CS141: Intermediate Data Structures and Algorithms

Graphs

Amr Magdy
Graph Data Structure

- A set of nodes (vertices) and edges connecting them.
Graph Applications

- Road network
- Social media networks
- Knowledge bases
Graph Representations

- Adjacency matrix
 - Storage and access efficient when many edges exist

```
<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>B</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>C</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>D</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>E</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
</tbody>
</table>
```
Graph Representations

› Adjacency matrix
 › Storage and access efficient when many edges exist
Graph Representations

- Incidence Matrix
 - Expensive storage, not popular
Graph Representations

- Adjacency list
 - Storage efficient when few edges exit (sparse graphs)
 - Sequential access to edges (vs random access in matrix)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

![Weighted Graph](image1)

![Unweighted Graph](image2)
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest

Fig(i): Connected Graph

Fig(ii): Unconnected Graph

There are three component of above unconnected graph
Types of Graphs

› Directed and Undirected graphs
› Weighted and Unweighted graphs
› Connected graphs
› Bipartite graphs
› Acyclic graphs
› Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
Types of Graphs

- Directed and Undirected graphs
- Weighted and Unweighted graphs
- Connected graphs
- Bipartite graphs
- Acyclic graphs
- Tree/Forest
 - Tree: directed acyclic graph with max of one path between any two nodes
 - Forest: set of disjoint trees
Basic Graph Algorithms

- Graph traversal algorithms
 - Bread-first Search (BFS)
 - Depth-first Search (DFS)
- Topological Sort
- Graph Connectivity
- Cycle Detection
Breadth-first Search (BFS)

› How to traverse?
Breadth-first Search (BFS)

- How to traverse?
- Use a queue
Breadth-first Search (BFS)

- How to traverse?
- Use a queue
- Start at a vertex s
 Mark s as visited
 Enqueue neighbors of s
while Q not empty
 Dequeue vertex u
 Mark u as visited
 Enqueue unvisited neighbors of u
Breadth-first Search (BFS)
Depth-first Search (DFS)

How to traverse?
Depth-first Search (DFS)

- How to traverse?
- Use a stack
Depth-first Search (DFS)

- How to traverse?
 - Use a stack
 - Start at a vertex s
 - Mark s as visited
 - Push neighbors of s
 - while Stack not empty
 - Pop vertex u
 - Mark u as visited
 - Push unvisited neighbors of u
Complexity of Graph Traversal

- For $G = (V,E)$, V set of vertices, E set of edges
- **BFS**
 - Time: $O(|V|+|E|)$
 - Space: $O(|V|)$ (plus graph representation)
- **DFS**
 - $O(|V|+|E|)$
 - Space: $O(|V|)$ (plus graph representation)
Graph Connectivity

- Checking if graph is connected:
Graph Connectivity

Checking if graph is connected:
IsConnected(G)
{
 DFS(G)
 if any vertex not visited
 return false
 else
 return true
}

Time Complexity: $O(|V|+|E|)$
Graph Connected Components

- Getting the graph connected components

Fig(ii):
Unconnected Graph

There are three component of above unconnected graph
Graph Connected Components

- Getting the graph connected components
- Mark all nodes as unvisited

 \[\text{visitCycle} = 1 \]

 \[
 \text{while(there exists unvisited node n) } \\
 \\
 \text{ \{ } \\
 \text{ \quad - Start DFS(G) at n, mark visited node with visitCycle } \\
 \text{ \quad - Output all nodes with current visitCycle as one connected component } \\
 \text{ \quad - visitCycle = visitCycle+1 } \\
 \text{ \}}
 \]

Time Complexity: \(O(|V|+|E|) \)
Cycle Detection

- Does a connected graph G contain a cycle? (non-trivial cycle)
- General idea: if DFS procedure tries to revisit a visited node, then there is a cycle
Cycle Detection

Does a graph G contain a cycle? (non-trivial cycle)

IsAcyclic(G) {
 Start at unvisited vertex s
 Mark “s” as visited
 Push neighbors u of s in stack <node:u, parent:s>
 while stack not empty
 Pop vertex u
 Mark u as visited
 if u has a visited neighbor v
 & v is non-parent for u
 return true
 Push unvisited neighbors v of u <node:v, patent:u>
 return false
Cycle Detection in Directed Graphs

IsAcyclicDirected(node s, currPath) {
 if s in currPath return true
 if s is visited return false
 Mark s as visited
 Add s to currPath
 for each neighbor u of s
 if(IsAcyclicDirected(u, currPath)) return true
 remove s from currPath
 return false
}
Cycle Detection in Directed Graphs

while(there is unvisited node s)
{
 currPath = {}
 if(IsAcyclicDirected(s, currPath))
 return true
}
return false
Topological Sort

- Determine a linear order for vertices of a directed acyclic graph (DAG)
 - Mostly dependency/precedence graphs
 - If edge (u,v) exists, then u appears before v in the order
Topological Sort

L ← Empty list
S ← Set of all nodes with no incoming edge

while S is non-empty do
 remove a node n from S
 add n to end of L

 for each node m with an edge e from n to m do
 remove edge e from the graph
 if m has no other incoming edges then
 insert m into S

return L (a topologically sorted order)
Spanning Tree

- Given a connected graph $G=(V,E)$, a spanning tree $T \subseteq E$ is a set of edges that “spans” (i.e., connects) all vertices in V.
- A **Minimum Spanning Tree (MST)**: a spanning tree with minimum total weight on edges of T.
- Application:
 - The wiring problem in hardware circuit design.
Spanning Tree: Example
Spanning Tree: Not MST

Total weight = 21
Spanning Tree: MST

Total weight = 16
Spanning Tree: Another MST

Total weight = 16
Finding MST: Kruskal’s algorithm

› Sort all the edges by weight
› Scan the edges by weight from lowest to highest
› If an edge introduces a cycle, drop it
› If an edge does not introduce a cycle, pick it
› Terminate when n-1 edges are picked
(n: number of vertices)
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm
Finding MST: Kruskal’s algorithm

The image shows a graph with nodes A, B, C, D, E, and F, connected by edges with weights labeled on the edges. The graph is used to illustrate Kruskal’s algorithm for finding the minimum spanning tree.
Finding MST: Kruskal’s algorithm
Finding MST

- Kruskal’s algorithm: greedy
 - Greedy choice: least weighted edge first
 - Complexity: $O(E \log E)$ – sorting edges by weight
 - Edge-cycle detection: $O(1)$ using hashing of $O(V)$ space

- Prim’s algorithm: greedy
 - Complexity: $O(E + V \log V)$ – using Fibonacci heap data structure
Shortest Paths in Graphs

- Given graph $G=(V,E)$, find shortest paths from a given node $source$ to all nodes in V. (Single-source All Destinations)
Shortest Paths in Graphs

Given graph $G=(V,E)$, find shortest paths from a given node source to all nodes in V. (Single-source All Destinations)

- If negative weight cycle exist from $s \rightarrow t$, shortest is undefined
 - Can always reduce the cost by navigating the negative cycle
- If graph with all +ve weights \rightarrow Dijkstra’s algorithm
- If graph with some -ve weights \rightarrow Bellman-Ford’s algorithm
Dijkstra’s Algorithm

Initialize:

\[
Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty
\end{array}
\]

\[
S: \{\}
\]

Prev: \{A, U, U, U, U, U\}
Dijkstra’s Algorithm
Dijkstra’s Algorithm

\(Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array} \)

\(S: \{ A \} \)

\(\text{Prev: } \{ A, A, A, U, U \} \)
Dijkstra’s Algorithm

\[Q: \begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
\end{array} \]

\[S: \{ A, C \} \]

\[\text{Prev: \{A,A,A,U,U\}} \]
Dijkstra’s Algorithm

\[Q:\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & \hline
\end{array} \]

\[S:\{A, C\}\]

\[\text{Prev:}\{\text{A,C,A,C,C}\}\]
Dijkstra’s Algorithm

Q: \[
\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 11 & 5 & & & \\
\end{array}
\]

S: \{A, C, E\}

Prev: \{A, C, A, C, C\}
Dijkstra’s Algorithm

Graph:

- Vertices: A, B, C, D, E
- Edges and Weights:
 - A to B: 10
 - A to C: 3
 - B to C: 4
 - B to D: 2
 - C to D: 8
 - C to E: 2
 - D to E: 9

Priority Queue (Q):

<table>
<thead>
<tr>
<th></th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td></td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td>3</td>
<td>∞</td>
<td>∞</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td>11</td>
<td>5</td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>11</td>
</tr>
</tbody>
</table>

Set (S):

- S: \(\{A, C, E\}\)

Previous Path (Prev):

- Prev: \(\{A, C, A, C, C\}\)
Dijkstra’s Algorithm

\[
\begin{array}{cccccc}
Q: & A & B & C & D & E \\
& 0 & \infty & \infty & \infty & 8 \\
0 & 10 & 3 & \infty & 8 & 8 \\
7 & 7 & 11 & 11 & 5 \\
\end{array}
\]

\[
S: \{ A, C, E, B \} \\
Prev: \{A,C,A,C,C\}
\]
Dijkstra’s Algorithm

$Q:\begin{array}{cccccc}
A & B & C & D & E \\
0 & \infty & \infty & \infty & \infty \\
10 & 3 & \infty & \infty & \infty \\
7 & 7 & 11 & 11 & 5 \\
\end{array}$

$S: \{ A, C, E, B \}$

$Prev: \{A,C,A,B,C\}$
Dijkstra’s Algorithm

Q:\n| | A | B | C | D | E |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>10</td>
<td>7</td>
<td>7</td>
<td>3</td>
<td></td>
</tr>
</tbody>
</table>

S: \{ A, C, E, B, D \}
Prev: \{A,C,A,B,C\}
Dijkstra’s Algorithm

A: $A \rightarrow A$
B: $A \rightarrow C \rightarrow B$
C: $A \rightarrow C$
D: $A \rightarrow C \rightarrow B \rightarrow D$
E: $A \rightarrow C \rightarrow E$

$S: \{ A, C, E, B, D \}$
$Prev: \{A,C,A,B,C\}$
Dijkstra’s Algorithm

function Dijkstra(Graph, source):
 create vertex set Q

 for each vertex v in Graph: //Initialization
 Dist[v] ← INFINITY //Unknown distance from source to v
 Prev[v] ← UNDEFINED //Previous node in path from source to v
 add v to Q //All nodes initially unvisited (in Q)

 Dist[source] ← 0 // Distance from source to source = 0
 Prev[source] ← source

 while Q is not empty:
 u ← vertex in Q with min Dist[u] //Node with the least distance
 // will be selected first
 remove u from Q

 for each neighbor v of u in Q: //v is still in Q.
 tmp ← Dist[u]+edge_length(u, v) //trying u as “source->u->v”
 if tmp < Dist[v]: //A shorter path to v has been found
 Dist[v] ← tmp
 Prev[v] ← u

 return Dist[], S[]
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?
Network Max Flow

- What the maximum amount we can ship from Vancouver to Winnipeg?

- Pseudo code

  ```
  MaxFlow(G, s, t) {
    max_flow = 0
    while (∃ a simple path p:s→t){
      curr_flow = min weight in p
      max_flow = max_flow + curr_flow
      for each (edge e ∈ p) {
        e.weight = e.weight - curr_flow
      }
    }
    return max_flow
  }
  ```
Network Max Flow

- What is the maximum amount we can ship from Vancouver to Winnipeg?
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 12
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 12
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 16
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

$max_flow = 16$
Network Max Flow

- What is the maximum amount we can ship from Vancouver to Winnipeg?

\[
\text{max_flow} = 16
\]
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 23
Network Max Flow

What is the maximum amount we can ship from Vancouver to Winnipeg?

max_flow = 23
Book Readings & Credits

- Book Readings:
 - Ch. 22, 23.2, 24.3, 26.1, 26.2

- Credits:
 - Figures:
 - Wikipedia
 - btechsmartclass.com
 - Prof. Ahmed Eldawy notes
 - Laksman Veeravagu and Luis Barrera