Deep Learning for
Computational Biology

CS260

RUNIVERSITY O§ALFORNIA

January 15, 2018

Epigenetics
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Epigenome

Epigenetics: Nucleosomes/Histones

 Eight core histones (2 x H2A,
2 x H2B, 2 x H3, and 2 x H4)
and ~147bps of DNA
wrapped around form the
‘nucleosome’

* Nucleosomes are thought to
carry epigenetically inherited
information in the form of
covalent modifications of
their core histones (histone
code)

* Nucleosome “slide” (?) and
their position regulate gene

1 (8 histone molecules +
eXPreSSlon 146 base pairs of DNA)

Nucleosome “bead”
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RNA Polymerase

DNA methylation

* Cytosines (5SmC) can be methylated, which “turns” them
in a “fifth” type of nucleotide

* In mammals 60%-90% of all CpGs are SmC

* The rate of cytosine DNA methylation differs strongly
between species, e.g. 14% of cytosines are methylated in
Arabidopsis thaliana, 8% in Mus musculus, 2.3% in
Escherichia coli, 0.03% in Drosophila, and virtually none
(<0.0002%) in yeast

 In plants and stem cells, the cytosine can be methylated
also CHG, and CHH sites, where H={A,C,T}
(asymmetric methylation) in addition to CG (symmetric
methylation)



DNA methylation

5mC is associated with gene silencing (decreased gene
expression)

SmC also plays a crucial role in the development of
nearly all types of cancer and imprinting

5mC can be inherited through cell division (in somatic
cells, patterns of DNA methylation are transmitted to
daughter cells with a high fidelity)

5mC is dynamic, but DNA demethylation is poorly
understood

New types of methylation in mammalian genomes:
hydroxymethylation (5ShmC), 5-formylcytosine (5fC), 5-
carboxycytosine (5caC)

RNA methylation

Adenosine (6mA) is the most prevalent mammalian
mRNA post-transcriptional modification

It is also found in tRNA, rRNA, and small nuclear
RNA (snRNA) as well as several long non-coding
RNA

Recent studies have discovered protein ‘writers’,
‘erasers’ and ‘readers’ of this RNA chemical mark

It has been show to affect gene expression, but its
function it is poorly understood
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Figure 1| Reversible chemical modifications that regulate the flow of genetic
information. In the central dogma, genetic information is passed from DNA to RNA
and then to protein. Epigenetic DNA modifications (for example, the formation of
5-methylcytosine (m°C; also known as 5mC) and 5-hydroxymethylcytosine (hm°C;
also known as 5hmC)) and histone modifications (for example, methylation (me) and
acetylation (ac)) are known to have important roles in regulating cell differentiation
and development. Reversible RNA modifications (for example, the formation of
Ne-methyladenosine (m°A) and Né-hydroxymethyladenosine (hm°®A)) add an additional
layer of dynamic regulation of biological processes.

Fu et al., Nat Rev Genetics, 2014

Prediction problems

DNA methylation state

Impact of sequence variation in methylation
TF motifs from ChIP-seq data

Non-coding function prediction from sequence

Gene expression from histone tail
modifications

Regulatory code of the accessible genome
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DeepCpG: accurate prediction of single-cell ®
DNA methylation states using deep
learning

Christof Angermueller’”, Heather J. Lee*®, Wolf Reik? and Oliver Stegle”" ®

Abstract

Recent technological advances have enabled DNA methylation to be assayed at single-cell resolution. However,
current protocols are limited by incomplete CpG coverage and hence methods to predict missing methylation
states are critical to enable genome-wide analyses. We report DeepCpG, a computational approach based on deep
neural networks to predict methylation states in single cells. We evaluate DeepCpG on single-cell methylation data
from five cell types generated using altemative sequencing protocols. DeepCpG vyields substantially more accurate
predictions than previous methods. Additionally, we show that the model parameters can be interpreted, thereby
providing insights into how sequence composition affects methylation variability.

Keywords: Deep learning, Artificial neural network, Machine leaming, Single-cell genomics, DNA methylation, Epigenetics

Predicting the impact of non-coding variants on DNA
methylation

Haoyang Zeng David K. Gifford

Computer Science and Artificial Intelligence Lab
Massachusetts Institute of Technology
Cambridge, MA 02139
{haoyangz , gifford@mit. edu}

Abstract

DNA methylation plays a crucial role in the establishment of tissue-specific gene
expression and the regulation of key biological processes. However, our present
inability to predict the effect of genome sequence variation on DNA methylation
precludes a comprehensive assessment of the consequences of non-coding varia-
tion. We introduce CpGenie, a sequence-based framework that learns a regulatory
code of DNA methylation using a deep convolutional neural network and uses
this network to predict the impact of sequence variation on proximal CpG site
DNA methylation. CpGenie produces allele-specific DNA methylation prediction
with single-nucleotide sensitivity that enables accurate prediction of methylation
quantitative trait loci (meQTL). We demonstrate that CpGenie prioritizes vali-
dated GWAS SNPs, and contributes to the prediction of functional non-coding
variants, including expression quantitative trait loci (eQTL) and disease-associated
mutations. CpGenie is publicly available to assist in identifying and interpreting
regulatory non-coding variants.



Maximum Entropy Methods for Extracting the Learned
Features of Deep Neural Networks

Alex Finnegan'? and Jun S. Song'?#®"

Abstract

New architectures of multilayer artificial neural networks and new methods for training them are rapidly revolutionizing the
application of machine learning in diverse fields, including business, social science, physical sciences, and biology. Interpret-
ing deep neural networks, however, currently remains elusive, and a critical challenge lies in understanding which meaningful
features a network is actually learning. We present a general method for interpreting deep neural networks and extracting
network-learned features from input data. We describe our algorithm in the context of biological sequence analysis. Our
approach, based on ideas from statistical physics, samples from the maximum entropy distribution over possible sequences,
anchored at an input sequence and subject to constraints implied by the empirical function learned by a network. Using our
framework, we demonstrate that local transcription factor binding motifs can be identified from a network trained on ChIP-seq
data and that nucleosome positioning signals are indeed learned by a network trained on chemical cleavage nucleosome
maps. Imposing a further constraint on the maximum entropy distribution, similar to the grand canonical ensemble in statistical
physics, also allows us to probe whether a network is learning global sequence features, such as the high GC content in
nucleosome-rich regions. This work thus provides valuable mathematical tools for interpreting and extracting learned features
from feed-forward neural networks.

Bioinformatics, 32, 2016, i639-i648
doi: 10.1093/bioinformatics/btw427
ECCB 2016

DeepChrome: deep-learning for predicting gene
expression from histone modifications

Ritambhara Singh, Jack Lanchantin, Gabriel Robins and Yanjun Qi*

Department of Computer Science, University of Virginia, Charlottesville, VA 22904, USA

*To whom corr should be add d

Abstract

Motivation: Histone modifications are among the most important factors that control gene regula-
tion. Computational methods that predict gene expression from histone modification signals are
highly desirable for understanding their combinatorial effects in gene regulation. This knowledge
can help in developing ‘epigenetic drugs’ for diseases like cancer. Previous studies for quantifying
the relationship between histone modifications and gene expression levels either failed to capture
combinatorial effects or relied on multiple methods that separate predictions and combinatorial
analysis. This paper develops a unified discriminative framework using a deep convolutional neu-
ral network to classify gene expression using histone modification data as input. Our system, called
DeepChrome, allows automatic extraction of complex interactions among important features. To
simultaneously visualize the combinatorial interactions among histone modifications, we propose
a novel optimization-based technique that generates feature pattern maps from the learnt deep
model. This provides an intuitive description of underlying epigenetic mechanisms that regulate
genes.

Results: We show that DeepChrome outperforms state-of-the-art models like Support Vector
Machines and Random Forests for gene expression classification task on 56 different cell-types
from REMC database. The output of our visualization technique not only validates the previous ob-
servations but also allows novel insights about combinatorial interactions among histone modifica-
tion marks, some of which have recently been observed by experimental studies.
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DanQ: a hybrid convolutional and recurrent deep
neural network for quantifying the function of DNA

sequences

Daniel Quang'? and Xiaohui Xie'-2"

Department of Computer Science University of California, Irvine, CA 92697, USA and 2Center for Complex
Biological Systems University of California, Irvine, CA 92697, USA
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ABSTRACT

Modeling the properties and functions of DNA se-
quences is an important, but challenging task in the
broad field of genomics. This task is particularly dif-
ficult for non-coding DNA, the vast majority of which
is still poorly undi in terms of ion. A pow-
erful predictive model for the function of non-coding
DNA can have enormous benefit for both basic sci-
ence and i T h b over 98%
of the human genome is non-coding and 93% of
disease-associated variants lie in these regions. To
address this need, we propose DanQ, a novel hy-
brid lutional and bi-di ional long short-term
memory recurrent neural network framework for pre-
dicting non-coding function de novo from sequence.
In the DanQ model, the convolution layer captures
regulatory motifs, while the recurrent layer captures
long-term dependencies between the motifs in or-
der to learn a y ¢ ’ to imp pre-
icti DanQ imp upon other
models across several metrics. For some regula-
tory markers, DanQ can achieve over a 50% relative
improvement in the area under the precision-recall
curve metric compared to related models. We have
made the source code available at the github reposi-
tory http://github.com/uci-cbcl/DanQ.

Predicting effects of
noncoding variants with
deep learning-based
sequence model

Jian Zhou':2 & Olga G Troyanskayal:3:4

Identifying functional effects of noncoding variants is a
major challenge in human genetics. To predict the noncoding-
variant effects de novo from sequence, we developed a deep
learning-based algorithmic framework, DeepSEA (http://
deepsea.princeton.edu/), that directly learns a regulatory

q e code from large-scale chromatin-profiling data,
enabling prediction of chromatin effects of sequence
alterations with single-nucleotide sensitivity. We further
used this capability to improve prioritization of functional
variants including expression quantitative trait loci (eQTLs)
and disease-associated variants.

ing algorithms utilize large training data and specialized
hardware to efficiently train deep neural networks (DNNs)
that learn high levels of abstractions from multiple layers
of non-linear transformations. DNNs have already been
adapted for genomics problems such as motif discovery (2),
predicting the deleteriousness of genetic variants (3), and
gene expression inference (4).

There has been a growing interest to predict function di-
rectly from sequence, instead of from curated datasets such
as gene models and multiple species alignment. Much of
this interest is attributed to the fact that over 98% of the
human genome is non-coding, the function of which is not
very well-defined. A model that can predict function directly
from sequence may reveal novel insights about these non-
coding el Over 1200 geno id iation stud-
ies have identified nearly 6500 disease- or trait-predisposing
single-nucleotide polymorphisms (SNPs), 93% of which are
located in non-coding regions (5), highlighting the impor-
tance of such a predictive model. Convolutional neural net-
works (CNNs) are variants of DNNs that are appropriate
for this task (6). CNNs use a weight-sharing strategy to cap-
ture local patterns in data such as sequences. This weight-
sharing strategy is especially useful for studying DNA be-
cause the convolution filters can capture sequence motifs,
which are short, recurring patterns in DNA that are pre-
sumed to have a biological function. DeepSEA is a re-
cently developed algorithm that utilizes a CNN for pre-
dicting DNA function (7). The CNN is trained in a joint

Iti-task fashion to simul ly learn to predict large-

TF binding depends upon sequence beyond traditionally defined
motifs. For example, TF binding can be influenced by cofactor
binding sequences, chromatin accessibility and structural flex-
ibility of binding-site DNAS. DNase I-hypersensitive sites (DHSs)
and histone marks are expected to have even more complex
underlying mechanisms involving multiple chromatin proteins”3.
Therefore, accurate sequence-based prediction of chromatin fea-
tures requires a flexible quantitative model capable of modeling
such complex dependencies—and those predictions may then be
used to estimate functional effects of noncoding variants.

To address this fundamental problem, here we developed a fully
sequence-based algorithmic framework, DeepSEA (deep learning—
based sequence analyzer), for noncoding-variant effect prediction.
We first directly learn regulatory sequence code from genomic
sequence by learning to simultaneously predict large-scale
chromatin-profiling data, including TF binding, DNase I sensitivity
and histone-mark profiles (Fig. 1). This predictive model is
central for estimating noncoding-variant effects on chromatin.
We introduce three major features in our deep learning-based
model: integrating sequence information from a wide sequence
context, learning sequence code at multiple spatial scales with a
hierarchical architecture, and multitask joint learning of diverse
chromatin factors sharing predictive features. To train the model,



Denoising genome-wide histone ChIP-seq with convolutional neural
networks

Pang Wei Koh*, Emma Pierson*, and Anshul Kundaje
Departments of Computer Science and Genetics, Stanford University

pangwei@cs.stanford.edu, {emmapl, akundaje}@stanford.edu

Abstract

Chromatin immunoprecipitation sequencing (ChIP-seq) experiments targeting histone modifica-
tions are commonly used to characterize the dynamic epigenomes of diverse cell types and tissues.
However, suboptimal experimental parameters such as poor ChIP enrichment, low cell input, low
library complexity, and low sequencing depth can significantly affect the quality and sensitivity of
histone ChIP-seq experiments. We show that a convolutional neural network trained to learn a map-
ping between suboptimal and high-quality histone ChIP-seq data in reference cell types can overcome
various sources of noise and substantially enhance signal when applied to low-quality samples across
individuals, cell types, and species. This approach allows us to reduce cost and increase data quality.
More broadly, our approach — using a high-dimensional discriminative model to encode a generative
noise process — is generally applicable to biological problems where it is easy to generate noisy data
but difficult to analytically characterize the noise or underlying data distribution.

Method

Basset: learning the regulatory code of the accessible
genome with deep convolutional neural networks

David R. Kelley,‘ Jasper Snoek,? and John L. Rinn'

! Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138, USA;
2School of Engineering and Applied Science, Harvard University, Cambridge, Massachusetts 02138, USA

The complex language of eukaryotic gene expression remains incompletely understood. Despite the importance suggested
by many noncoding variants statistically associated with human disease, nearly all such variants have unknown mechanisms.
Here, we address this challenge using an approach based on a recent machine learning advance—deep convolutional neural
networks (CNNs). We introduce the open source package Basset to apply CNNs to learn the functional activity of DNA
sequences from genomics data. We trained Basset on a compendium of accessible genomic sites mapped in 164 cell types
by DNase-seq, and demonstrate greater predictive accuracy than previous methods. Basset predictions for the change in
accessibility between variant alleles were far greater for Genome-wide assodation study (GWAS) SNPs that are likely to
be causal relative to nearby SNPs in linkage disequilibrium with them. With Basset, a researcher can perform a single se-
quending assay in their cell type of interest and simultaneously learn that cell’s chromatin accessibility code and annotate
every mutation in the genome with its influence on present accessibility and latent potential for accessibility. Thus, Basset
offers a powerful computational approach to annotate and interpret the noncoding genome.



Structural variations
SNPs

Variations in the Human Genome

Single nucleotide polymorphisms (SNP) occur on average
between every 1 in 100 and 1 in 300 bases in the human
genome

Large-scale structural variations range from a few thousand to
a few million bps: these variations include differences in the
number of copies individuals have of a particular gene,
deletions, translocations and inversions (copy number
variations or CNV)

A high proportion of the genome (currently estimated at up to
12%) is subject to CNV

SNPs and CNVs may either be inherited or caused by de novo
mutation

Many SNPs and CNVs are associated with genetic diseases
and cancer
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Prediction problems

 Pathogenicity of genetic variants
* Modeling of SNPs using Boltzmann machines

 Calling SNP variants

Bioinformatics, 31(5), 2015, 761763

doi: 10.1093/bioinformatics/btu703

Advance Access Publication Date: 22 October 2014
Applications Note

Genome analysis

DANN: a deep learning approach for annotating
the pathogenicity of genetic variants
Daniel Quang™2", Yifei Chen™" and Xiaohui Xie>*

'Department of Computer Science and “Center for Complex Biological Systems, University of California, Irvine, CA
92697, USA

*To whom correspondence should be addressed.
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Abstract

Summary: Annotating genetic variants, especially non-coding variants, for the purpose of identifying
pathogenic variants remains a challenge. Combined annotation-dependent depletion (CADD) is an al-
gorithm designed to annotate both coding and non-coding variants, and has been shown to outper-
form other annotation algorithms. CADD trains a linear kernel support vector machine (SVM) to dif-
ferentiate evolutionarily derived, likely benign, alleles from simulated, likely deleterious, variants.
However, SVMs cannot capture non-linear relationships among the features, which can limit per-
formance. To address this issue, we have developed DANN. DANN uses the same feature set and
training data as CADD to train a deep neural network (DNN). DNNs can capture non-linear relation-
ships among features and are better suited than SVMs for problems with a large number of samples
and features. We exploit Compute Unified Device Architecture-compatible graphics processing units
and deep learning techniques such as dropout and momentum training to accelerate the DNN train-
ing. DANN achieves about a 19% relative reduction in the error rate and about a 14% relative increase
in the area under the curve (AUC) metric over CADD’s SVM methodology.



PARTITIONED LEARNING OF
DEEP BOLTZMANN MACHINES
FOR SNP DATA

MORITZ HESS', STEFAN LENZ', TAMARA J BLATTE?,
LARS BULLINGER ? AND HARALD BINDER **

ABSTRACT. Learning the joint distributions of measurements, and in particular iden-
tification of an appropriate low-dimensional manifold, has been found to be a powerful
ingredient of deep leaning approaches. Yet, such approaches have hardly been applied
to single nucleotide polymorphism (SNP) data, probably due to the high number of
features typically exceeding the number of studied individuals. After a brief overview
of how deep Boltzmann machines (DBMs), a deep learning approach, can be adapted
to SNP data in principle, we specifically present a way to alleviate the dimension-
ality problem by partitioned learning. We propose a sparse regression approach to
coarsely screen the joint distribution of SNPs, followed by training several DBMs on
SNP partitions that were identified by the screening. Aggregate features representing
SNP patterns and the corresponding SNPs are extracted from the DBMs by a com-
bination of statistical tests and sparse regression. In simulated case-control data, we
show how this can uncover complex SNP patterns and augment results from univari-
ate approaches, while maintaining type 1 error control. Time-to-event endpoints are
considered in an application with acute myeloid lymphoma patients, where SNP pat-
terns are modeled after a pre-screening based on gene expression data. The proposed
approach identified three SNPs that seem to jointly influence survival in a validation
data set. This indicates the added value of jointly investigating SNPs compared to
standard univariate analyses and makes partitioned learning of DBMs an interesting
complementary approach when analyzing SNP data.

Creating a universal SNP and small indel variant
caller with deep neural networks

Ryan Poplin'?, Dan Newburger', Jojo Dijamco', Nam Nguyen', Dion Loy, Sam S. Gross',
Cory Y. McLean', Mark A. DePristo*'?

"Verily Life Sciences, 1600 Amphitheatre Pkwy, Mountain View, CA 94043, (650)
253-0000

2Google Inc., 1600 Amphitheatre Pkwy, Mountain View, CA 94043, (650) 253-0000
*Email: mdepristo@google.com

Abstract

Next-generation sequencing (NGS) is a rapidly evolving set of technologies that can be used to
determine the sequence of an individual's genome’ by calling genetic variants present in an
individual using billions of short, errorful sequence reads?. Despite more than a decade of effort
and thousands of dedicated researchers, the hand-crafted and parameterized statistical models
used for variant calling still produce thousands of errors and missed variants in each genome®*.
Here we show that a deep convolutional neural network® can call genetic variation in aligned
next-generation sequencing read data by learning statistical relationships (likelihoods) between
images of read pileups around putative variant sites and ground-truth genotype calls. This
approach, called DeepVariant, outperforms existing tools, even winning the "highest
performance” award for SNPs in a FDA-administered variant calling challenge. The learned
model generalizes across genome builds and even to other species, allowing non-human
sequencing projects to benefit from the wealth of human ground truth data. We further show
that, unlike existing tools which perform well on only a specific technology, DeepVariant can
learn to call variants in a variety of sequencing technologies and experimental designs, from
deep whole genomes from 10X Genomics to lon Ampliseq exomes. DeepVariant represents a
significant step from expert-driven statistical modeling towards more automatic deep learning
approaches for developing software to interpret biological instrumentation data.
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