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Course organization

The course will be structured it as a “journal
club”, where students alternate presenting
papers and highlight and discuss possible new
line of research

Two 20 minutes presentation each lecture
Some time for discussion

Interactive!

Course organization

The final grade will be based on paper
presentations and participation in the class

While the presenter is responsible to describe
the paper in detail, it would be beneficial for
the others to review the paper in advance to be
able to participate in the discussion

I will have a selection of papers, but students

are welcome to propose other papers to present
with my OK



Structure of the presentation

* Introduction (background, motivations)
 Statement of the problem
* Proposed solution

» Experimental results (comparison with
previous approaches, if applicable)

 Discussion (your review)

* (please do not waste time with “outline of my talk”)

Introduce yourself

* Name

* Department
 Graduate/undergraduate
* Year at UCR

» Research interests
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Proteins

* A protein is a chain of molecules, called amino
acids

» Every amino acid has a central carbon atom,

known as alpha carbon (C,), an amino group
(NH,), a carboxyl group (COOH) and a side
chain

» The side chain 1s what distinguishes one amino
acid from another

Amino acids

alaning CH.CH-(NH,)-CO0H tyrosine C,H,0H.CH,CH.(NH,)-COOH

i i
oW

Ol §i= QO
e cysteing SH.CH,CH.(NH,)-COOH =
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= covalent bond Q cabonatom @ nitrogen atom
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Proteins

Amino acids are linked by peptide bonds
between the carboxyl group and the amino
group

Almost all organisms share the same 20 amino
acids

A typical protein is composed by 300 amino
acids, but there are proteins with as few as 100
or with as many as 5,000 amino acids

Proteins
Primary structure: the linear sequence of

amino acids, ordered from the N-terminal
(amino group) to C-terminal (carboxy group)

Secondary structure: a-helices and -sheets

Tertiary structure: the 3D conformation
(folding) in space



* Most of the backbone is rigid o5y

* The chemistry of a protein )
forces most of the backbone to
remain planar @

* The chemical bonds to the
alpha carbons can rotate

» The angle of rotation for each @
alpha carbon bonds are called
phi and psi

» Phi and psi are the degree of
freedom of the protein

Alpha helix

.27 ® Alpha helix is stablized by hydrogen
~ bonding between NH and C=0 of
@ main chain. All the C=0 and NH
@ groups hydrogen bonded for alpha helix

» Exactly 3.6 residues per
turn

4

° Hydrogen bonds (g) " P i irogen bonding i four residues shead
(’Q , ), O ‘/t\mhnearsequmce.
» Twotypes Q9 ¢ 7 mme

i (counter clockwise).
i)

— Right-handed
Protine and glyvine
— Left-handed il nrtr i o
®
3.6 residuesfturn

@9 R groups are pointed outward but

are not used in the helix structure.
- The R groups influence the way
-1 protein interact with other proteins
and the environment.



Beta sheet
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Protein structure

The function of a protein is determined by its
tertiary structure

Structure 1s much more conserved than
sequence

Predicting the folding from the primary
sequence 1s very hard (see CASP competition)

Binding: the interaction between two or more
proteins (or protein-DNA) which have a
“compatible” 3D structure (docking)
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(A) The folding of the polypeptide chain typically creates a crevice or cavity on the
protein surface. This crevice contains a set of amino acid side chains disposed in
such a way that they can make bonds only with certain ligands. (B) Close-up view
of an actual binding site showing the hydrogen bonds and ionic interactions formed
between a protein and its ligand (in this example, cyclic AMP is the bound ligand).

Intrinsically disordered proteins

» Proteins lacks a fixed or ordered three-dimensional
structure are called intrinsically disordered protein

» IDPs cover a spectrum of states from fully
unstructured to partially structured

* Long (>30 residue) disordered segments occur in a
third of eukaryotic proteins

* Many IDPs have the binding affinity with their
receptors regulated by post-translational modification

+ IDPs adapt many different structures in vivo

according to the cell's conditions, creating a structural
or conformational ensemble



Some prediction problems

Secondary structure of proteins
Tertiary (3D) structure of proteins
Docking between proteins, DNA, and/or

small molecules

Intrinsically disordered proteins/segments
Solvent accessibility (the surface area of

a protein that is accessible to a solvent,
e.g., water)

SCIENTIFIC REP{%}RTS

Accepted: 26 November 2015

Published: 11 January 2016

Protein Secondary Structure
Prediction Using Deep
Convolutional Neural Fields

Received: 28 June 2015

Sheng Wang'?, Jian Peng?, Jianzhu Ma® & Jinbo Xu*

Protein secondary structure (SS) prediction is important for studying protein structure and function.
When only the sequence (profile) information is used as input feature, currently the best predictors can

obtain ~80% Q3 accuracy, which has not been improved in the past decade. Here we present DeepCNF

(Deep Convolutional Neural Fields) for protein SS prediction. DeepCNF is a Deep Learning extension

of Conditional Neural Fields (CNF), which is an integration of Conditional Random Fields (CRF) and

shallow neural networks. DeepCNF can model not only complex sequence-structure relationship by

adeep hierarchical architecture, but also interdependency between adjacent SS labels, so itis much

more powerful than CNF. Experimental results show that DeepCNF can obtain ~84% Q3 accuracy,

~85% SOV score, and ~72% Q8 accuracy, respectively, on the CASP and CAMEO test proteins, greatly
outperforming currently popular predictors. As a general framework, DeepCNF can be used to predict
other protein structure properties such as contact number, disorder regions, and solvent accessibility.
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RESEARGH ARTICLE
Accurate De Novo Prediction of Protein
Contact Map by Ultra-Deep Learning Model
Sheng Wang®, Sigi Sun®, Zhen Li, Renyu Zhang, Jinbo Xu*

Toyota Technolagal st at Cicago, Chicago, i, Uned Sttes of America
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‘many sequence homologs is stil of low quality and not very seful for de novo structure
prediction.

Method
This paper a integrating both
i pling (EC) and ion information through an ultra-deep
neural network formed by two deep residual neural networks. The first residual network con-
duct ies of 1-dimensi i o of sequential features; the sec-
i series of i i i
the first residual network, EG information and pair-
jse potential. By using very deep resi we model contact

occurrence patte d complex seq d thus, obtain higher-
quality i y ilable for pro-

teins in question.

Results

‘avaiable at itp/dunbrackfooc du/PISCES phy
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Structural bioinformatics

Advance Access publication July 30, 2012

Deep architectures for protein contact map prediction

Pietro Di Lena'?, Ken Nagata'* and Pierre Baldi'#*

'Department of Computer Science, University of California, Irvine, CA 92697, USA and 2Institute for Genomics and
Bioinformatics, University of California, Irvine, CA 92697, USA

Associate Editor: Burkhard Rost

ABSTRACT

Motivation: Residue-residue contact prediction is important for pro-
tein structure prediction and other applications. However, the accur-
acy of current contact predictors often barely exceeds 20% on
long-range contacts, falling short of the level required for ab initio
structure prediction.

Results: Here, we develop a novel machine leaming approach for
contact map prediction using three steps of increasing resolution.
First, we use 2D recursive neural networks to predict coarse contacts
and orientations between secondary structure elements. Second, we
use an energy-based method to align secondary structure elements
and predict contact probabilites between residues in contacting
alpha-helices or strands. Third, we use a deep neural network archi-
tecture to organize and progressively refine the prediction of contacts,
integrating information over both space and time. We train the archi-
tecture on a large set of non-redundant proteins and test it on a large
set of non-homologous domains, as well as on the set of protein do-
mains used for contact prediction in the two most recent CASP8 and
CASP9 experiments. For long-range contacts, the accuracy of the
new CMAPpro predictor is close to 30%, a significant increase over
existing approaches.

routinely reported at CASP for the best predictors (Ezkurdia
et al., 2009; Kryshtafovych et al., 2011), suggests that contact
prediction is not yet accurate enough to be systematically useful
for ab initio protein structure prediction or engineering.

In broad terms, there are four main approaches for residue—
residue contact prediction. Machine learning approaches use
methods such as neural networks (Fariselli et al., 2001; Punta
and Rost, 2005; Shackelford and Karplus, 2007), recursive
neural networks (Baldi and Pollastri, 2003; Vullo ez al., 2006),
support vector machines (Cheng and Baldi, 2007) and hidden
Markov models (Bjorkholm et al., 2009) to learn how to predict
contact probabilities from a training set of experimentally deter-
mined protein structures. Inputs to these approaches typically
include predicted secondary structure, predicted solvent accessi-
bility as well as evolutionary information in the form of profiles.
Template-based approaches use homology or threading methods
to identify structurally similar templates from which residue-resi-
due contacts are then inferred (Misura ez al., 2006; Skolnick
et al., 2004). Correlated mutations approaches apply statistical
measures, such as Pearson correlation (Gobel et al., 1994; Olmea
and Valencia. 1997} and mutual information (Bureer and van
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DeepQA: improving the estimation of @
single protein model quality with deep
belief networks

Renzhi Cao', Debswapna Bhattacharya?, Jie Hou® and Jianlin Cheng®**

Abstract

Background: Protein quality assessment (QA) useful for ranking and selecting protein models has long been viewed
as one of the major challenges for protein tertiary structure prediction. Especially, estimating the quality of a single
protein model, which is important for selecting a few good models out of a large model pool consisting of mostly
low-quality models, is still a largely unsolved problem.

Results: We introduce a novel single-model quality assessment method DeepQA based on deep belief network that
utilizes a number of selected features describing the quality of a model from different perspectives, such as energy,
physio-chemical characteristics, and structural information. The deep belief network is trained on several large datasets
consisting of models from the Critical Assessment of Protein Structure Prediction (CASP) experiments, several publicly
available datasets, and models generated by our in-house ab initio method. Our experiments demonstrate that deep
belief network has better performance compared to Support Vector Machines and Neural Networks on the protein
model quality assessment problem, and our method DeepQA achieves the state-of-the-art performance on CASP11
dataset. It also outperformed two well-established methods in selecting good outlier models from a large set
of models of mostly low quality generated by ab initio modeling methods.

Conclusion: DeepQA is a useful deep learning tool for protein single model quality assessment and protein
structure prediction. The source code, executable, document and training/test datasets of DeepQA for Linux is
freely available to non-commercial users at http://cactus.ret.missouri.edu/DeepQA/.

Bioinformatics, 2016, 1-8
doi: 10.1093/bioinformatics/btw678
Original Paper

Structural bioinformatics

Improving protein disorder prediction by deep
bidirectional long short-term memory
recurrent neural networks

Jack Hanson'*, Yuedong Yang?*, Kuldip Paliwal’ and Yaoqi Zhou®*

'Signal Processing Laboratory, Griffith University, Brisbane 4122, Australia and ZInstitute for Glycomics, Griffith
University, Gold Coast 4215, Australia

*To whom correspondence should be addressed.
Associate editor: Anna Tramontano

Received on June 7, 2016; revised on September 29, 2016; editorial decision on October 22, 2016; accepted on October 26, 2016

Abstract

Motivation: Capturing long-range interactions between structural but not sequence neighbors of
proteins is a long-standing challenging problem in bioinformatics. Recently, long short-term mem-
ory (LSTM) networks have significantly improved the accuracy of speech and image classification
problems by remembering useful past information in long sequential events. Here, we have imple-
mented deep bidirectional LSTM recurrent neural networks in the problem of protein intrinsic dis-
order prediction.

Results: The new method, named SPOT-Disorder, has steadily improved over a similar method
using a traditional, window-based neural network (SPINE-D) in all datasets tested without separate
training on short and long disordered regions. Independent tests on four other datasets including
the datasets from critical assessment of structure prediction (CASP) techniques and >10 000 anno-
tated proteins from MobiDB, confirmed SPOT-Disorder as one of the best methods in disorder pre-
diction. Moreover, initial studies indicate that the method is more accurate in predicting functional
sites in disordered regions. These results highlight the usefulness combining LSTM with deep bi-
directional recurrent neural networks in capturing non-local, long-range interactions for bioinfor-
matics applications.



Nucleic Acids Research, 2016 1
doi: 10.1093Inarlgkw306

RaptorX-Property: a web server for protein structure

property prediction

Sheng Wang'2"-f, Wei Li%®t, Shiwang Liu® and Jinbo Xu'~

Toyota Technological Institute at Chicago, Chicago, IL, USA, 2Department of Human Genetics, University of
Chicago, Chicago, IL, USA and 3School of Biological and Chemical Engineering, Zhejiang University of Science and

Technology, Zhejiang, China

Received February 19, 2016; Revised April 11, 2016; Accepted April 12, 2016

ABSTRACT

RaptorX Property (http://raptorx2.uchicago.edu/
StructurePropertyPred/predict/) is a web server
predicting structure property of a protein sequence
without using any templates. It outperforms other
servers, especially for proteins without close ho-
mologs in PDB or with very sparse sequence profile
(i.e. carries little evolutionary information). This
server employs a powerful in-house deep learning
model DeepCNF (Deep Convolutional Neural Fields)
to predict secondary structure (SS), solvent acces-
sibility (ACC) and disorder regions (DISO). DeepCNF
not only el pl 1 ucture re-
lationship by a deep hierarchical architecture, but
also interdependency between adjacent property
labels. Our experimental results show that, tested
on CASP10, CASP11 and the other benchmarks, this
server can obtain ~84% Q3 accuracy for 3-state SS,
~T72% Q8 accuracy for 8-state SS, ~66% Q3 accu-
racy for 3-state solvent accessibility, and ~0.89 area
under the ROC curve (AUC) for disorder prediction.

tural properties from amino acid sequence alone, without
using any template information (7).

However, the prediction accuracy of protein structural
properties, while without exploiting experimentally-solved
structures (i.e. templates), is still far away from satisfactory.
Taking 3-state secondary structure prediction as an exam-
ple, when template information is not used and only se-
quence profile is considered, so far the best Q3 accuracy
is ~80% obtained by a few predictors such as PSIPRED
(8) and JPRED (7), which is significantly lower than the es-
timated prediction accuracy limit 88-90% (9). Such a gap
motivates us to develop a better method to further improve
SS prediction. A similar trend is observed on solvent acces-
sibility prediction with three-state accuracy ~60% obtained
by SPINE-X (10) and SANN (11). To further increase pre-
diction accuracy, we will need a more sophisticated method
that can model the complex sequence-structure relationship
in a much better way.

This paper presents RaptorX Property, a web server pre-
dicting protein structure property solely based on protein
sequence or sequence profile. A profile is derived from mul-
tiple sequence alignment (MSA) of sequence homologs in
a protein family (12). To predict structure properties, this
server employs a new machine learning model DeepCNF

Deep learning with feature embedding for compound-protein
interaction prediction

Fangping Wan Jianyang (Michael) Zeng*
wfpl5@mails.tsinghua.edu.cn zengjy@gmail.com

Institute for Interdisciplinary Information Sciences, Tsinghua University

Abstract

Accurately identifying compound-protein interactions in silico can deepen our understanding of the
mechanisms of drug action and significantly facilitate the drug discovery and development process. Tra-
ditional similarity-based computational models for compound-protein interaction prediction rarely ex-
ploit the latent features from current available large-scale unlabelled compound and protein data, and of-
ten limit their usage on relatively small-scale datasets. We propose a new scheme that combines feature
embedding (a technique of representation learning) with deep learning for predicting compound-protein
interactions. Our method automatically learns the low-dimensional implicit but expressive features for
compounds and proteins from the massive amount of unlabelled data. Combining effective feature em-
bedding with powerful deep learning techniques, our method provides a general computational pipeline
for accurate compound-protein interaction prediction, even when the interaction knowledge of com-
pounds and proteins is entirely unknown. Evaluations on current large-scale databases of the measured
compound-protein affinities, such as ChEMBL and BindingDB, as well as known drug-target interactions
from DrugBank have demonstrated the superior prediction performance of our method, and suggested
that it can offer a useful tool for drug development and drug repositioning.

13



Transcription
DNA Binding
RNA Binding
Enhancers/Promoters
Alternative Splicing
MicroRNA post-transcriptional regulation

DNA

DNA is a double stranded chain of sugar
molecules and phosphate residues

Each sugar molecule contains five carbon
atoms (labeled 1° through 5°)

Backbone bonds are between the 3° carbon and
the 5’ carbon

Orientation of DNA is by convention 5’ to 3’

14



DNA

Attached to the 1° we can have one of four
possible bases: Adenine (A), Guanine (G),
Cytosine (C), and Thymine (T)

A,G are purines

C,T are pyrimidines

Nucleotide = sugar + phosphate + base

DNA can reach in the 100s of millions of base
pairs

Thymine
Adenine

Phosphate-

deoxyribose’ A H Nj {
- NH-N
backbone : \

o
HaN Q\P/ -
o~,,/° o c(“’

A o (/Ki ?;j

OH . Y:\p))-
3'end _ Cytosine [~
Guanine 5' end



RNA

Single stranded

Uracil (U) instead of thymine (T)
Different types of RNA

— mRNA (messenger RNA)

— tRNA (transfer RNA)

— rRNA (ribosomal RNA)

... and recently discovered ncRNA in the “RNAi
world”: miRNA, siRNA, snoRNA, stRNA,
snRNA

RNA is much less stable than DNA

Central Dogma

Replication

Reverse transcription

Transcription

Translation

16



?.4
Genes A /Chromosome

Gene. a segment of DNA which encodes for at
least one polypeptide chain (usually mRNA)

It includes regions preceding and following the
coding region (UTR) and intervening
sequences (introns)

Genes usually lie in non-repetitive DNA

Transcription

The synthesis of mMRNA on a DNA template

RNA polymerase is the enzyme that catalyzes
this process (po!/ II in eukaryotes)

RNA polymerase transcribes 1Kbps/sec

The first base pair transcribed is called
transcription start site (TSS)

17



Figure 1.29 The gene may be longer than the
sequence coding for protein.
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Alternative splicing

Alternative RNA splicing
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Transcription

» Promoter: a region of DNA involved in
binding of RNA polymerase to initiate
transcription

» Enhancer: a region of DNA that increases the
utilization of (some) promoters (it can function
in either orientations and any location relative
to the promoter)

* Repressor: a region of DNA that decreases the
utilization of (some) promoters

19



Promoters and Enhancers
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Transcription control

» Different factors are involved in the
transcription machinery
— binding of transcription factors to DNA
— ability of DNA to bend
— relative location of the binding sites
— interaction between transcription factors
— DNA methylation, nucleosomes (epigenetics)
— presence CpG islands (“p” is for phosphate)



glucocorticoid
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+DNA-looping*

distal promoter/
enhancer

TF binding sites

TF binding
sites

proximal
promoter

RNA polymerase Il

Genetic “circuits”
If C then D

| gene D

— A C

!
If B then NOT D
If Aand B then D

If D then B

Slide by Serafim Batzoglou, Stanford U.
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Example: A Human heat shock protein

CCAAT AP2 HSE CCAAT SP1 TATA AP2 0
BT O m = O

promoter of heat shock hsp70

-158
SP1

[]

TATA box: positioning transcription start
TATA, CCAAT: constitutive transcription

* GRE: glucocorticoid response el.
« MRE: metal response element
» HSE: heat shock element
Slide by Serafim Batzoglou, Stanford U.
Translation

» The synthesis of a protein on the mRNA
template

 Takes place inside ribosomes
* Ribosomes are made of rRNA

* Ribosomes translate about 60 bases/sec
(<0.0001% error rate)

 mRNA is translated into the corresponding
amino acids by ribosomes + tRNA

23



Figure 5.8 A
polyribosome consists
of an mRNA being
translated
simultaneously by
several ribosomes
moving in the direction
from 5'to 3'. Each
ribosome has two tRNA
molecules: one carrying
the nascent protein,

the second carrying the
next amino acid to be
added.

Figure 1.30 Gene expression is a multistage
process.
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Figure 7.1 All the triplet codons have meaning: 61
represent amino acids, and 3 cause termination

(STOP).
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Non-coding RNAs

dsRNA: double stranded RNA, typically longer than

30 nt

* miRNA: microRNA, 21-25 bases

— Encoded by endogenous (‘within’) genes

— Hairpin precursors

— Recognize multiple targets

» siRNA: short-interfering RNA, 21-25 bases

— Mostly exogenous origin

— dsRNA precursors

— May be target specific
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Some prediction problems

DNA/protein binding (e.g., TFs)
(nc)RNA/protein binding
miRNAs

Alternative splicing (isoforms)

Gene expression or circadian rthythms of gene
expression

Enhancers and promoters location
Transcript boundaries (start gene, end gene)
Translation initiation site

Bioinformatics, 32, 2016, i121-i127
doi: 10.1093/bioinformatics/btw255
ISMB 2016

Convolutional neural network architectures for
predicting DNA-protein binding
Haoyang Zeng, Matthew D. Edwards, Ge Liu and David K. Gifford*

Computer Science and Artificial Intellig Lab y, M h Institute of Technology, Cambridge, MA
02142, USA

*To whom correspondence should be addressed.

Abstract

Motivation: Convolutional neural networks (CNN) have outperformed conventional methods in
modeling the sequence specificity of DNA-protein binding. Yet inappropriate CNN architectures
can yield poorer performance than simpler models. Thus an in-depth understanding of how to
match CNN architecture to a given task is needed to fully harness the power of CNNs for computa-
tional biology applications.

Results: We present a systematic exploration of CNN architectures for predicting DNA sequence
binding using a large compendium of transcription factor datasets. We identify the best-
performing architectures by varying CNN width, depth and pooling designs. We find that adding
convolutional kernels to a network is important for motif-based tasks. We show the benefits of
CNNs in learning rich higher-order sequence features, such as secondary motifs and local se-
quence context, by comparing network performance on multiple modeling tasks ranging in diffi-
culty. We also demonstrate how careful construction of sequence benchmark datasets, using
approaches that control potentially confounding effects like positional or motif strength bias, is
critical in making fair comparisons between competing methods. We explore how to establish the
sufficiency of training data for these learning tasks, and we have created a flexible cloud-based
framework that permits the rapid exploration of alternative neural network architectures for prob-
lems in computational biology.
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Abstract—Transcription factors (TFs) are macr that

bind to cis-regulatory specific sub-regions of DNA promoters
and initiate transcription. Finding the exact location of these
binding sites (aka motifs) is important in a variety of domains
such as drug design and development. To address this need,
several in vivo and in vitro techniques have been developed so
far that try to characterize and predict the binding specificity of
a protein to different DNA loci. The major problem with these
techniques is that they are not accurate enough in prediction of
the binding affinity and characterization of the corresponding
motifs. As a result, downstream analysis is required to uncover
the locations where proteins of interest bind. Here, we propose
DeeperBind, a long short term recurrent convolutional network
for prediction of protein binding specificities with respect to DNA
probes. DeeperBind can model the positional dynamics of probe
sequences and hence reckons with the contributions made by
individual sub-regions in DNA sequences, in an effective way.
Moreover, it can be trained and tested on datasets containing
varying-length sequences. We apply our pipeline to the datasets
derived from protein binding microarrays (PBMs), an in-vitro
high-throughput technology for quantification of protein-DNA
binding p and present p ing results. To the best
of our knowledge, this is the most accurate pipeline that can
predict binding specificities of DNA sequences from the data
produced by high ghput t ies through utilization of
the power of deep learning for feature generation and positional
dynamics modeling.

to pinpoint the locations on DNA
where these factors bind, which in itself requires the ability
to measure precisely the binding affinity between these
molecules. With the advances in high-throughput technologies
in the past decade several in-vivo [9], [18] and in-vitro [2],
[10], [12] techniques have been invented and upgraded to
address this important and yet challenging task. Unfortunately,
none of these methods are able to generate results that are
interpretable by biologists, but instead each generates a large
volume of noisy, erroneous and low-resolution measurements
for tens of thousands sequence probes. As a result, the
outcome of such experi need to be p d through
downstream analysis pipelines to elicit useful information.
In this study, we use data from Protein Binding Microarrays
(PBM) experiments to evaluate our proposed method. PBM
[2] is a recent in-vitro high-throughput technology that can
massively measure relative binding preferences of DNA
probes for a given transcription factor. The binding preference
in a PBM experiment is directly related to the measured spot
intensities which are scanned and recorded for later analysis.
We apply our method to the data produced by a set of PBM
experiments and try to predict the binding preferences for the
test probes.
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Abstract

In the human genome, distal enhancers are involved in regulating target genes through proximal promoters
by forming enhancer-promoter interactions. However, although recently developed high-throughput exper-
imental approaches have allowed us to recognize potential enhancer-promoter interactions genome-wide, it
is still largely unknown whether there are sequence-level instructions encoded in our genome that help gov-
ern such interactions. Here we report a new computational method (named “SPEID”) using deep learning
models to predict enhancer-promoter interactions based on sequence-based features only, when the locations
of putative enhancers and promoters in a particular cell type are given. Our results across six different cell
types demonstrate that SPEID is effective in predicting enhancer-promoter interactions as compared to state-
of-the-art methods that use non-sequence features from functional genomic signals. This work shows for the
first time that sequence-based features alone can reliably predict enhancer-promoter interactions genome-
wide, which provides important insights into the sequence determinants for long-range gene regulation.
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Predicting the sequence specificities of DNA- and
RNA-binding proteins by deep learning

Babak Alipanahi’»>%, Andrew Delong!", Matthew T Weirauch®-> & Brendan J Frey!-3

Knowing the sequence specificities of DNA- and RNA-binding
proteins is essential for developing models of the regulatory
processes in biological syst and for identifying causal
disease variants. Here we show that sequence specificities
can be ascertained from experimental data with ‘deep
learning’ techniques, which offer a scalable, flexible and
unified computational approach for pattern discovery. Using

a diverse array of experimental data and evaluation metrics,
we find that deep learning outperforms other state-of-the-art
methods, even when training on in vitro data and testing on
in vivo data. We call this approach DeepBind and have built a
stand-alone software tool that is fully automatic and handles
millions of sequences per experiment. Specificities determined
by DeepBind are readily visualized as a weighted ensemble of
position weight matrices or as a ‘mutation map’ that indicates
how variations affect binding within a specific sequence.

Published online 13 October 2015

come in qualitatively different forms. Protein binding microarrays
(PBMs)® and RNAcompete assays® provide a specificity coefficient
for each probe sequence, whereas chromatin immunoprecipitation
(ChIP)»seqm provides a ranked list of putatively bound sequences of
varying length, and HT-SELEX!! generates a set of very high affinity
sequences. Second, the quantity of data is large. A typical high-throughput
experiment measures between 10,000 and 100,000 sequences, and it is
computationally demanding to incorporate them all. Third, each data
acquisition technology has its own artifacts, biases and limitations, and
we must discover the pertinent specificities despite these unwanted
effects. For example, ChIP-seq reads often localize to “hyper-ChIPable”
regions of the genome near highly expressed genes!2.

DeepBind (Fig. 1) addresses the above challenges. (i) It can be
applied to both microarray and sequencing data; (ii) it can learn from
millions of sequences through parallel implementation on a graphics
processing unit (GPU); (iii) it generalizes well across technologies,
even without correcting for technology-specific biases; (iv) it can

Nucleic Acids Research, 2016, Vol. 44, No. 4 32
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ABSTRACT

RNA-binding proteins (RBPs) play important roles
in the post-transcriptional control of RNAs. Identify-
RBP binding sites and characterizing RBP bind-
preferences are key steps toward understand-
ing the basic isms of the p ipti

gene i Though i

methods have been developed for modeling RBP
binding preferences, discovering a complete struc-
tural representation of the RBP targets by integrat-
ing their available structural features in all three
dimensions is still a challenging task. In this pa-
per, we develop a general and flexible deep learn-
ing framework for modeling structural binding pref-
erences and predicting binding sites of RBPs, which
takes (predicted) RNA tertiary structural informa-
tion into account for the first time. Our framework

a unified ion ti hi

izes the structural specificities of RBP targets in all
three dimensions, which can be further used to pre-
dict novel candidate binding sites and discover po-
tential binding motifs. Through testing on the real
CLIP-seq datasets, we have that our

evidence to support the view that RBPs may own

specific tertiary structural binding preferences. In

particular, the tests on the internal ribosome entry

site (IRES) segments yield satisfiable results with

experimental support from the literature and further
the ity of i i

y of RNA ter-
tiary i ion into the iction model.
The source code of our approach can be found in

N H -
P P P.
INTRODUCTION

RNA-binding proteins (RBPs) play important roles in var-
ious cellular processes, such as alternative splicing, RNA
editing, mRNA localization and translational regulation
(1). RBPs contain several special RNA-binding domains
(RBDs), e.g. the RNA recognition motif (RRM) and the
hnRNP K-homology (KH) domains, which recognize their
target sites related to the RNA primary sequence and the
corresponding structural profiles (2). Although it has been
shown that several important discases, such as neurodegen-
erative disorders, cancers and cardiovascular diseases, can
be caused by the dysfunctions of certain RBPs (3.4), rel-
atively few RBPs have been well characterized. Therefore,

deep learning framework can automatically extract
effective hidden structural features from the encoded
raw sequence and structural profiles, and predict
accurate RBP binding sites. In addition, we have
conducted the first study to show that integrating
the additional RNA tertiary structural features can
improve the model performance in predicting RBP
binding sites, especially for the polypyrimidine tract-
binding protein (PTB), which also provides a new

ying RNA-protein ions and modeling RBP
binding preferences are important for decoding the post-
transcriptional processes involving RBPs and their mecha-
nisms of pathogenesis in human diseases.

Recently, the advent of high-throughput experimental
methods, such as the cross-linking immunoprecipitation
coupled with high-throughput sequencing (CLIP-seq)
protocols, has greatly advanced the genome-wide studies of
RNA-protein i ions (5-8). Despite th i

of these d data still suf-
fer from the false-positive and false-negative problems due
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Abstract

Characterizing the binding behaviors of RNA-binding proteins (RBPs) is important for under-

standing their functional roles in gene i ion. However, current high-throughput ex-
perimental methods for identifying RBP targets, such as CLIP-seq and RNAcompete, usually suffer
from the false positive and false negative issues. Here, we develop a deep boosting based machine
learning approach, called DeBooster, to accurately model the binding sequence preferences and iden-
tify the corresponding binding targets of RBPs from CLIP-seq data. Comprehensive validation tests

have shown that DeBooster can other state-of-the-art hes in icting RBP tar-

gets and recover false negatives that are common in current CLIP-seq data. In addition, we have

demonstrated several new potential applications of DeBooster in ing the regulatory func-
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Abstract

Advancements in sequencing technologies have highlighted the role of alternative splicing (AS) in increasing transcriptome
complexity. This role of AS, combined with the relation of aberrant splicing to malignant states, motivated two streams of
research, experimental and computational. The first involves a myriad of techniques such as RNA-Seq and CLIP-Seq to
identify splicing regulators and their putative targets. The second involves probabilistic models, also known as splicing
codes, which infer regulatory mechanisms and predict splicing outcome directly from genomic sequence. To date, these
models have utilized only expression data. In this work we address two related challenges: Can we improve on previous
models for AS outcome prediction and can we integrate additional sources of data to improve predictions for AS regulatory
factors. We perform a detailed comparison of two previous modeling approaches, Bayesian and Deep Neural networks,
dissecting the confounding effects of datasets and target functions. We then develop a new target function for AS prediction
and show that it significantly improves model accuracy. Next, we develop a modeling framework to incorporate CLIP-Seq,
knockdown and over-expression experiments, which are inherently noisy and suffer from missing values. Using several
datasets involving key splice factors in mouse brain, muscle and heart we demonstrate both the prediction improvements
and biological insights offered by our new models. Overall, the framework we propose offers a scalable integrative solution
to improve splicing code modeling as vast amounts of relevant genomic data become available.

Availability: code and data will be available on Github following publication.
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ABSTRACT

Motivation: Alternative splicing (AS) is a regulated process that directs
the generation of different transcripts from single genes. A computa-
tional model that can accurately predict splicing patterns based on
genomic features and cellular context is highly desirable, both in
understanding this widespread phenomenon, and in exploring the
effects of genetic variations on AS.

Methods: Using a deep neural network, we developed a model
inferred from mouse RNA-Seq data that can predict splicing pattems
in individual tissues and differences in splicing patterns across tissues.
Our architecture uses hidden variables that jointly represent features in
genomic sequences and tissue types when making predictions.
A graphics processing unit was used to greatly reduce the training
time of our models with millions of parameters.

Results: We show that the deep architecture surpasses the perform-
ance of the previous Bayesian method for predicting AS pattems. With
the proper optimization procedure and selection of hyperparameters,
we demonstrate that deep architectures can be beneficial, even with a
moderately sparse dataset. An analysis of what the model has leamed
in terms of the genomic features is presented.

Previously, a ‘splicing code’ that uses a Bayesian neural net-
work (BNN) was developed to infer a model that can predict the
outcome of AS from sequence information in different cellular
contexts (Xiong ef al., 2011). One advantage of Bayesian meth-
ods is that they protect against overfitting by integrating over
models. When the training data are sparse, as is the case for
many datasets in the life sciences, the Bayesian approach can
be beneficial. It was shown that the BNN outperforms several
common machine leaming algorithms, such as multinomial lo-
gistic regression (MLR) and support vector machines, for AS
prediction in mouse trained using microarray data.

There are several practical considerations when using BNNs.
They often rely on methods like Markov Chain Monte Carlo
(MCMC) to sample models from a posterior distribution,
which can be difficult to speed up and scale up to a large
number of hidden variables and a large volume of training
data. Furthermore, computation-wise, it is relatively expensive
to get predictions from a BNN, which requires computing the
average predictions of many models.

Recently, deep leaming methods have surpassed the state-of-
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Abstract

Advancements in sequencing technologies have highlighted the role of alternative splicing (AS) in increasing transcriptome
complexity. This role of AS, combined with the relation of aberrant splicing to malignant states, motivated two streams of
research, experimental and computational. The first involves a myriad of techniques such as RNA-Seq and CLIP-Seq to
identify splicing regulators and their putative targets. The second involves probabilistic models, also known as splicing
codes, which infer regulatory mechanisms and predict splicing outcome directly from genomic sequence. To date, these
models have utilized only expression data. In this work we address two related challenges: Can we improve on previous
models for AS outcome prediction and can we integrate additional sources of data to improve predictions for AS regulatory
factors. We perform a detailed comparison of two previous modeling approaches, Bayesian and Deep Neural networks,
dissecting the confounding effects of datasets and target functions. We then develop a new target function for AS prediction
and show that it significantly improves model accuracy. Next, we develop a modeling framework to incorporate CLIP-Seq,
knockdown and over-expression experiments, which are inherently noisy and suffer from missing values. Using several
datasets involving key splice factors in mouse brain, muscle and heart we demonstrate both the prediction improvements
and biological insights offered by our new models. Overall, the framework we propose offers a scalable integrative solution
to improve splicing code modeling as vast amounts of relevant genomic data become available.

Availability: code and data will be available on Github following publication.
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Abstract

Motivation: Large-scale gene expression profiling has been widely used to characterize cellular
states in response to various disease conditions, genetic perturbations, etc. Although the cost of
whole-genome expression profiles has been dropping steadily, generating a compendium of ex-
pression profiling over thousands of samples is still very expensive. Recognizing that gene expres-
sions are often highly correlated, researchers from the NIH LINCS program have developed a cost-
effective strategy of profiling only ~1000 carefully selected landmark genes and relying on compu-
tational methods to infer the expression of remaining target genes. However, the computational
approach adopted by the LINCS program is currently based on linear regression (LR), limiting its
accuracy since it does not capture plex nonlinear i i P ions of genes.
Results: We present a deep learning method (abbreviated as D-GEX) to infer the expression of tar-
get genes from the expression of landmark genes. We used the microarray-based Gene Expression
Omnibus dataset, consisting of 111K expression profiles, to train our model and compare its per-
formance to those from other methods. In terms of mean absolute error averaged across all genes,
deep learning significantly outperforms LR with 15.33% relative improvement. A gene-wise com-
parative analysis shows that deep learning achieves lower error than LR in 99.97% of the target
genes. We also tested the performance of our learned model on an independent RNA-Seq-based
GTEx dataset, which consists of 2921 expression profiles. Deep learning still outperforms LR with
6.57% relative improvement, and achieves lower error in 81.31% of the target genes.

Bioinformatics, 32, 2016, i8-i17
doi: 10.1093/bioinformatics/btw243
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Abstract

Motivation: Circadian rhythms date back to the origins of life, are found in virtually every species
and every cell, and play fundamental roles in functions ranging from metabolism to cognition.
Modern high-throughput technologies allow the measurement of concentrations of transcripts,
metabolites and other species along the circadian cycle creating novel computational challenges
and opportunities, including the problems of inferring whether a given species oscillate in circadian
fashion or not, and inferring the time at which a set of measurements was taken.

Results: We first curate several large synthetic and biological time series datasets containing labels
for both periodic and aperiodic signals. We then use deep learning methods to develop and train
BIO_CYCLE, a system to robustly estimate which signals are periodic in high-throughput circadian
experiments, producing estimates of amplitudes, periods, phases, as well as several statistical sig-
nificance measures. Using the curated data, BIO_CYCLE is compared to other approaches and
shown to achieve state-of-the-art performance across multiple metrics. We then use deep learning
methods to develop and train BIO_CLOCK to robustly estimate the time at which a particular
single-time-point transcriptomic experiment was carried. In most cases, BIO_CLOCK can reliably
predict time, within approximately 1 h, using the expression levels of only a small number of core
clock genes. BIO_CLOCK is shown to work reasonably well across tissue types, and often with only
small degradation across conditions. BIO_CLOCK is used to annotate most mouse experiments
found in the GEO database with an inferred time stamp.
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Abstract

Identifying active cis-regulatory regions in the human genome is critical for understanding gene reg-
ulation and assessing the impact of genetic variation on phenotype. Based on rich data resources such
as the Encyclopedia of DNA Elements (ENCODE) and the Functional Annotation of the Mammalian
Genome (FANTOM) projects, we introduce DECRES, the first supervised deep learning approach for the
identification of enhancer and promoter regions in the human genome. Due to their ability to discover pat-
terns in large and complex data, the introduction of deep learning methods enables a significant advance
in our knowledge of the genomic locations of cis-regulatory regions. Using models for well-characterized
cell lines, we identify key experimental features that contribute to the predictive performance. Applying
DECRES, we delineate locations of 300,000 candidate enhancers genome wide (6.8% of the genome, of
which 40,000 are supported by bidirectional transcription data) and 26,000 candidate promoters (0.6%
of the genome).

Pan et al. BMC Genomics (2016) 17:582

DOI 10.1186/512864-016-2931-8 BMC Genomics

IPMiner: hidden ncRNA-protein @
interaction sequential pattern mining with
stacked autoencoder for accurate
computational prediction
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Abstract

Background: Non-coding RNAs (ncRNAs) play crucial roles in many biological processes, such as post-transcription
of gene regulation. ncRNAs mainly function through interaction with RNA binding proteins (RBPs). To understand the
function of a ncRNA, a fundamental step is to identify which protein is involved into its interaction. Therefore it is
promising to computationally predict RBPs, where the major challenge is that the interaction pattern or motif is
difficult to be found.

Results: In this study, we propose a computational method IPMiner (Interaction Pattern Miner) to predict
ncRNA-protein interactions from sequences, which makes use of deep learning and further improves its performance
using stacked ensembling. One of the IPMiner’s typical merits is that it is able to mine the hidden sequential
interaction patterns from sequence composition features of protein and RNA sequences using stacked autoencoder,
and then the learned hidden features are fed into random forest models. Finally, stacked ensembling is used to
integrate different predictors to further improve the prediction performance. The experimental results indicate that
IPMiner achieves superior performance on the tested IncRNA-protein interaction dataset with an accuracy of 0.891,
sensitivity of 0.939, specificity of 0.831, precision of 0.945 and Matthews correlation coefficient of 0.784, respectively.
We further comprehensively investigate IPMiner on other RNA-protein interaction datasets, which yields better
performance than the state-of-the-art methods, and the performance has an increase of over 20 % on some tested
benchmarked datasets. In addition, we further apply IPMiner for large-scale prediction of ncRNA-protein network, that
achieves promising prediction performance.

Conclusion: By integrating deep neural network and stacked ensembling, from simple sequence composition
features, IPMiner can automatically learn high-level abstraction features, which had strong discriminant ability for
RNA-protein detection. IPMiner achieved high performance on our constructed IncRNA-protein benchmark dataset
and other RNA-protein datasets. IPMiner tool is available at https//www.csbiosjtu.edu.cn/bioinf/IPMiner.
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Abstract. Sparse linear models approximate target variable(s) by a
sparse linear combination of input variables. The sparseness is realized
through a regularization term. Since they are simple, fast, and able to
select features, they are widely used in classification and regression. Essen-
tially linear models are shallow feed-forward neural networks which have
three limitations: (1) incompatibility to model non-linearity of features,
(2) inability to learn high-level features, and (3) unnatural extensions to
select features in multi-class case. Deep neural networks are models
structured by multiple hidden layers with non-linear activation functions.
Compared with linear models, they have two distinctive strengths: the
capability to (1) model complex systems with non-linear structures, (2)
learn high-level representation of features. Deep learning has been applied
in many large and complex systems where deep models significantly out-
perform shallow ones. However, feature selection at the input level, which
is very helpful to understand the nature of a complex system, is still not
well-studied. In genome research, the cis-regulatory elements in non-
coding DNA sequences play a key role in the expression of genes. Since the
activity of regulatory elements involves highly interactive factors, a deep
tool is strongly needed to discover informative features. In order to address
the above limitations of shallow and deep models for selecting features of a
complex system, we propose a deep feature selection model that (1) takes
advantages of deep structures to model non-linearity and (2) conveniently
selects a subset of features right at the input level for multi-class data. We
applied this model to the identification of active enhancers and promot-
ers by integrating multiple sources of genomic information. Results show
that our model outperforms elastic net in terms of size of discriminative
feature subset and classification accuracy.

Published online 5 November 2014
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ABSTRACT

in eukaryotes
is orchestrated by a number of DNA functional el-
ements located at gene regulatory regions. Some
regulatory regions (e.g. enhancers) are located far
away from the gene they affect. Identification of distal
regulatory elements is a challenge for the bioinfor-

of 80.1% and accuracy of 89.64%. DEEP framework is
publicly available at http:/cbrc.kaust.edu.sa/deep/.

INTRODUCTION

Transcription regulation in human genes is a complex pro-
cess (1,2). Promoters are cis-regulatory regions, which serve
as anchor points for recruiting multiprotein complexes re-

matics research. Although existing
increased the number of i

quired for . Although these regions have been

per i of comput:

tional models across different cell-lines, class im-
balance within the learning sets and ad hoc rules
for selecting enhancer candidates for supervised
learning, are some key questions that require fur-
ther examination. In this study we developed DEEP,
a novel ensemble prediction framework. DEEP inte-
grates three with diverse i

tics that streamline the analysis of enhancer’s prop-
erties in a great variety of cellular conditions. In our
method we train many individual classification mod-
els that we combine to classify DNA regions as en-
hancers or non-enhancers. DEEP uses features de-
rived from histone modification marks or attributes
coming from isti i
results indicate that DEEP performs better than four
state-of-the-art methods on the ENCODE data. We re-
port the first computational enhancer prediction re-
sults on FANTOMS data where DEEP achieves 90.2%
accuracy and 90% geometric mean (GM) of speci-
ficity and sensitivity across 36 different tissues. We
further present results derived using in vivo-derived
enhancer data from VISTA database. DEEP-VISTA,
when tested on an independent test set, achieved GM

studied, their mech-
anism is not yet fully understood (3). Recent advances in
high-throughput experiments like the 3C technology indi-
cate that interactions between proximal and distal regula-
tory elements orchestrate gene expression between differ-
ent cell types. In contrast to proximal elements, distal el-
ements are not located near to the genes whose activity
they affect, and can be located 20 kb or further away, or
even can be located at different chromosomes. In addition,
their functional mechanism appears to be independent of
the upstream/downstream location of the genes they target.
The better-characterized distal regulatory elements in eu-
Karyotes are enhancers, silencers and insulators (4,5). Pro-
viding an accurate definition for these regulatory elements
is not an easy task since they may have different roles de-
pending on the cellular state (i.e. can be active or inactive,
or can assume non-enhancer function) and their functional
‘mechanism is not yet fully known. In the line with (6) we
characterize enhancers as cis-acting DNA regulatory ele-
‘ments that increase the transcriptional output of the dis-
tal target genes. Enhancers activate gene transcription by
recruiting transcription factors (TFs) and their complexes.
For this reason, enhancer regions frequently contain clus-
ters of binding sites of various TFs that vary across differ-
ent cells and tissues. On the other hand, silencers, repressors
and insulators have practically negative effects on the cel-
lular transcriptional output either through recruitment of
transcriptional repressor proteins (7), or by preventing the
spread of heterochromatin (8).
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ABSTRACT

MicroRNAs (miRNAs) are short sequences of ribonucleic acids
that control the expression of target messenger RNAs (mRNAs)
by binding them. Robust prediction of miRNA-mRNA pairs is
of utmost importance in deciphering gene regulation but has been
challenging because of high false positive rates, despite a deluge of
computational tools that normally require laborious manual feature
extraction. This paper presents an end-to-end machine leaming
framework for miRNA target prediction. Leveraged by deep recur-
rent neural networks-based aut ding and seq q
interaction learning, our approach not only delivers an unprece-
dented level of accuracy but also eliminates the need for manual
feature extraction. The performance gap between the proposed
method and existing alternatives is substantial (over 25% increase
in F-measure), and deepTarget delivers a quantum leap in the long-
standing challenge of robust miRNA target prediction. [availability:
http://data.snu.ac.kr/putydeepTarget ]
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1. INTRODUCTION

MicroRNAs (miRNAs) are small non-coding RNA molecules that
can control the function of their target messenger RNAs (mRNAs) by
down-regulating the expression of the targets [4]. By controlling the
gene expression at the RNA level, miRNAs are known to be involved
in various biological processes and diseases [27]. As miRNAs play
a central role in the post-transcriptional regulation of more than 60%
of protein coding genes [11], investigating miRNAs is of utmost
importance in many disciplines of life science. As explained further
in Section 2.3, miRNAs are derived from the precursor miRNAs (pre-
miRNAs) and then exhibit their regulatory function by binding to the
target sites present in mRNAs. Two types of computational problems
about miRNAs thus naturally arise in bioinformatics: miRNA host
identification (i.e., the problem of locating the genes that encode
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Abstract

The fate of differentiation of G1E cells is de-
termined, among other things, by a hand-
ful of transcription factors (TFs) binding the
neighborhood of appropriate gene targets.
The problem of understanding the dynam-
ics of gene expression regulation is a feature
learning problem on high dimensional space
determined by the sizes of gene neighbor-
hoods, but that can be projected on a much
lower dimensional manifold whose space de-
pends on the number of TFs and the number
of ways they interact. To learn this manifold,
we train a deep convolutional network on the
activity of TF binding on 20Kb gene neigh-
borhoods labeled by binarized levels of target
gene expression. After supervised training of
the model we achieve 77% accuracy as esti-
mated by 10-fold CV.

We discuss methods for the representation
of the model knowledge back into the input
space. We use this representation to high-
light important patterns and genome loca-
tions with biological importance.

and mouse ENCODE projects(ENCODE Project Con-
sortium, 2011; Mouse ENCODE Consortium et al.,
2012) for the generation of hundreds of assays tar-
geting specific transcription factors (TFs) on a vari-
ety of cell lines. ChIP-Seq derived TFos correlate well
with the locations of functional genome elements, how-
ever the resolution is low and the data lacks statisti-
cal power being limited to a single cell-TF pair. It
is a challenge today to effectively use the data from
this technology for accurate prediction of functional
elements. Data noise is bound to the technology,
but more context can be used to improve accuracy if
prediction models combined data from several experi-
ments.

Here, we propose a deep convolutional architecture as
candidate.

Motivated initially by the visual cortex (Hubel &
Wiesel, 1965; 1968), deep convolutional architec-
tures(LeCun et al., 1989) have been very successful
predictive systems in digit classification, and image
and object recognition(Bengio & LeCun, 2007; LeCun
et al, 2004) and natural language processing (Col-
lobert & Weston, 2008). A convolutional neural net-
work (CNN) replicates feature detectors across all con-
nections between two layers. Thus, sharing the weights
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Abstract

Background: A living cell has a complex, hierarchically organized signaling system that encodes and assimilates
diverse environmental and intracellular signals, and it further transmits signals that control cellular responses,
induding a tightly controlled transcriptional program. An important and yet challenging task in systems biology is
to reconstruct cellular signaling system in a data-driven manner. In this study, we investigate the utility of deep
hierarchical neural networks in leaming and representing the hierarchical organization of yeast transcriptomic
machinery.

Results: We have designed a sparse autoencoder model consisting of a layer of observed variables and four layers
of hidden variables. We applied the model to over a thousand of yeast microarrays to learn the encoding system of
yeast transcriptomic machinery. After model selection, we evaluated whether the trained models captured bidlogically
sensible information. We show that the latent variables in the first hidden layer correctly captured the signals of yeast
transcription factors (TFs), obtaining a close to one-to-one mapping between latent variables and TFs. We further show
that genes regulated by latent variables at higher hidden layers are often involved in a common biological
process, and the hierarchical relationships between latent variables conform to existing knowledge. Finally, we
show that information captured by the latent variables provide more abstract and concise representations of
each microarray, enabling the identification of better separated clusters in comparison to gene-based representation.
Conclusions: Contemporary deep hierarchical latent variable models, such as the autoencoder, can be used to partially
recover the organization of transcriptomic machinery.
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Abstract

Deep learning approaches that have produced breakthrough predictive models in computer vision,
speech recognition and machine translation are now being successfully applied to problems in regulatory
genomics. However, deep learning architectures used thus far in genomics are often directly ported
from computer vision and natural language processing applications with few, if any, domain-specific
modifications. In double-stranded DNA, the same pattern may appear identically on one strand and
its reverse complement due to complementary base pairing. Here, we show that conventional deep
learning models that do not explicitly model this property can produce substantially different predictions on
forward and reverse-complement versions of the same DNA sequence. We present four new convolutional
neural network layers that leverage the reverse-complement property of genomic DNA sequence by
sharing parameters between forward and reverse-complement representations in the model. These layers
guarantee that forward and reverse-complement sequences produce identical predictions within numerical
precision. Using experiments on simulated and in vivo transcription factor binding data, we show that our
proposed architectures lead to improved performance, faster learning and cleaner internal representations
compared to conventional architectures trained on the same data.
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Abstract

Motivation: Translation initiation is a key step in the regulation of gene expression. In addition to the
annotated translation initiation sites (TISs), the translation process may also start at multiple alternative
TISs (including both AUG and non-AUG codons), which makes it challenging to predict TISs and study
the underlying regulatory mechanisms. Meanwhile, the advent of several high-throughput sequencing
techniques for profiling initiating ribosomes at single-nucleotide resolution, e.g., GTl-seq and QTl-seq,
provides abundant data for systematically studying the general principles of translation initiation and the
development of computational method for TIS identification.

Methods: We have developed a deep learning based framework, named TITER, for accurately predicting
TISs on a genome-wide scale based on QTl-seq data. TITER extracts the sequence features of translation
initiation from the surrounding sequence contexts of TISs using a hybrid neural network and further
integrates the prior preference of TIS codon composition into a unified prediction framework.

Results: Extensive tests demonstrated that TITER can greatly outperform the state-of-the-art prediction
methods in identifying TISs. In addition, TITER was able to identify important sequence signatures for
individual types of TIS codons, including a Kozak-sequence-like motif for AUG start codon. Furthermore,
the TITER prediction score can be related to the strength of translation initiation in various biological
scenarios, including the repressive effect of the upstream open reading frames (UORFs) on gene
expression and the mutational effects influencing translation initiation efficiency.
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Abstract

The most prevalent post-transcriptional RNA modification, pseudouridine (¥), also
known as the fifth ribonucleoside, is widespread in rRNAs, tRNAs, snRNAs, snoRNAs and
mRNAs. Pseudouridines in RNAs are implicated in many aspects of post-transcriptional

lation, such as the mai of ion fidelity, control of RNA stability and
stabilization of RNA stmclure However, our underslanding of the functions, mechanisms as
well as precise distri dourdi pecially in mRNAs) still remains largely

unclear. Though thousands of RNA pseudouridylation sites have been identified by high-
throughput experimental techniques recently, the landscape of pseudouridines across the
whole transcriptome has not yet been fully delineated. In this study, we present a highly
effective model, called PULSE (PseudoUridyLation Sites Estimator), to predict novel ¥
sites from large-scale profiling data of pseudouridines and characterize the contextual
sequence features of pseudouridylation. PULSE employs a deep learning framework, called
convolutional neural network (CNN), which has been successfully and widely used for
sequence pattern discovery in the li Our i ion tests d that
PULSE can outperform conventional learning models and achieve hlgh prediction accu:acy,
thus enabling us to further ct the transcrip wide 1 of pseudouridine
sites. Overall, PULSE can provide a useful tool to furl.her investigate v.he funcuonal roles of
pseudouridylation in post-transcriptional regulation.
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Abstract

Determining the binding locations of regulatory factors, such as transcription factors and his-
tone modifications, is essential to both basic biology research and many clinical applications.
Obtaining such genome-wide location maps directly is often invasive and resource-intensive, so
it is common to impute binding locations from DNA sequence or measures of chromatin accessi-
bility. We introduce DeepATAC, a deep-learning approach for imputing binding locations that
uses both DNA sequence and chromatin accessibility as measured by ATAC-seq. DeepATAC
significantly outperforms current approaches such as FIMO motif predictions overlapped with
ATAC-seq peaks, and models based only on DNA sequence, such as DeepSEA. Visualizing the
input importances for the DeepATAC model reveals DNA sequence motifs and ATAC-seq sig-
nal patterns that are important for predicting binding events. The Keras implementation and
analysis pipelines of DeepATAC are available at https://github.com/hiranumn/deepatac.
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Abstract

Motivation: Reconstructing the full-length expressed transcripts (a.k.a. the transcript assembly problem)
from the short sequencing reads produced by RNA-seq protocol plays a central role in identifying novel
genes and transcripts as well as in studying gene expressions and gene functions. A crucial step in
transcript assembly is to accurately determine the splicing junctions and boundaries of the expressed
transcripts from the reads alignment. In contrast to the splicing junctions that can be efficiently detected
from spliced reads, the problem of identifying boundaries remains open and challenging, due to the fact
that the signal related to boundaries is noisy and weak.

Results: We present DeepBound, an effective approach to identify boundaries of expressed transcripts
from RNA-seq reads alignment. In its core DeepBound employs deep convolutional neural fields to learn
the hidden distributions and patterns of boundaries. To accurately model the transition probabilities and
to solve the label-imbalance problem, we novelly incorporate the AUC (area under the curve) score into
the optimizing objective function. To address the issue that deep probabilistic graphical models requires
large number of labeled training samples, we propose to use simulated RNA-seq datasets to train our
model. Through extensive experimental studies on both simulation datasets of two species and biological
datasets, we show that DeepBound consistently and significantly outperforms the two existing methods.
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Abstract

While only recently developed, the ability to profile expression data in single cells (scRNA-Seq) has al-
ready led to several important studies and findings. However, this technology has also raised several new
computational challenges including questions related to handling the noisy and sometimes incomplete data,
how to identify unique group of cells in such experiments and how to determine the state or function of
specific cells based on their expression profile. To address these issues we develop and test a method based
on neural networks (NN) for the analysis and retrieval of single cell RNA-Seq data. We tested various NN
architectures, some biologically motivated, and used these to obtain a reduced dimension representation of
the single cell expression data. We show that the NN method improves upon prior methods in both, the
ability to correctly group cells in experiments not used in the training and the ability to correctly infer cell
type or state by querying a database of tens of thousands of single cell profiles. Such database queries (which
can be performed using our web server) will enable researchers to better characterize cells when analyzing
heterogeneous scRNA-Seq samples.

38



