
A Decomposition Approach for Discovering
Network Building Blocks∗

Qiaofeng Yang
Physical Biosciences Division

Lawrence Berkeley National Laboratory
Berkeley, CA 94720, USA

qyang@lbl.gov

Stefano Lonardi
Department of Computer Science & Engineering

University of California
Riverside, CA 92521, USA

stelo@cs.ucr.edu

ABSTRACT
The increasing availability of biological networks (protein-
protein interaction graphs, metabolic and transcriptional
networks, etc.) is offering new opportunities to analyze their
topological properties and possibly gain new insights in their
design principles. Here we concentrate on the problem of
de novo identification of the building modules of networks,
which we refer to as network modules.

We propose a novel graph decomposition algorithm based
on the notion of edge betweenness that discovers network
modules without assuming any a priori knowledge. We
claim that the knowledge of the distribution of network mod-
ules carries more information than the distribution of sub-
graphs which is commonly-used in the literature. To demon-
strate the effectiveness of the statistics based on network
modules, we show that our method is capable of clustering
more accurately networks known to have distinct topologies,
and that the number of informative components in our fea-
ture vector is significantly higher. We also show that our ap-
proach is very robust to structural perturbations (i.e., edge
rewiring) to the network. When we apply our algorithm to
protein-protein interaction (PPI) networks, our decompo-
sition method identifies highly connected network modules
that occur significantly more frequently than those found
in the corresponding random networks. Detailed inspection
of the functions of the over-represented network modules
in S. cerevisiae PPI network shows that the proteins in-
volved in the modules either belong to the same cellular
complex or share biological functions with high similarity.
A comparative analysis of PPI networks against AS-level
Internet graphs shows that in AS-level networks highly con-
nected network modules are less frequent but more tightly
connected with each other.
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1. INTRODUCTION
Many real world systems can be modeled as network graphs,

and their formal analysis can help us understand the un-
derlying design principles behind each corresponding sys-
tem. For example, identifying highly connected subgraphs
in protein-protein interaction graphs can potentially enable
life scientists to discover new protein complexes or specu-
late about the functions of unknown proteins [3, 23, 6]. In
addition, the topological analysis can offer new insights in
the roles of structural elements on the network performance,
such as, traffic flow or diffusion of computer viruses over the
Internet, epidemic diseases or ideas spreading in social net-
works, error and attack tolerance of various communication
networks, etc.

In the past few years, a significant research activity has
been focused on studying global and local properties of the
network graphs (see, e.g., [7, 4, 27]) and significant break-
throughs have been achieved. For instance, the concept of
scale-free networks, and the small world phenomenon have
changed the way we model and analyze graphs across many
different disciplines, from biological networks, to social net-
works all the way to communication networks.

In an attempt to understand the design principles of net-
works, the concept of network motif [18] has been recently
proposed to represent the subgraphs in the network that oc-
cur significantly more often than the number of times they
occur in the corresponding random networks. By using the
concept of network motif, the authors of [18] were able to
show that similar motifs were found in several information
processing networks irrespective of their origin. They argued
that these motifs may define universal classes of networks.
The concept of network motif has been widely adopted to
study local properties of various biological networks. For ex-
ample, the network motifs in the transcriptional regulation
network of E. coli were studied by Shen-Orr et al. [24]. The
authors found that three highly significant motifs, namely,
the feed-forward loop, the single input module and the dense
overlapping regulons, are the main building blocks of the
network. They also discovered that each motif is associated
with a specific function in determining gene expression. A
large collection of metabolic pathway networks were ana-
lyzed by Koyuturk et al. in [13]. The authors designed
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Figure 1: Illustrating the bias introduced by the
occurrences of hubs (a) on the counts of subgraphs
(b) and (c)

an efficient algorithm based on the frequent itemsets algo-
rithm [1, 10] to find frequent subgraphs in the metabolic
networks of over 150 organisms. Wuchty et al. [28] studied
the conservation of 678 yeast proteins with the correspond-
ing ortholog proteins in five higher eukaryotic organisms.
The authors discovered that the orthologs are not randomly
distributed in the yeast protein interaction network but are
the building blocks of larger cohesive motifs, which tend to
be evolutionarily conserved. They also observed that larger
motifs tend to be conserved as a whole, with each of their
components having an ortholog. Yeger-Lotem et al. [31] pro-
posed the concept of composite network motifs, which consist
of patterns from both transcription-regulation and protein-
protein interaction networks that appear significantly more
often than in random networks. They detected two-protein,
three-protein, and four-protein motifs that occur in both
networks.

Recently, the concept of network motif has been used to
classify graphs. Milo et al. [17] introduced the concept of
significance profile which is computed over the small sub-
graphs of the network and is used to cluster different net-
works. The profile is a normalized z-score for each sub-
graph obtained by comparing the number of occurrences of
the subgraph to the number of occurrences in correspond-
ing random networks. The authors were able to show that
all networks having similar functionality share similar pro-
files. Surprisingly a few super-families of unrelated networks
also share very similar significance profiles. Along the same
line, Middendorf et al. [16] proposed a discriminative ap-
proach to understand the design of complex networks. The
authors built a classifier based on alternating decision tree
and trained the classifier using raw subgraph counts of 148
subgraphs obtained from seven random graph models. The
protein-protein interaction graph (PPI) of D. melanogaster
was classified as duplication-mutation-complementation net-
work [26].

While this paper was under review, a work by Luo et al.
[14] appeared in the scientific literature. The authors present
an agglomerative algorithm to identify biological modules in
PPI based on the concept of betweenness and modularity [9,
19, 21].

We observe that the majority of the approaches mentioned
above share two common features, namely (1) they are de-
signed to operate on directed graphs and (2) they are based
on the exhaustive enumeration of all the subgraphs (up to a
given size) in the network. From here on, we refer to exhaus-
tive subgraph enumeration approaches as Subgraph Counting
Network Motif (SCNM) approaches. We observed that using
the raw subgraph counts as an indicator of over-representa-
tion has an inherent shortcoming. This arise from the fact

Input: Graph G, integer k and a list L of all subgraphs gi

of size smaller or equal to k
Output: Number of occurrences of each subgraph gi in L

C ← Connected Components(G)
for each connected component Gd ∈ C do

Enqueue(Q, Gd)
while Q 6= ∅ do

n, Gc ← 1,Dequeue(Q)
if Num Vertices(Gc) ≤ k do

Update Counts(L, Gc)
else

while n = 1 do

e← Edge Betweenness(Gc)
Remove Edge(Gc, e)
C ← Connected Components(Gc)
n← Size(C)

for each connected component Gd ∈ C do

Enqueue(Q, Gd)
return L

Figure 2: Sketch of the edge betweenness decompo-
sition algorithm

that some subgraphs substantially overlap with each other,
which in turn creates strong biases in the absolute counts.
For example, hubs (nodes with high degree) are quite com-
mon in PPI networks [11]. As illustrated in the example
of Figure 1, if one hub of degree twelve (a) is present in
the network, then we will observe 66 subgraphs of type (b)
and 220 subgraphs of type (c). If the network under study
has several hubs, then type (b) and type (c) subgraphs will
be highly over-represented when compared to random net-
works and they will dominate the analysis. However, such
subgraphs may well be totally irrelevant from a statistical
or biological viewpoint.

Here we address this limitation of SCNM approaches by
introducing a novel graph decomposition method based on
the concept of edge betweenness [9, 19, 21]. Our method
decomposes the network into a collection of small subgraphs
(called network modules), and thereby creates a disjoint par-
titioning of the nodes. The fact that a node can belong
to only one network module solves the problem of count-
ing overlapping subgraphs, and potentially allows us to as-
sign putative biological functions to the nodes involved in
the same network module. In order to evaluate objectively
the effectiveness of our method to extract important fea-
tures from the graph, we compare it to SCNM approaches
on the problem of graph classification (along the lines of
[17]). Results show that our approach is more accurate
in distinguishing networks known to have distinct topolo-
gies. Our method is also tested for robustness against ran-
dom perturbations to the network (i.e., edge rewiring), and
our findings suggest low sensitivity to small changes in the
graph. Finally, we report on preliminary results on the anal-
ysis of several protein-protein interaction networks (PPI).
We show that highly connected network modules are more
over-represented in PPI networks than those found in their
random counterparts, and that the proteins involved either
belong to the same cellular complex or share highly similar
functions.

2. AN EDGE BETWEENNESS DECOMPO-
SITION ALGORITHM

It is well-known that proteins that are involved in the
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Figure 3: Non-isomorphic subgraphs of size ranging from one to five nodes

same cellular process or reside in the same protein complex
are expected to have strong interactions with their partners.
At the same time, interactions between distinct functional
modules are expected to be suppressed in order to increase
the overall robustness of the network by localizing effects of
deleterious perturbations [15]. Biological networks are be-
lieved to consist of different modules with distinct functions
[11, 22]. Here we are interested in identifying the build-
ing blocks of these functional modules without any a priori
biological knowledge.

In this study, the detection of the building modules is
based solely on the concept of edge betweenness. Consider
the shortest paths between all pairs of vertices in a graph.
The betweenness of an edge [9] is defined as the number of
these shortest paths running through it1. When two dif-
ferent functional modules are loosely connected with each
other, all shortest paths between vertices in those two mod-
ules have to traverse the few links between them. By remov-
ing those edges, the functional modules are separated from
one another. The effectiveness of the betweenness approach
on PPI graph in decomposing the network to find functional
modules has been recently reported in [6]. In order to find
the basic building modules of the network, we proceed as
follows. First, we compute the edge betweenness of all the
edges. Then, we start removing the edges with the high-
est betweenness until the largest connected component of
the graph becomes smaller than or equal to some predefined
threshold (k). Each time we remove an edge, the between-
ness is recomputed from scratch. All the “small” connected
components are then classified and counted. We refer to all
the classified small subgraphs as network modules.

The outline of the algorithm is sketched in Figure 2. The
function Edge Betweenness computes and returns the edge
with the largest edge betweenness. Evaluating the between-
ness value for all edges of graph G = (V, E) requires O(|V ||E|)
time, by running a BFS from each node of the graph. The
iterative removal of all |E| edges leads an overall worst-case
time complexity of O(|V ||E|2) for our approach. Because
of its computational cost, a distributed implementation of
Edge Betweenness was used [30].

When comparing our approach to Newman and Girvan
method [19, 21], several major differences emerge. Although

1If multiple shortest paths between a pair of nodes exists,
each shortest path contributes an equal fraction to the edge-
betweenness of their edges [5].

Table 1: The set of graphs used in the experiments
ID name |V | |E|
1 H. pylori PPI 702 1359
2 H. sapiens PPI 1059 1318
3 C. elegans PPI 2629 3970
4 S. cerevisiae PPI 4770 15181
5 D. melanogaster PPI 7057 20815
6 E.coli. Transcription 418 519
7 S. cerevisiae Transcription 688 1078
8 C. elegans Neuron Connectivity 202 1952
9 AS1 3522 6324
10 AS2 4885 9276
11 AS3 7246 14629
12 AS4 10515 21455
13 AS5 4686 8772
14 AS6 9200 28957
15 Circuits1 122 189
16 Circuits2 252 399
17 Circuits3 512 819
18 Protein Structure1 95 213
19 Protein Structure2 53 123
20 Protein Structure3 97 212
21 Social1 67 142
22 Social2 32 80
23 Japanese 2704 7998
24 English 7381 44207
25 French 8325 23841
26 Spanish 11586 43065

both algorithms employ betweenness to determine the order
in which edges have to be removed, Newman and Girvan’s
relies on a metric that evaluate the quality of the decom-
position, called modularity. In their method, the final de-
composition is obtained by “cutting” the dendrogram of the
decomposition at the point in which the value of the mod-
ularity peaks. In our method, we keep removing edges un-
til the graph disconnects; only if the component is small
enough, we stop the process and classify the module in one
of 31 non-isomorphic subgraphs (shown in Figure 3).

Note that in our approach each vertex can only belong
to one network module, in contrast to the network motifs
widely used in the literature [18, 24, 28, 31, 16], which are
based on exhaustive subgraph counting (SCNM) approach.
To make a distinction between our approach and SCNM
approach, we refer to our method as Graph Decomposition
Network Module (GDNM) approach.
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Figure 4: Comparing the exhaustive subgraph enu-
meration and random sampling on the graph Pro-
tein Structure3. The x-axis represents the subgraph
index (according to Figure 3), whereas the y-axis
represents the subgraph concentration. Subgraph
of size 3, 4 and 5 were sampled 100,000 times

3. REPRESENTATION OF GRAPH
FEATURES

Since the number of possible subgraphs grows exponen-
tially with the number of nodes, in this study we only con-
sider the number of occurrences of network modules of size
up to five nodes (as in papers [20, 28]). As illustrated in
Figure 3, there are 31 non-isomorphic subgraphs of size
up to k = 5. Each subgraph gi is indexed by an integer
i = 1, . . . , 31.

When a graph G is processed by the algorithm in Fig-
ure 2 where k = 5 and L = {g1, . . . , g31}, a feature vector
of 31 components is returned. Note that the number of oc-
currences of subgraphs of size one and two in the SCNM
approaches it is somewhat meaningless, since they corre-
spond respectively to the number of nodes and the number
of edges in the graph. As a consequence, the feature vector
for the exhaustive subgraph counting is 29-dimensional for
k = 5. In our approach it is meaningful to keep track of all
those 31 counts because when the network is broken down
into connected components, some of those components may
just have one or two nodes.

Before we can use these feature vectors to classify graphs,
we need to normalize the components to remove the depen-
dency on the absolute size of the graph. This will allow
us to compare graphs of different sizes. We consider two
normalizations, as explained below.

3.1 Subgraph Proportion Normalization
The first normalization tries to capture what proportion

of nodes belongs to each subgraph class gi. Given a graph
G = (V, E) and the vector [ni] of network module counts,
the i-th component of the subgraph proportion vector is de-
fined as ni|gi|/|V | where ni is the number of occurrences
for subgraph class gi. In the following we will use this nor-
malization for the feature vectors associated with network
building modules computed by our GDNM decomposition.
Note, that since

P31
i=1 ni|gi| = |V |, the sum of all the com-

ponents of the subgraph proportion vector is always 1.

3.2 Subgraph Concentration Normalization
The second (alternative) normalization denotes how fre-

quent is one subgraph class with respect to all the other
classes with the same number of nodes. Given the vector [ni]
of subgraph counts, the i-th component of the subgraph con-
centration [12] vector is defined as ni/

P

j:|gj |=|gi|
nj , where

ni is the number of occurrences of subgraph gi. It is easy
to realize that the sum of all the components of the sub-
graph concentration vector is always k. In the following we
will use this normalization for the vector associated with
the exhaustive SCNM approaches, since the subgraph pro-
portion vector is not feasible for it. If we used the subgraph
concentration normalization for the GDNM approach, we
would loose the information carried by the network modules
of size one and two (both components will be one).

4. RESULTS AND DISCUSSION
To test the effectiveness of our GDNM approach, we con-

ducted several experiments and compared the results with
the SCNM method. The first set of experiments is about
graph classification, both on simulated data and on real net-
works (see Table 1 for a summary of the dataset). Five PPI
networks were obtained from DIP database [29] and the rest
of the networks are from [2]. We also performed a robustness
test of our technique and computed the over-represented
modules in PPI networks. Then, we studied the biologi-
cal functions associated with the over-represented network
modules found by our algorithm on the yeast PPI network.

4.1 Graph classification

4.1.1 Estimating the subgraph counts
Due to the large size of some of the networks in our

dataset, the exhaustive subgraph enumeration is not always
possible. In order to obtain the network motifs based on
subgraph counting, we adopted the sampling algorithm by
Kashtan et al. [12] to compute the number of occurrences
of each subgraph in the network. For completeness of pre-
sentation, we briefly review the sampling procedure for a
subgraph of size k. (1) Pick an edge e = (u, v) ∈ E uni-
formly at random; (2) Set U = {u, v} (3) Compute the set
F of vertices that are adjacent to the vertices in U ; (4) Pick
one vertex from F at random and add it to U ; (5) Repeat
steps (3) and (4), until the target number k of vertices is
reached.

Figure 4 shows a comparison between the exhaustive sub-
graph enumeration and the sampling approach for the “Pro-
tein Structure 3” network. The figure shows that the sam-
pling algorithm gives good approximations of the subgraph
concentration. We compared the sampling approach to the
exhaustive count on many other relatively small graphs and
in all cases it was capable of producing good estimates.

4.1.2 Classification of Real Networks
The real-world networks summarized in Table 1 were pro-

cessed along the same lines as the previous experiment. It
is worth noting that we treated all networks as undirected
graphs although some of them (i.e., transcription regula-
tion networks, social networks and language networks) are
directed. Figure 5 shows the two Pearson correlation coef-
ficient matrices for the 26 networks for our decomposition
algorithm (left) and the subgraph counting approach (right).
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Figure 5: Pearson correlation coefficient matrix on the 26 real networks in Table 1 using decomposition
network module approach (LEFT) and subgraph counting network motif approach (RIGHT)

Both pictures use the same scale. An inspection of the right
matrix (corresponding to SCNM) shows that almost all net-
works are significantly correlated with one another. On the
other hand, the feature vectors computed with our approach
(left) show clearly that there are several distinct families of
networks. The first is a big cluster composed of biologi-
cal networks (PPI, transcriptional and neural), Internet AS-
level networks, and languages networks, although the neu-
ral network does not share significant similarity with some
members of this family. The second consists of circuit net-
works and the third consists of protein structure networks.
The two social networks are not strongly correlated probably
due to their small size. Note that circuit, protein structure
and social networks are clustered together in the SCNM cor-
relation matrix (right).

4.1.3 Principal component analysis
In order to establish an objective measure of the quality

of the features extracted by the two approaches, we per-
formed a principal component analysis (PCA) of the covari-
ance matrices for both methods and both datasets (random
and real data). The goal of this PCA analysis is to es-
tablish the effective dimensionality of the feature vectors
obtained by the two methods. Figure 6 shows the distribu-
tion of the eigenvalues of the covariance matrix for random
(left) and real networks (right). The value of the eigenvalues
clearly illustrates that our decomposition method extracts
more information from the graph. The analysis shows that
our approach has a larger number of significant indepen-
dent components in the feature vectors. For example on the
random dataset, 11 principal components have significant
eigenvalues whereas only three are obtained using the sub-
graph counting approach. On the real network dataset, our
method extracts 21 significant components against 14 of the
other approach. The fact that we have more “useful” com-
ponents in our feature vectors can explain why our approach
creates sharper and more accurate boundaries between dif-
ferent types of graphs.

4.2 Robustness
To test the sensitivity of the GDNM approach to random

perturbation to the graph, we conducted a few experiments
in which we swapped some of the edges of the network at

random. This process is called rewiring [4], and works as
follow.

Given a graph G(V, E), randomly pick two edges (u, v) ∈
E and (x, y) ∈ E. If (u, x) /∈ E and (v, y) /∈ E, add (u, x)
and (v, y) to E and delete (u, v) and (x, y) from E. Other-
wise, if (u, y) /∈ E and (v, x) /∈ E, add (u, y) and (v, x) to
E and delete (u, v) an d(x, y) from E. If both choices are
feasible, then whether we should connect (u, x) and (v, y) or
(u, y) and (v, x) is arbitrarily chosen at random.

Figure 7 shows the profile of the vectors computed by our
decomposition method before and after random perturba-
tions up to 10% edge-rewiring on the PPI networks of yeast
and fly. The figures indicate that our approach is quite ro-
bust to random perturbations.

4.3 Enrichment of Network Modules in PPI
We applied our GDNM algorithm to two large biological

networks, namely, the protein-protein interaction (PPI) net-
work for S. cerevisiae (yeast) and the PPI for D. melanogaster
(fly). According to [8] the PPI of drosophila was obtained
by high-throughput yeast two hybrid assays, whereas the
source of the PPI data for yeast is a mix of mass spectrome-
try and yeast two hybrid assays. Our objective on PPIs is to
identify network modules which are over-represented when
they are compared to corresponding random networks, and
possibly determine whether these over-represented modules
are associated with important biological functions. We stud-
ied over-represented network modules both analytically and
empirically. We performed an analytical analysis based on
ER random graph model and an empirical analysis based
on scale-free network model. We also report a preliminary
comparative analysis of PPI and AS-level networks.

Consider an Erdos-Renyi (ER) random graph G(V, E),
which has |V | = n labeled vertices and each pair of vertices is
connected with probability p. Given G we want to calculate
the expected number of occurrences of subgraphs Hr,l with
r vertices and l edges. Let Zr,l be the random variable
associated with the number of subgraphs Hr,l in G. The
expected number of occurrences of Hr,l can be obtained as
follows

E(Zr,l) =

 

n

r

! 

r(r − 1)/2

l

!

pl(1 − p)(r(r−1)/2)−l.
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Figure 6: The eigenvalue distribution of the covariance matrix for 20 random networks (LEFT) and 26 real
networks (RIGHT). The x-axis represents the ranks of the eigenvalues, the y-axis represent the absolute
value of the eigenvalues

Indeed, there are
`

n
r

´

ways of selecting r vertices from n
vertices, and the maximum number of edges over r vertices
is
`

r
2

´

= r(r − 1)/2. The probability of observing l edges

given r vertices is therefore
`

r(r−1)/2
l

´

pl(1 − p)(r(r−1)/2)−l.
The value of E(Zr,l) is not a tight reference point when
used to evaluate the significance of the subgraph counts
obtained using our GDNM approach. The reason is that
the count captured by Zr,l include overlapping and discon-
nected subgraphs, whereas our approach only considers non-
overlapping and connected subgraphs.

Table 2 lists the observed and expected number of sub-
graphs Hr,l in the yeast PPI network. It is obvious from
Table 2 that densely connected subgraphs, such as g28−g31,
are significantly over-represented when compared with the
ER random graph model.

When comparing network module counts with the ex-
pected number of subgraphs in the ER random model, an-
other fact need to be taken into account. Since our method
removes edges with high betweenness first, it tends to fa-
vor highly connected subgraphs to sparser subgraphs. This
observation has to be taken into account in the assessment
of the statistical significance of these findings. In order to
eliminate this bias, we also conducted an empirical analysis
of the statistical significance, as described next.

To better understand the distribution of the number of
subgraphs when the underlying random graph model has
the same degree distribution as the original network, we
performed an empirical study based on scale-free network
model. The random networks were generated using the same
method used to generate the scale-free networks above, but
this time the degree distributions are that of the yeast and
fly PPI networks. We made sure that the degree distribu-
tions are well preserved between real and random networks
(statistics not shown). Our GDNM approach was subse-
quently applied on the scale-free random networks.

Figure 8 shows the profile of the subgraph proportion
vectors for yeast (left) and fly (right) networks compared
to the subgraph proportion vectors obtained from the ran-
dom networks with the same degree distribution (averaged
over 10 random networks). The comparison shows that large
highly-connected subgraphs (i.e., those with high subgraph

Table 2: The observed and expected number of sub-
graphs with r vertices and l edges.

Network module r l Observed Expected
g3 3 2 214 97629
g4 3 3 8 45
g5 − g6 4 3 118 1.05 e6
g7 − g8 4 4 20 1085
g9 4 5 6 0.60
g10 4 6 3 1.38 e−4
g11 − g13 5 4 137 1.41 e7
g14 − g18 5 5 18 23430
g19 − g23 5 6 26 27
g24 − g27 5 7 18 0.02
g28 − g29 5 8 7 1.10 e−5
g30 5 9 18 3.38 e−9
g31 5 10 29 4.66 e−13

indices) occur significantly more often in PPI networks than
in random networks. This indicates that the occurrences of
densely connected modules in PPI networks cannot be ex-
plained by chance and may imply important biological roles
in the cell. When interpreting these results, we should not
forget how the PPI data is collected. For example, since co-
immunoprecipitation detects multi-protein complexes, this
in turn can possibly bias the number of occurrences of cliques
or other highly connected modules. An open question is how
to correct for this bias, since the technology used in the col-
lection of protein interaction data is likely to stay with us,
at least in the short term.

It is clear from both analytical and empirical approaches
that densely connected modules are significantly over-repre-
sented. In order to gain some insights in the functions of
these modules in PPI networks we concentrated on module
g31 (5-clique), which is one of the statistically significant
modules identified in the yeast network. The functional
analysis of the 29 occurrences of module g31 obtained by
our algorithm reveals two classes of modules. In the first we
found cellular protein complexes, such as 26S protease, RNA
polymerase II, spliceosome, origin recognition complex, nu-
clear pore complex, etc. In the second, we found proteins
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Figure 7: Testing the robustness of our decomposition approach before and after 10% edge rewiring in S.
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Figure 8: Comparing the occurrences of network modules in S. cerevisiae (LEFT) and D. melanogaster

(RIGHT) against the corresponding random graphs (averaged over 10 random graphs)

that share highly similar functions, of which are involved
in transcription regulation, translation initiation, cell cycle
control, cellular transportation, mRNA processing, signal
transduction cascades, etc. The functional categories of the
29 occurrences of module g31 are summarized in Table 3. Ex-
amples of the proteins involved in some of the modules g31

are given in Table 4. Due to lack of space, we refer the reader
to http://www.cs.ucr.edu/~qyang/ for the complete set of
annotations.

We also performed a comparative analysis of the network
modules in PPI networks against Internet AS-level networks.
The goal of the analysis was to determine whether the over-
represented modules in PPI are more or less interconnected
than in the AS-level graphs AS4 and AS5. Both PPI and
AS-level graphs have a skewed degree distribution. The“rich
club connectivity”[32] analysis on the AS4 and AS5 reported
one 10-clique among the vertices with the highest degree
(data not shown), which is referred as the core of the Inter-
net. Figure 9 shows that the yeast PPI has significantly more
occurrences of large network modules (e.g., g25, g26, . . . , g31)
than AS4 and AS5. Internet AS-level networks are known

Table 3: Distribution of the 5-cliques based on func-
tion annotation in S. cerevisiae PPI network

Function Category Number of 5-cliques
Transcription 7
mRNA processing 5
Cell cycle 5
Cellular transportation 4
Metabolism 3
Translation 2
Cytoskeleton 1

to have highly connected core structure, where the links in-
side the core carry higher amount of communication flow
than rest of the links in the network. Therefore, links inside
the core will have higher betweenness and will be removed
first in the decomposition process. The consequence is that
in AS-level networks the resulting decomposition will lack
these large network modules. In contrast, the highly con-



 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

Yeast
AS4

 1e-04

 0.001

 0.01

 0.1

 1

 0  5  10  15  20  25  30  35

Yeast
AS5

Figure 9: Comparing the occurrences of network modules between S. cerevisiae PPI network and the Internet
AS-level network AS4 (LEFT) and AS5 (RIGHT)

nected large modules in PPI networks tend to be more fre-
quent and more loosely connected with each other. This
may indicate that PPI networks are organized in a decen-
tralized manner across multiple functional domains, inside
which strong connections among proteins may constitute the
core facility for carrying out specific functions.

5. CONCLUSIONS
In this paper we proposed a new graph decomposition ap-

proach that is based on the concept of edge betweenness.
The decomposition breaks the network into a set of small
network modules, whose frequency of occurrence is then
mapped to feature vectors and then normalized. The ex-
periments show that our decomposition method produces
normalized feature vectors that more clearly define classes
of graphs than the ones produced by the subgraph counting
(network motif) approach. More specifically, the analysis of
the eigenvalues of the principal components of the covariance
matrices shows that our approach extracts a larger number
of independent informative features.

Our method turns out to be quite robust to edge rewiring
and therefore not over-sensitive to small perturbations to the
graph. The analysis of the PPI networks of yeast and fly has
identified several over-represented modules when compared
to random networks with the same degree distribution, and
AS-level Internet graphs. A preliminary investigation on the
proteins associated with the cliques found by our decompo-
sition algorithm on the yeast PPI network shows that the
proteins involved either belong to the same complex or share
similar biological function.

We conclude by addressing some of the limitations of our
method that could point to future research direction. The
main advantage of a decomposition approach is that one
node belongs to only one module, thereby solving the prob-
lem of over-counting overlapping subgraphs. However, on
PPI graphs this is also a disadvantage because one protein
can belong to only one network module, but it is well-known
that proteins can be involved in multiple pathways or com-
plexes. In order to capture the notion of “soft-partitioning”
on graphs, a radically novel approach might be needed. For
example, recent approaches [33] use the notion of informa-

tion bottleneck [25] to obtain soft partitions of graphs. Also,
although our method is not as expensive as the process of
counting exhaustively all the subgraphs in a large network,
it is still quite computationally intensive. The high com-
putational cost of our method and other graph clustering
methods remains an hindrance to their application on large
networks.
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