
Discovery of Repetitive Patterns in DNA with Accurate Boundaries

Jie Zheng Stefano Lonardi
Department of Computer Science and Engineering

University of California, Riverside, CA 92521
�zjie, stelo�@cs.ucr.edu

Abstract

The accurate identification of repeats remains a
challenging open problem in bioinformatics. Most ex-
isting methods of repeat identification either depend on
annotated repeat databases or restrict repeats to pairs
of similar sequences that are maximal in length. The
fundamental flaw in most of the available methods is the
lack of a definition that correctly balances the impor-
tance of the length and the frequency. In this paper, we
propose a new definition of repeats that satisfies both
criteria. We give a novel characterization of the build-
ing blocks of repeats, called elementary repeats, which
leads to a natural definition of repeat boundaries. We
design efficient algorithms and test them on synthetic
and real biological data. Experimental results show that
our method is highly accurate.

1. Introduction

Despite the incredible progresses that occurred in
Genomics in the last fifty years, several fundamental
questions remains unanswered. Some of the most in-
triguing questions are about the role of non-coding DNA,
and in particular the role of repetitive sequences. As
it turns out, a significant fraction of the genome of
complex organisms is repetitive. For example, only
about 1% of the human genome codes for proteins,
but more than 50% of the human genome is composed
of repetitive sequences [10]. Repeats are classified in
five classes, namely pseudo-genes (0.1% of the human
genome), simple repeats (3%), segmental duplications
(5%), transposons (45%) and tandem repeats.

Although these long stretches of repeated DNA are
commonly regarded as “junk”, there is evidence that a
variety of genetic diseases are associated with defects
in the repeated structure of some regions of the hu-
man genome. More than a dozen human genetic dis-
eases, including fragile X syndrome, myotonic dystro-

phy and Friedreich’s ataxia are related with irregulari-
ties in the length of repeats. Insertional mutagenesis by
SINEs (short interspersed elements) and LINEs (long in-
terspersed elements) in mammals have resulted in cases
of hemophilia, Duchenne muscular dystrophy, and spo-
radic breast and colon cancer.

A very important problem in computational biology
is how to identify, classify, represent and visualize re-
peats. The general problem of repeat discovery and clas-
sification can be decomposed into two distinct subprob-
lems. In the first, one identifies the boundaries of each
copy of the repeats. This problem, usually attacked by
performing local alignments, is difficult because of de-
graded or partially deleted copies, related by distinct
repeats, and segmental duplication covering more than
one repeat (quote from [1]). The second problem in the
repeat classification is to infer the series of duplications
that produced the final string. In this paper, we will fo-
cus on the first problem.

1.1. Previous work

Most of the computational tools for repeat identifi-
cation available to biologists either require an annotated
library of repeats (e.g., REPEATMASKER [15]) or sim-
ply output all pairs of repeated regions (e.g., REPUTER

[9, 8], [14]). The problem with the first approach is that
it is too limiting, in particular when trying to analyze a
new genome for which a complete repeat library is un-
available. The latter approach is not completely satis-
factory either, because it fails to elucidate the complex
structure of repeats.

From a theoretical point of view, a repeat is usually
defined as a pair of identical (or similar) substrings. For
example, in Gusfield’s definition [7] the objective is to
find maximal repeated pairs. In REPUTER [9, 8] the
output is again a list of pairs of similar strings of max-
imal length. Most definitions have in common the idea
of maximizing the length of the repeats. They tend to ig-
nore, however, the importance of repeat frequency, i.e.,

the number of occurrences.
As said above, repetitive elements typically occur

more than twice in real biological sequences. For exam-
ple, transposons typically occur hundreds of thousands
of times in complex genomes. Therefore, we believe
that a biologically meaningful definition of repeats must
take into account both the length and the frequency of
repeats (and perhaps other factors as well). Unfortu-
nately, as noted by some researchers (e.g., [2]), devising
a definition of repeats which is biologically plausible is
not an easy task. When the frequency of repeats are al-
lowed to be more than twice, there exist tools (e.g., [13],
[3]) for finding short or tandem repeats. However, they
are unable to find long and dispersed repeats.

Bao and Eddy [1] and Pevzner et. al. [11] recog-
nized the shortcomings of definitions that rely solely on
length, and attempted to take into account other factors.
A rigorous definition of repeats considering both length
and frequency, however, has not been given yet. The dif-
ficulty lies in the assessment of repeat boundaries once
the objective of maximality in length is dropped. Ac-
cording to [1], approaches by multiple alignment are
also problematic because the mosaic structure of repeats
will be missed and the problem of multiple alignment
itself is difficult. In [11], Pevzner et. al. proposed a
graph called A-Bruijn graph to explore the mosaic struc-
ture of repeats. However, A-Bruijn graph is complicated
and difficult to analyze, especially when the input se-
quences are long and contain a large number of repeats.
In addition, the approach based on A-Bruijn graph still
requires the pairwise local alignment of the input se-
quences given as input, and thus the results heavily de-
pend on the performance of the pairwise alignment.

Recently, more attention has focused on the detec-
tion of repeat boundaries. Price et. al. [12] proposed the
tool REPEATSCOUT to identify repeat boundaries via
extension of consensus seeds. R. Edgar and E. Myers
[4] developed the tool PILER to find repeats with re-
liable boundaries by considering well-known repetitive
structures, e.g., terminal repeats and tandem arrays.

1.2. Our contribution

As noted by Bao and Eddy, the problem of auto-
mated repeat sequence family classification is inher-
ently messy and ill-defined and does not appear to be
amenable to a clean algorithmic attack (quote from [1]).
We felt that in order to give a clean algorithmic attack,
a natural and clean definition of repeats was indispens-
able. To this end, we propose a bottom-up approach that
starts with the definition of basic building blocks of re-
peats that we call elementary repeats. Intuitively, an ele-
mentary repeat is a string whose substrings have similar

(or identical) distribution of occurrences. Before giv-
ing the formal definition, let us consider an example in
Figure 1 which illustrates the motivations as well as the
basic idea.

In Figure 1, the DNA sequence contains three repeats
��, ��, and ��, each occurring three times. At the first
glance, it would appear that the segment � � ������
is the “correct” repeat, as it is the longest. This is, in
fact, what would be reported if the definition were solely
based on maximal length. However, we can see that� is
actually composed of independent “elementary” repeats,
namely ��, ��, and ��, because their order is shuffled in
the third occurrence.

The example in Figure 1 is not a fictional sce-
nario. Instead, it corresponds to a real biological
case. In the four groups of LTR retrotransposons,
Ty1/copia differs from Ty3/gypsy, Bel elements, and
retroviruses by the order of POL protein coding do-
mains. The order in Ty1/copia elements is protease, in-
tegrase, RT/ribonuclease H; while the order in the other
three groups is protease, RT/ribonuclease H, integrase.
The shuffling of the POL domains is one of the main fea-
tures in the classification of LTR retrotransposons (see
[6] for more details).

The identification of the internal components of
complex repeats, such as POL domains of LTR retro-
transposons, must be the first step in the accurate detec-
tion of repeats. The discovery of the internal structure
could be also helpful to infer the functions of repeats
because the order of these basic blocks is sometimes re-
sponsible for their functions. Moreover, conservation of
the basic blocks among different types of repeats can re-
veal their evolutionary relationship.

The aim of this paper is to model the basic building
blocks of repeats as combinatorial objects. To this end,
we have defined a specific set of properties that they
must satisfy. First, the blocks must occur a minimum
number of times and can not be too short. Second, they
must be elementary, i.e., they can not contain other ba-
sic blocks inside. We call these basic blocks elementary
repeats. In this paper, we consider two types of elemen-
tary repeats, exact elementary repeats and approximate
elementary repeats. The former type requires all copies
of one repeat to be exactly identical, while the latter al-
lows substitutions, insertions and deletions.

The rest of the paper is organized as follows. Sec-
tion 2 introduces the notions of exact and approximate
elementary repeats. In Section 3 we present efficient al-
gorithms for de novo identification of both types of re-
peats. Then, we demonstrate the accuracy of identifica-
tion with experimental results on both synthetic and real
data. The last section summarizes the paper and outlines
future work.

1 aat

��
� �� �

CGGAGGTCA

��
� �� �

TTAAACGGATAACG

��
� �� �

AATGAGTGcttaggttcgtattac

51 atggg

��
� �� �

CGGAGGTCA

��
� �� �

TTAAACGGATAACG

��
� �� �

AATGAGTGagtggaccgcatga

101 cca

��
� �� �

CGGAGGTCA

��
� �� �

AATGAGTG

��
� �� �

TTAAACGGATAACGggtcgggatcgagact

Figure 1. An example of elementary repeats.

2. Problem definition

We use standard concepts and notation about strings.
The set � denotes a nonempty alphabet of symbols, and
a string over � is an ordered sequence of symbols from
the alphabet. We assume that the input is a string � of
length � over �. We also use ��� to denote the length of
�. We write ����, � � � � �, to indicate the �-th sym-
bol in �. We use ���� �� as shorthand for the substring
������� � �� � � � ���� where � � � � � � �, with the
convention that ���� �� � ����.

Let � be a substring that occurs (exactly) multiple
times in the input string �. Let ���� ��� � � � � ��� be the
sorted list of the occurrences of �. We call � the fre-
quency of �. In the rest of the paper, let �� � � denote
the minimum frequency of repeats, which is a parameter
set according to applications. Although the symbol ��

denotes the sequence composition of one of the occur-
rences of �, sometimes we will abuse this notation and
used it to denote the position of � in �. The meaning
will be clear from the context. We call �� a copy of �
in �.

Let 	 be a substring of �, and let �	�� 	�� � � � � 	��
be the sorted list of the copies of 	 in �. Clearly, every
copy of � contains a copy of 	 as a substring, but 	
may also appear elsewhere in �. We say that 	 occurs
with shift
 in � if 	 starts at position
�� in �, that is
� �
� ��
� �	�� � 	.

Definition 1 Let � and 	 be substrings of � as de-
fined above. Then 	 is a subrepeat of � if � � �
and every 	� occurs with the same shift
 in �� for all
� � �� �� � � � ��.

Intuitively, 	 is a subrepeat of � when the distri-
bution of the occurrences of 	 in � “agrees” with that
of �. Next, we need to consider the length of repeats.
A substring of � is called nontrivial if its length is at
least equal to a specified threshold �. Hereafter, we
will always use � to denote such threshold. Typically,
� � 	
���� �, but � can be set as other values according
to the application.

Definition 2 An exact elementary repeat of � is a non-
trivial substring� of maximal length such that� occurs

at least �� times and every nontrivial substring of � is
a subrepeat of �.

In other words, � is an exact elementary repeat when
it does not contain any nontrivial substring with a dif-
ferent distribution of occurrences and it is maximal in
length. Going back to the example in Figure 1, if � � �,
then��� ��, and �� are exact elementary repeats because
they do not contain any substring of length at least 8
with a different distribution of occurrences. However,
the concatenation� � ������ of the three substrings is
not an exact elementary repeat, because nontrivial sub-
strings ��, ��, and �� are not subrepeats of �.

Now let us generalize exact elementary repeats by
considering the approximate case. Given a real number
 � , we say that sequence � -matches sequence ��

if ����������� � , where ������� is the edit dis-
tance between � and ��, i.e. the minimum number of
edit operations (substitutions, insertions and deletions)
that transform � into ��. We call �� as an -copy of
�. In addition, let 	 be a substring of �. Then there
must be a substring in ��, denoted by 	�, which corre-
sponds to 	. We call 	� the image of 	. The concept
of “image” mirrors the concept of “occurrence with shift

” in the exact case. Thus we will define it formally in
the following. Given an edit script � � ���� ��� � � � � ���
that transforms � into ��, we say that � is ordered if,
for any �, � such that ��, �� operate on ����, ���� respec-
tively, � � � implies � � �. That is, � operates on �
from left to right.

Definition 3 Suppose the shortest ordered edit script
that transforms � into �� is ���� ��� � � � � ���, where
(��� ����� � � � � ��), for � � � � � � �, transforms a
substring 	 of � into a substring 	� of ��. Then, we
call 	� as the image of 	 induced by �.

String 	 is called an internal repeat of � if (i) 	
is a substring of �, (ii) every image of 	 induced by
� is an -copy of 	, and (iii) the total number of non-
overlapping -copies of 	 in � is equal to the images of
	 induced by �. Note that internal repeats should not
be reported because they are not independent repeats.

Definition 4 An approximate elementary repeat of � is
a nontrivial string � of maximal length such that � has
at least �� -copies in � and every nontrivial substring
of � is an internal repeat of �.

In contrast to exact case, an approximate elementary
repeat need not appear exactly in �. As a result, approx-
imate repeats are much harder to identify than exact re-
peats. In the rest of the paper, we may sometimes omit
the word elementary for brevity.

Before leaving this section, we emphasize that the
number of copies of all exact repeats in � is upper
bounded by �. In fact, for any two exact repeats � and
	, � is not a substring of 	; otherwise, � can be ex-
tended to 	 and remains an exact repeat, contradicting
the maximality of length in definition 2. This is impor-
tant because the size of output is a serious practical issue
in repeat analysis.

3. Identification of elementary repeats

The goal in this section is to find both exact and ap-
proximate repeats in a long input sequence. A repeat
can be represented by a list of pairs, each denoting the
left and the right boundaries of a repeat copy. Hence,
the problem of identifying repeats can be restated as the
problem of finding their accurate boundaries. The task
of our algorithms is to scan the input string � and decide
whether a position of � is a repeat boundary or not.

3.1. Exact elementary repeats

An exhaustive algorithm for finding exact repeats is
computationally impractical, because there are �����
substrings in �, and each substring of length � contains
����� substrings to check.

In sequence analysis the �-gram approach is well-
known for its effectiveness in filtering out non-
candidates (e.g., see [7] and reference therein). The idea
is to collect the occurrences (or other statistics) for all
the substrings of a given length � and use that informa-
tion to discard substrings that can not be solutions to
the problem at hand. Recently, the �-gram approach has
been used in repeat analysis (e.g., [16], [4]).

Our definition of exact repeat allows the �-gram fil-
tering approach for the identification of potential ele-
mentary repeats. More specifically, we collect statistics
of �-mers in �, where � is the threshold that defines non-
trivial substrings. We call these �-mers seeds.

We find the boundaries of exact repeats by detecting
the positions in which there is a change in the distribu-
tion of the occurrences of the seeds. Given the defini-
tions in Section 2, a necessary condition for a substring

� to be an exact repeat is that all its nontrivial substrings
are equally frequent. This condition allows us to reduce
the search space of potential candidates considerably.
Moreover, it suffices to consider only the frequencies of
seeds, due to the following lemma.

Lemma 5 A nontrivial substring �, which occurs at
least twice, is an exact elementary repeat if and only if it
is a maximal nontrivial substring such that all its �-mers
are as frequent as � itself.

Proof. If � is an exact repeat, then by definition all
its nontrivial substrings, including those of length �, are
as frequent as itself. If � is not an exact repeat, either it
is not maximal in length, or it has a nontrivial substring
	 that is more frequent than �. But then any �-mer in
	, which is also in �, is more frequent than �.

The above lemma allows us to compare only fre-
quencies, rather than processing the occurrence lists, to
rapidly discard most of the non-candidates. We just need
to collect the statistics of �-mers in some efficient data
structure, e.g., a hash table or a suffix tree, as shown in
the pseudocode in Figure 2.

The algorithm EXACT-REPEAT works as follows.
Lines 1-8 search for substrings of � whose seeds are
equally frequent. We call these latter substrings inter-
vals because they are represented by a pair of posi-
tions in � (corresponding to their first and last symbols).
Lines 1-2 count the frequency of every seed using a suf-
fix tree. The for loop of lines 4-6 identifies left and right
boundaries by checking whether the frequencies of suc-
cessive seeds change. Line 8 returns the intervals of seed
frequency at least equal to ��.

Finally, line 9 calls subroutine SEED-MERGE to
check whether a selected interval is as frequent as its
seeds. If so, by lemma 5 the interval is an exact repeat;
otherwise, there must be some boundaries inside the in-
terval that partition it into several exact repeats. To find
these potential boundaries, we compare the occurrence
lists of successive seeds. As shown in lines 12-15 in
SEED-MERGE, if every pair of successive seeds have
the same shift of one position in all other copies in �,
then there is no additional boundary; otherwise, we in-
sert the pair of seed positions as new boundaries.

Time and Space Complexity. To count the frequen-
cies of all seeds in �, we build a suffix tree �� for � in
linear time (see e.g. [7] and references therein for details
about suffix trees and their linear time construction),
then for each seed � of length �, we count the number
of leaves in the subtree corresponding to the string �,
which is the frequency of the seed �. Therefore, we can
find all intervals that consist of equally frequent seeds in
time ����. Because the suffix tree requires linear space,
the space complexity of lines 1-8 is also linear.

Algorithm EXACT-REPEAT����� ���
Input: string � of length �, seed length �, minimum frequency ��
Output: left and right boundaries of all exact elementary repeats in � that appears at least �� times
1. for �� � to �� �� � do
2. �� � frequency of the �th seed in �
3. save �, � as left and right boundaries, respectively
4. for �� � to �� � do
5. if �� �� ���� then save � as a left boundary
6. if �� �� ���� then save �� � � � as a right boundary
7. pair consecutive left and right boundaries as intervals
8. ���� ��� � � � � ���� intervals whose seed frequency is� ��
9. for �� � to � do SEED-MERGE(��)

Subroutine SEED-MERGE (�: an interval of seeds of equal frequency)
10. for �� � to ��� � �� � do
11. 	� � sorted list of occurrences of seed � in �
12. for �� � to ��� � � do
13. for
 � � to �	�� do
14. if 	� �
� �� 	��� �
� � � then
15. insert �� �� � as new boundaries, go to line 4

Figure 2. A sketch of the algorithm that discovers exact elementary repeats

Line 9 takes time �����, as each pair of seeds is
checked at most once and costs time ����. Here we as-
sume that the number of occurrences of a seed is ����;
however, the average number is much smaller. The
space complexity of line 9 is ����, because we can ob-
tain the occurrence list of each seed by looking it up in
�� when necessary rather than storing it explicitly.

3.2. Approximate elementary repeats

Compared with exact case, approximate repeats are
more realistic for applications in molecular biology.
However, the problem of finding approximate repeats
precisely is very difficult, therefore we give a heuris-
tic which extends the ideas for finding exact repeats to
follow the definition for approximate repeats.

The basic idea for finding approximate repeats
is the following. Suppose a repeat � -matches
��� ��� � � � � �� in �, and two seeds of �, say � and
� , occur in � with shifts
� ,
� respectively. Then
the images of � induced by � are likely to occur in
��� � � � � �� with shifts close to
� . Similarly, images
of � are likely to occur in the copies of � with shifts
close to
� . Thus, in each copy of � the offset of the
images of � and � is close to
� �
� . If we subtract
the offset, then the occurrence lists of � and � shall
be similar, where the similarity is measured by number
of images of � that are close to images of � and vice
versa. In our algorithm, we use the similarity between
the occurrence lists of two successive seeds to measure
the likelihood that they belong to the same approximate
repeat.

For example, � � cACGTGagACGAGgcaACGTG,
where the capital letters represent repeat ACGTG which
occurs three times. Suppose the length of seed is two.
The occurrences of seed AC are 2, 9, and 17, and the oc-
currences of seed CG are 3, 10, and 18. The two seeds
have similar occurrence lists except for a shift of one
position, hence they are likely to belong to the same re-
peat. Notice the substitution in the second occurrence
ACGAG, which is acceptable in our heuristic.

The algorithm APPROXIMATE-REPEAT, which is
sketched in Figure 3, works as follows. In line 1, we lo-
cate the blocks consisting of seeds that are at least as fre-
quent as a specified threshold ��. This step reduces the
search space by discarding non-repetitive regions. The
for loop of lines 2-4 merges successive seeds in each se-
lected block into longer substrings if their occurrences
are similar. We call these longer substrings, which are
constructed by merging one or more successive seeds,
contigs. Similarly, line 5 merges successive contigs if
they belong to the same repeat.

In the subroutine APX-SEED-MERGE, we decide
whether a pair of successive seeds should be merged
based on the similarity scores of their occurrence lists.
Note that the scores and the thresholds are related with
the order of seeds. The subroutine SIM-SCORE calcu-
lates the similarity score, by first removing the offset in
line 11. Then in the for loop of lines 13-16, we count
the number of positions in � that have a close position
in �. The pal of �� is the position �� in � with the
smallest absolute difference with ��. If the difference is
no more than a specified threshold ��, then we increase

bonus � by one; otherwise, we increase penalty � by one.
The similarity score is defined as �� 	��, a heuristic for-
mula that emphasizes the significance of matches. The
heuristic threshold ���������� is defined as a fraction
of �� �.

The subroutine CONTIG-MERGE is similar to APX-
SEED-MERGE, except that now we are trying to merge
the last seed of the previous contig with the first seed of
the next contig. The purpose of CONTIG-MERGE is to
reconnect segments that are broken by substitutions and
indels.

Time and Space Complexity. It takes ���� time
to find the blocks that consist of seeds of frequencies at
least ��. For each distinct seed, SIM-SCORE is called
���� times, as in APX-SEED-MERGE and CONTIG-
MERGE. Each call of SIM-SCORE takes time linear in
the size of input occurrence lists. Therefore, the total
running time of algorithm APPROXIMATE-REPEAT is
�����. On average, however, it is much faster, as most
seeds are likely to occur only a few times. The algorithm
takes again linear space.

4. Experimental results

In this section, we demonstrate the accuracy of our
algorithms by showing some experimental results. We
test our algorithms on synthetic datasets obtained by in-
serting simulated and real biological repeats into random
DNA sequences. We do not compare our results with
other tools for repeat identification, because the concept
of elementary repeats is unique to this approach while
other tools (e.g. REPUTER) output pairs of maximal re-
peats which are incomparable with our output.

4.1. Finding simulated repeats

Our method of constructing the simulated DNA se-
quence � is as follows. First, we generate a set of ran-
dom DNA strings, which corresponds to a set of elemen-
tary repeats. Each repeat has attached a specified mul-
tiplicity which is generated by Poisson distribution. We
randomly permute the multiset of repeat copies by the
algorithm of Fisher and Yates [5]. Then, we alternate
the repeat copies (selected according to their order in the
permutation) with purely random DNA sequences whose
lengths are generated by Poisson distribution. The fre-
quencies of repeats and the lengths of the gaps among
repeats are selected according to Poisson distribution be-
cause it is the most appropriate probabilistic model in
this case (see, e.g. [17]).

When we are simulating approximate repeats, we
also randomly mutate each copy before it is used. The

sequence of edit operations is generated randomly, and
the number of mutations is bounded by a percentage, say
2%, of the length of the repeat copy. Finally, we append
at both ends of the assembled sequence two pieces of
random DNA, and that completes the construction of �.
We also record the left and the right boundaries of each
repeat copy, which will be compared with the output of
our algorithms.

When we feed � as input to our algorithms, the out-
put is a list of pairs of boundaries. A boundary in the
output matches a boundary in the input if they are within
5 bases of each other. An output repeat copy matches an
input one if both left and right boundaries match that of
the input copy. The sensitivity, denoted by ��, is defined
as the ratio of the number of output copies matching the
input over the total number of input repeat copies. The
true positive rate, denoted by �	, is defined as the ratio
of the number of output copies matching the input over
the total number of output copies.

In the tables in Figure 4, we show the accuracy of our
algorithm on exact repeats of average lengths 50 and 200
respectively. Similarly, tables in Figure 5 report the re-
sults for approximate repeats. In each table, we carried
out 5 runs with gap lengths ranging from 50 to 250 as
shown in the tables; for each run, we executed our pro-
gram 100 times. In every execution, the average number
of distinct repeats is 10, the average frequency is 20, and
the seed length is 15. Each row of the tables summarizes
the results of one run, namely the worst, the average, and
the best accuracy of the 100 tests of the run.

From the tables, we can make the following obser-
vations. First, the accuracy is remarkably high. The av-
erage value of �� is higher than 98% and the average
value of �	 is higher than 95%, except for the approxi-
mate repeats of average length 200. Longer approximate
repeats are harder to detect, as the edit operations may
occur in a narrow interval. In practice, however, ele-
mentary repeats are unlikely to be that long. The reason
that the accuracy of exact repeat detection is not 100% is
that the random DNA strings we generated are not “ran-
dom” enough. As a result, there are additional repetitive
patterns and fragmented repeats, which are not counted
in validation but have been captured by our algorithm.
Similar situation occurs in approximate case.

Second, the performance of the algorithm for ap-
proximate repeats is more consistent than that for exact
repeats. This is due to the fact that the algorithm for
approximate repeats is more adaptive and thus able to
handle more noisy input.

Third, in many cases, especially for approximate re-
peats, the value of �� is close to �	. This happens be-
cause often the algorithm detects one correct boundary
while the other boundary falls outside 5 bases of the

Algorithm APPROXIMATE-REPEAT����� ���
Input: string � of length �, seed length �, minimum repeat frequency ��
Output: left and right boundaries of approximate repeats in �
1. ���� ��� � � � � ���� blocks of seeds of frequencies � ��
2. for each selected block �� do
3. APX-SEED-MERGE ����
4. save contigs from APX-SEED-MERGE into set �
5. CONTIG-MERGE ���

Subroutine APX-SEED-MERGE (�: a block of seeds of frequencies � ��)
6. for �� � to ��� � � do
7. �	��� sorted lists of occurrences of seed ��� �� ��
8. if SIM-SCORE �	�� �� � ������	�� or
9. SIM-SCORE ��	���� � �������	 � then
10. merge seeds �, �� �

Subroutine SIM-SCORE (occurrence lists 	 and , offset �)
11. � � �

12. �, �� � /* bonus � and penalty � */
13. for �� � to �	 � do
14. � � pal of 	� in /* � is the closest to 	� in */
15. if �	� �� � � �� then �� �� �
16. else �� �� �
17. return �� 	
���

Subroutine CONTIG-MERGE (list of contigs �)
18. for �� � to ��� � � do
19. �� last seed of contig ��
20. �� first seed of contig ����
21. ��� � position offset of � against �
22. if ��� � ���� then /* �, � are close enough */
23. �	��� sorted occurrence lists of seeds �����
24. if SIM-SCORE (, , ���) � ������	�� or
25. SIM-SCORE (, 	 , ����) � �������	 � then
26. merge contigs ��� ����

Figure 3. A sketch of the algorithm that discovers approximate elementary repeats

correct one, and it causes a false positive and a false
negative simultaneously. These false positives, however,
have long overlaps with correct repeats.

4.2. Finding real biological repeats

We also test our algorithms on synthetic data when
the repeats are true biological repeats, i.e., we insert
copies of real repeats into synthetic DNA sequences. We
choose the well-known Alu repeats, a family of short
interspersed elements (SINEs) that comprises roughly
10% of the human genome. When exact copies of Alu
are inserted into random DNA sequences, the average
accuracy of our method is above 96%. In approximate
case, the average accuracy is above 80%. Due to space
limitation, we leave the comprehensive analysis of real
repeats to the journal version of this paper.

5. Conclusion and future work

In this paper, we have proposed a novel character-
ization of repetitive patterns in DNA sequences, which
leads to a natural definition of repeat boundaries. It is
a bottom-up strategy, starting with the basic building
blocks of repeats called elementary repeats. We give rig-
orous definitions of exact and approximate elementary
repeats, and design two efficient algorithms for de novo
identification of both types of repeats with high accu-
racy. To our best knowledge, it is the first time that both
length and frequency are considered in finding repeats.

A promising future direction would be the identifica-
tion of complex repeated structures which are composed
of elementary repeats as building blocks. It is our hope
that complex repeats would correspond to biologically
meaningful repeats in the genomic sequences.

input output
gap �� (%) �� (%)
ave. worst ave. best worst ave. best
50 92.8 99.9 100 86.3 99.9 100

100 94.7 99.9 100 90 99.8 100
150 100 100 100 100 100 100
200 100 100 100 100 100 100
250 90.4 99.9 100 82.5 99.8 100

input output
gap �� (%) �� (%)
ave. worst ave. best worst ave. best
50 89.0 99.8 100 77.4 99.7 100

100 94.3 99.9 100 89.3 99.7 100
150 100 100 100 100 100 100
200 87.4 99.2 100 69.6 98.5 100
250 100 100 100 100 100 100

Figure 4. Accuracy of exact elementary repeats detection in simulated data when the average
length of repeats is 50 (table on the left) and 200 (table on the right)

input output
gap �� (%) �� (%)
ave. worst ave. best worst ave. best
50 95.8 98.8 100 94.6 98.7 100

100 96.6 99.3 100 96.6 99.3 100
150 96.8 99.1 100 96.8 99.0 100
200 94.3 98.0 100 94.3 97.9 100
250 95.1 98.6 100 95.1 98.5 100

input output
gap �� (%) �� (%)
ave. worst ave. best worst ave. best
50 80.2 87.2 94.1 78.9 85.5 94.1
100 81.6 87.5 93.1 78.8 86.1 93.1
150 83.2 87.5 91.9 80.7 85.8 91.5
200 79.7 87.4 92.7 75.3 85.8 92.7
250 80.9 87.5 95.4 78.0 85.8 94.3

Figure 5. Accuracy of approximate elementary repeats detection in simulated data when the
average length of repeats is 50 (table on the left) and 200 (table on the right)

References

[1] Z. Bao and S. R. Eddy. Automated De Novo identifica-
tion of repeat sequence families in sequenced genomes.
Genome Research, 12(8):1269–1276, 2002.

[2] G. Benson. An algorithm for finding tandem repeats of
unspecified pattern size. In S. Istrail, P. Pevzner, and
M. Waterman, editors, Proceedings of the 2nd Annual
International Conference on Computational Molecular
Biology, pages 20–29, New York, NY, 1998. ACM Press.

[3] G. Benson. Tandem repeats finder – a program to analyze
dna sequences. Nucleic Acids Res., 27:573–580, 1999.

[4] R. Edgar and E. Myers. Piler: identification and classifi-
cation of genomic repeats. In Proc. of the 13th Interna-
tional Conference on Intelligent Systems for Molecular
Biology (ISMB’05), page To appear, Detroit, Michigan,
2005. AAAI press, Menlo Park, CA.

[5] R. A. Fisher and F. Yates. Example 12, Statistical tables.
London, 1938.

[6] E. Galun. Transposable elements: a guide to the per-
plexed and the novice with appendices on RNAi, chro-
matin remodeling and gene tagging. Kluwer academic,
2003.

[7] D. Gusfield. Algorithms on Strings, Trees, and Se-
quences: Computer Science and Computational Biology.
Cambridge University Press, 1997.

[8] S. Kurtz, J. V. Choudhuri, E. Ohlebusch, C. Schleierma-
cher, J. Stoye, and R. Giegerich. REPuter: The manifold
applications of repeat analysis on a genomic scale. Nu-
cleic Acids Res., 29(22):4633–4642, 2001.

[9] S. Kurtz and C. Schleiermacher. REPuter: Fast compu-
tation of maximal repeats in complete genomes. Bioin-
formatics, 15(5):426–427, 1999.

[10] B. Lewin, editor. Genes VIII. Oxford University Press,
New York, NY, 2004.

[11] P. A. Pevzner, H. Tang, and G. Tesler. De novo repeat
classification and fragment assembly. In Proc. of Re-
search in Computational Molecular Biology (RECOMB),
pages 213–222, San Diego, Ca, April 2004.

[12] A. L. Price, N. C. Jones, and P. A. Pevzner. De novo iden-
tification of repeat families in large genomes. In Proc. of
the 13th International Conference on Intelligent Systems
for Molecular Biology (ISMB’05), page To appear, De-
troit, Michigan, 2005. AAAI press, Menlo Park, CA.

[13] M. Sagot and E. W. Myers. Identifying satellites in nu-
cleic acid sequences. In S. Istrail, P. Pevzner, and M. Wa-
terman, editors, Proceedings of the 2nd Annual Interna-
tional Conference on Computational Molecular Biology,
pages 234–242, New York, NY, 1998. ACM Press.

[14] J. P. Schmidt. All highest scoring paths in weighted grid
graphs and their application to finding all approximate
repeats in strings. In Proceedings of the 3rd Israel Sym-
posium on Theory of Computing and Systems, pages 67–
77. IEEE Computer Society Press, 1995.

[15] A. Smit and P. Green. REPEATMASKER. Available at
http://www.repeatmasker.org/.

[16] P. E. Warburton, J. Giordano, F. Cheung, Y. Gelfand,
and G. Benson. Inverted repeat structure of the human
genome: the x-chromosome contains a preponderance of
large, highly homologoous inverted repeats that contain
testes genes. Genome Research, 14:1861–1869, 2004.

[17] M. S. Waterman. Introduction to Computational Biology.
Chapman & Hall, 1995.

