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Abstract

Summary: The growing number of metagenomic studies in medicine and environmental sciences

is creating increasing demands on the computational infrastructure designed to analyze these very

large datasets. Often, the construction of ultra-fast and precise taxonomic classifiers can comprom-

ise on their sensitivity (i.e. the number of reads correctly classified). Here we introduce CLARK-S, a

new software tool that can classify short reads with high precision, high sensitivity and high speed.

Availability and Implementation: CLARK-S is freely available at http://clark.cs.ucr.edu/

Contact: stelo@cs.ucr.edu

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

One of the primary goals of metagenomic studies is to determine the

taxonomical identity of bacteria and viruses in a heterogenous mi-

crobial sample (e.g. soil, water, urban environment, human micro-

biome). This analysis can reveal the presence of unexpected bacteria

and viruses in a newly explored microbial habitat, or in the case of

the human body, elucidate relationships between diseases and im-

balances in the microbiome.

Arguably, the most effective and unbiased methods to study

these microbial samples is via high-throughput sequencing. The

associated computational problem is to assign sequenced (short)

reads to a taxonomic unit. Several methods and software tools are

available, but faster and more accurate algorithms are needed to

keep pace with the increasing throughput of modern sequencing in-

struments. In Ounit et al. (2015) we introduced CLARK, a

taxonomy-dependent binning method whose classification speed is

currently unmatched. A recent independent evaluation of fourteen

taxonomic binning/profiling methods (Kraken by Wood and

Salzberg, 2014, MEGAN by Huson et al., 2007 and many others)

showed that the classification precision of CLARK is comparable

(sometimes better) than the state-of-the-art classifiers (Lindgreen

et al., 2016). Although CLARK’s speed and precision are very high,

its classification sensitivity (i.e. the fraction of reads that it correctly

classifies) can be significantly improved with the methods described

next.

We recall that CLARK is a k-mer based method. Briefly, it as-

signs a read r to a reference genome G if r and G share more dis-

criminative k-mers (i.e. k-mers that appear exclusively in one

reference genome) than other genomes in the database. Here we

show that the classification sensitivity can be increased by allow-

ing mismatches between shared k-mers in a limited number of

(carefully predetermined) positions, while maintaining the re-

quirement for k-mers to be discriminative. The idea of allowing

mismatches to improve the sensitivity of seed-and-extend align-

ment methods was pioneered in Ma et al. (2002) with the notion

of spaced seed. While spaced seeds have been used in some meta-

genomic binning/profiling methods (e.g. MEGAN), the use of dis-

criminative spaced k-mers is novel. Here we describe an extension

of the algorithmic infrastructure of CLARK based on spaced seed,

called CLARK-S.

2 Methods

Given an integer k and m reference genomes fg1; g2; . . . ; gmg, the

discriminative k-mers Di for genome gi is the set of all k-mers in gi

that do not occur (exactly) in any other genome (Ounit et al., 2015).

A spaced seed s of length k and weight w<k is a string over the al-

phabet {1,*} that contains w ‘1’ and ðk�wÞ ‘*’ Matches are

required at a ‘1’ positions, while mismatches are allowed at the ‘*’

locations. The set of discriminative spaced k-mers Ei;s is the set of all
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k-mers of Di that do not occur in any other set Dj (j 6¼ i) when mis-

matches are allowed at ‘*’ positions in s.

The common model to align a short (Illumina) read r of fixed

length to a reference genome G is not to allow gaps and assume that

mismatches (due to genomic variations or sequencing errors) follow a

Bernoulli distribution with parameter p (the similarity level between r

and G) (Brown et al., 2004). In such a model, the structure of the

spaced seed (or multiple spaced seeds) is critical to achieve the highest

possible precision and sensitivity (Brown et al., 2004; Ma et al.,

2002). Finding an optimal set of spaced seeds through w, k and p is

computationally difficult (Brown et al., 2004), thus we decided to re-

duce the space search by judiciously setting w, k and p. Since CLARK

is more precise for long contiguous k-mers (e.g. k ¼ 31), but its high-

est sensitivity occurs for k 2 ½19; 22�, we considered spaced seeds of

length k¼31 and weight w¼22. We set p¼0.95 to reflect the ex-

pected high similarity between genomic sequences at the species rank.

Through an exhaustive search of all spaced seeds (with parameters

k¼31, w¼22, p¼0.95) and using the dynamic programming

method implemented by Ilie et al. (2011) on a region of 100bp, we

selected the three spaced seeds with the highest ‘hit probability’

(Ma et al., 2002), namely 1111*111*111**1*111**1*11*11111

(hit probability 0.99811), 11111*1**111*1*11*11**111*11111

(0.998099) and 11111*1*111**1*11*111**11*11111 (0.998093).

In the pre-processing stage, CLARK-S stores on disk, for each

genome i and each spaced seed s, the set of discriminative spaced k-

mers Ei;s. When compared with CLARK’s classification phase,

CLARK-S requires three look-ups for each k-mer in a read (one

look-up per spaced seed).

3 Experimental setup

As said, a recent independent evaluation of several published taxo-

nomic binning methods showed that CLARK and Kraken are the

two most accurate tools at the genus and phylum level (Lindgreen

et al., 2016). Instead of comparing CLARK-S to all published bin-

ning methods, it is therefore sufficient to compare it against CLARK

and Kraken. To guarantee a consistent and fair evaluation, we ran

CLARK-S, CLARK and Kraken on the same set of reference gen-

omes, namely all microbial genomes in the NCBI RefSeq database

(total of 5747 species: 1335 bacteria, 123 archaea and 4289

viruses). Evaluations were carried out on simulated datasets and real

metagenomic data, as explained next.

We created six synthetic datasets, each representing a distinct mi-

crobial habitat and containing reads from the related dominant or-

ganisms (see Supplementary Materials S1 for full details). We

included samples from the human mouth (characterized by 12 dom-

inant species), city parks (48 species), human gut (20 species), house-

hold (two datasets, 31 and 21 species) and soil (50 species). A

seventh dataset included reads from 525 randomly chosen bacterial/

archaeal species (see Supplementary Materials S1). All these datasets

are composed of 100 bp reads generated by ART (Huang et al.,

2012) using the Illumina error model with default settings. Since

two distinct species i and j can have sequence similarity as high as

98.8% (Stackebrandt and Goebel, 1994), a short read r generated

from genome gi may appear in another genome gj for a given error

rate or number of mismatches. Ignoring the possibility of ambiguity

in reads classification is likely to lead to incorrect conclusions on

precision and sensitivity. In order to carry out an unbiased evalu-

ation, we created additional datasets (called ‘unambiguous’, see

Supplementary Materials S2 for details) in which no read can be

mapped to more than one species with the same error rate or

number of mismatches. We tested the three tools on fourteen data-

sets containing a total of 23.5 M reads from 647 species (see

Supplementary Table S1). We also added three negative control

samples containing short reads that do not exist in any genome in

the NCBI/RefSeq database (see Supplementary Materials S1). We

used the precision and sensitivity metrics defined in Ounit et al.

(2015) to evaluate the classification performance.

For experiments on real metagenomes, we chose a large dataset

from a recent study on the microbial profile of the New York City

subway system, the Gowanus canal and public parks (Afshinnekoo

et al., 2015). We selected twelve datasets containing a total of 105M

reads from various microbial habitat (e.g. bench, garbage can, kiosk,

stairway rail, water, etc.), subway stations and riders usage (see

Supplementary Table S3). Although the ground truth for these data

is unknown, the abundance of bacteria, eukaryotes and viruses pre-

sent in these samples were provided in Afshinnekoo et al. (2015).

We trimmed raw reads as it was done in Afshinnekoo et al. (2015)

(see Supplementary Table S3), then compared the results of

CLARK-S with the findings in Afshinnekoo et al. (2015) (see

Supplementary Table S4 and S5).

4 Results and discussion

Observe in Supplementary Table S2 that the sensitivity achieved by

CLARK-S on the 14 simulated datasets is consistently higher than

other tools, while maintaining high precision (the increase in sensi-

tivity is even higher on unambiguous datasets). Also, note that

CLARK-S did not classify any reads from the negative control sam-

ples. Supplementary Table S7 shows that CLARK-S classifies about

200 000 short reads per minute (using one CPU), while CLARK

classifies about 3.5 M short reads per minute. If one can take advan-

tage of eight cores, CLARK-S classifies about 1 M short read per mi-

nute, which is sufficiently fast to process large metagenomic datasets

in few minutes (see Supplementary Materials S3). CLARK-S requires

more time to build the database than CLARK or Kraken, but its

RAM usage is comparable to the other tools (see Supplementary

Table S8).

Observe in Supplementary Table S6 (real datasets) that CLARK-

S classifies more reads than CLARK or Kraken. On average,

CLARK-S classifies 10% more reads than Kraken, and 27% more

reads than CLARK. Supplementary Table S5 indicates the reads

count assigned by each tool to each species listed in Afshinnekoo

et al. (2015) and present in the database. CLARK-S achieves consist-

ently the highest agreement with Afshinnekoo et al. (2015) on all

samples. For instance, in P00589 and P00720, CLARK-S detected

the presence of the virus Enterobacter phage HK97 but CLARK/

Kraken did not; in sample P01136, CLARK-S detected Brucella ovis

but CLARK/Kraken failed to do so. In general, CLARK-S identified

more relevant organisms than the other tested tools, as observed by

a recent study focusing on water samples (Thompson et al., 2016).
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