB of the im-

age, due to limitations in the software

(BLSB channel for short). We tried several lossy methods
for the BLSB channel, and we narrowed our search down to
one.

The method, called SPIHT, is a very effective image
compression method based on a partitioning of the hierar-
chical trees of the wavelets decomposition [14]. In order
to use it, we had to convert the one-dimensional stream of
data into a two-dimensional image. The dimensions � and �
of the image can be arbitrarily chosen. Because wavelets-
based methods work best when the image is a perfect
square, MICROZIP searches for the values of � and � such
that � � � � � is the smallest possible. We used an open-source
implementation of SPIHT that can be found at http:
//www.cipr.rpi.edu/research/SPIHT/ (in pro-
gressive mode). Although this particular implementation
claims to be able to handle directly 16 bpp images, the
decompressor was not able to decompress the images cor-
rectly. We were forced to compress only the BLSB channel
with SPIHT.

Table 3 and Table 4 show the results of using SPIHT on
the BLSB channel, for increasing bit rates. As expected,
while the bit rate increases, the root mean square error
(RMS) and the peak noise-to-signal ratio (PNSR) decrease
and the final size increases. The RMS and PNSR values
have to be considered as a measure of quality for the whole
image, because the other channels are lossless compressed
with BWT. The tables also show the final size and the bpp
for the entire compressed image. Unfortunately, SPIHT soft-
ware currently cannot handle more compression higher than
8 bpp.

At the lowest quality, we obtain a compressed file that is
30%-40% of the original with 63 dB of PNSR. We believe
that this quality, associated with the guarantee of perfect re-
construction of the foreground, should be satisfactory for
the downstream analysis. If not, one could always choose a
quality that matches the quality of the digitization process,
as suggested in [9, 10].

4. Conclusions

In this paper, we investigate and experiment lossless
and lossy compression system for microarray images. MI-
CROZIP can automatically locate both grids and individ-
ual spots and compress the microarray image without any
other input parameters and human intervention. Based on
our tests, the tool is quite robust to images with variable
quality.

We found that the compression performance of the loss-
less method is only marginally better than state-of-art gen-
eral purpose lossless compression tools. However, by allow-
ing lossy compression on the LSB of the background, we
can obtain a significant compression. The price paid is the
introduction a negligible amount of errors in the LSB of the
background of the image. The quality of the compressed
background can be adjusted to match the average error in
the digitization process, thereby making the tool “logically
lossy”.

There are several directions for future investigation. Fu-
ture studies may include the design of more robust and ac-
curate algorithm to locate the position of grids and spots,
for example allowing rotations of the grids, along the lines
of [3] and [11]. Higher compression could be also achieved
by exploiting the strong correlations between the Cy3 and
Cy5 images.

Acknowledgments. This project was supported in part by
NSF grant DBI-0321756.

References

[1] J. Buhler, T. Ideker, and D. Haynor. Dapple: Improved tech-
niques for finding spots on DNA microarrays. Technical Re-
port CSE Technical Report UWTR 2000-08-05, University
of Washington, 2000.

[2] M. Burrows and D. J. Wheeler. A block-sorting lossless
data compression algorithm. Technical Report 124, Digi-
tal Equipments Corporation, May 1994.

Array1 Background LSB Entire image
MICROZIP compressed size % compressed size % bpp RMS PSNR

SPIHT (low) 489,860 18.16% 3,021,839 42.13% 6.74 37.23 64.91
SPIHT (avg) 732,913 27.17% 3,264,892 45.51% 7.28 22.46 69.30
SPIHT (high) 979,714 36.32% 3,511,693 48.95% 7.83 13.71 73.59

Table 3. The results of lossless/lossy MICROZIP compression on Array1 (original size: 7,173,504
bytes). Lossy compression is used in the LSB of the background (using three increasing choices of
bit rate) and BWT lossless compression for the other channels.

Array2 Background LSB Entire image
MICROZIP compressed size % compressed size % bpp RMS PSNR

SPIHT (low) 1,507,257 18.14% 6,206,568 28.87% 4.62 38.92 64.53
SPIHT (avg) 2,262,440 27.22% 6,961,751 32.38% 5.18 23.98 68.73
SPIHT (high) 3,016,587 36.30% 7,715,898 35.89% 5.74 14.34 73.20

Table 4. The results of lossless/lossy MICROZIP compression on Array2 (original size: 21,500,352
bytes). Lossy compression is used in the LSB of the background (using three increasing choices of
bit rate) and BWT lossless compression for the other channels.

[3] J. M. Carstensen. An active lattice model in a Bayesian
framework. Computer Vision and Image Understanding,
63:380–387, 1996.

[4] J. L. DeRisi, V. R. Iyer, and P. O. Brown. Exploring the
metaboblic and genetic control of gene expression on a ge-
nomic scale. Science, 278:680–686, 1997.

[5] N. Faramarzpour and S. Shirani. Lossless and lossy compres-
sion of dna microarray images. In J. A. Storer and M. Cohn,
editors, Data Compression Conference, page 538, Snowbird,
Utah, 2004. IEEE Computer Society Press, TCC.

[6] J. Hua, Z. Liu, Z. Xiong, Q. Wu, and K. R. Castleman. Mi-
croarray BASICA: Background adjustment, segmentation,
image compression and analysis of microarray images. In
EURASIP Journal on Applied Signal Processing: Special Is-
sue on Genomic Signal Processing, pages 92–107, 2004.

[7] A. N. Jain, T. A. Tokuyasu, A. M. Snijders, R. Segraves,
D. G. Albertson, and D. Pinkel. Fully automatic quan-
tification of microarray image data. Genome Research,
12(2):325–332, 2002.

[8] R. Jornsten, W. Wang, B. Yu, and K. Ramchandran. Microar-
ray image compression: SLOCO and the effects of informa-
tion loss. Signal Processing Journal (Special Issue on Ge-
nomic Signal Processing), 2002.

[9] R. Jornsten and B. Yu. “Comprestimation”: Microarray im-
ages in abundance. In Proceedings of Conference on Infor-
mation Science and Systems, Princeton, March 14-17, 2000.

[10] R. Jornsten and B. Yu. Compression of cDNA microar-
ray images. Technical report, Department of Statistics, UC
Berkeley, 2001.

[11] M. Katzer, F. Kummert, and G. Sagerer. A Markov random
field model of microarray gridding. In Proceedings of the

ACM Symposium on Applied Computing, pages 72–77, Mel-
bourne, FL, March 2003.

[12] A. Kuklin. Laboratory automation in microarray image pro-
cessing. American Laboratory, pages 64–67, May 2000.

[13] G. S. M. Weinberger, G. Seroussi. The LOCO-I lossless im-
age compression algorithm: Principles and standardization
into JPEG-LS. IEEE Trans. Image Processing, 9:1309–1324,
2000.

[14] A. Said and W. A. Pearlman. A new fast and efficient image
codec based on set partitioning in hierarchical trees. IEEE
Transactions on Circuits and Systems for Video Technology,
6:243–250, 1996.

[15] M. Schena, D. Shalom, R. Davis, and P. Brown. Quantita-
tive monitoring of gene expression patterns with a comple-
mentary DNA microarray. Science, 270:467–470, 1995.

[16] G. Sherlock. Personal communication, 2001.
[17] P. Simard, H. Malvar, J. Rinker, and E. Renshaw. A fore-

ground/background separation algorithm for image compres-
sion. In J. A. Storer and M. Cohn, editors, Data Compression
Conference, pages 498–507, Snowbird, Utah, 2004. IEEE
Computer Society Press, TCC.

[18] Y. H. Yang, M. J. Buckley, and T. P. Speed. Analysis
of cDNA microarray images. Briefings in Bioinformatics,
2(4):341–349, 2001.

[19] S. D. Y.H. Yang, M. J. Buckley and T. P. Speed. Compari-
son of methods for image analysis on cDNA microarray data.
Journal of Computational and Graphical Statistics, 2002.

