1 Minimization of Finite Automata: Example

Example: We apply our algorithm to the automaton given below:

Step 1: We have one unreachable state, state D. We remove this state and proceed to Step 2.

Step 2: We first mark pairs of final and non-final states, getting the following tableau:

В						
С	X	X				
E			X			
F			X			
G			X			
Н			X			
	A	В	С	E	F	G

In the first iteration we examine all unmarked pairs. For example, for pair A, B, we get $\delta(A, 1) = F$ and $\delta(B, 1) = C$, and the pair C, F is marked, so we mark A, B too. After doing it for all pairs, we get the following tableau.

В	X					
С	X	X				
E		X	X			
F	X	X	X	X		
G		X	X		X	
Η	X		X	X	X	X
	A	В	С	E	F	G

In the next iteration, we examine the remaining pairs. For example, we will mark pair A, G because $\delta(A,0)=B$ and $\delta(G,0)=G$, and the pair B,G is marked. When we're done we get the following tableau:

В	X					
С	X	X				
E		X	X			
F	X	X	X	X		
G	X	X	X	X	X	
Η	X		X	X	X	X
	A	В	С	Ε	F	G

One more iteration will be executed now, but no new distinguishable pairs will be discovered. So we are done with Step 2 now.

Step 3: We group the states into the equivalence classes. Since A, E are equivalent and B, H are equivalent, the classes are: $\{A, E\}, \{B, H\}, \{C\}, \{F\}, \{G\}$. The minimal automaton \hat{A} is:

