CS141: Intermediate Data Structures and Algorithms

Greedy Algorithms

Amr Magdy
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
- Activities compete on a single resource, e.g., CPU.
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
- Activities compete on a single resource, e.g., CPU.
- Two activities are said to be **compatible** if they do not overlap.
Activity Selection Problem

- Given a set of activities $S = \{a_1, a_2, \ldots, a_n\}$ where each activity i has a start time s_i and a finish time f_i, where $0 \leq s_i < f_i < \infty$.
- An activity a_i happens in the half-open time interval $[s_i, f_i)$.
- Activities compete on a single resource, e.g., CPU.
- Two activities are said to be compatible if they do not overlap.
- The problem is to find a maximum-size compatible subset, i.e., a one with the maximum number of activities.
Example

a3[0,6)

a10[2,14)

a1[1,4) a9[8,12)

a5[3,9)

a4[5,7) a8[8,11)

a2[3,5] a7[6,10] a11[12,16)

a6[5,9)
A Compatible Set

- a3[0,6)
- a10[2,14)
- a1[1,4)
- a9[8,12)
- a5[3,9)
- a4[5,7)
- a8[8,11)
- a2[3,5)
- a7[6,10)
- a11[12,16)
- a6[5,9)
A Better Compatible Set

- a3[0,6)
- a10[2,14)
- a1[1,4)
- a9[8,12)
- a5[3,9)
- a4[5,7)
- a8[8,11)
- a2[3,5]
- a7[6,10)
- a11[12,16)
- a6[5,9]
An Optimal Solution

- $a_3[0,6)$
- $a_{10}[2,14)$
- $a_1[1,4)$
- $a_{9}[8,12)$
- $a_5[3,9)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_2[3,5)$
- $a_7[6,10)$
- $a_{11}[12,16)$
- $a_6[5,9)$
Another Optimal Solution

- $a_3[0,6)$
- $a_{10}[2,14)$
- $a_1[1,4)$
- $a_9[8,12)$
- $a_5[3,9)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_2[3,5)$
- $a_7[6,10)$
- $a_{11}[12,16)$
- $a_6[5,9)$
Activity Selection Problem

- Solution algorithm?
 - Brute force (naïve): all possible combinations $\rightarrow O(2^n)$
 - Can we do better?
 - Divide line for D&C is not clear
Activity Selection Problem

Solution algorithm?
- Brute force (naïve): all possible combinations \(\rightarrow O(2^n) \)
- Can we do better?
- Divide line for D&C is not clear

Does the problem have optimal substructure?
- i.e., the optimal solution of a bigger problem has optimal solutions for subproblems
Activity Selection Problem

Does the problem have optimal substructure?
- i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

Assume A is an optimal solution for S
- Is $A' = A - \{a_i\}$ an optimal solution for $S' = S - \{a_i \text{ and its incompatible activities}\}$?
- If A' is not an optimal solution, then there an optimal solution A'' for S' so that $|A''| > |A'|$
- Then $B = A'' \cup \{a_i\}$ is a solution for S, $|B| = |A''| + 1$, $|A| = |A'| + 1$
- Then $|B| > |A|$, i.e., $|A|$ is not an optimal solution, contradiction
- Then A' must be an optimal solution for S'
Activity Selection Problem

- Does the problem have optimal substructure?
 - i.e., the optimal solution of a bigger problem has optimal solutions for subproblems

- Assume A is an optimal solution for S
 - Is $A' = A - \{a_i\}$ an optimal solution for $S' = S - \{a_i \text{ and its incompatible activities}\}$?
 - If A' is not an optimal solution, then there an optimal solution A'' for S' so that $|A''| > |A'|$
 - Then $B = A'' \cup \{a_i\}$ is a solution for S, $|B| = |A''| + 1$, $|A| = |A'| + 1$
 - Then $|B| > |A|$, i.e., $|A|$ is not an optimal solution, contradiction
 - Then A' must be an optimal solution for S'

- Proof by contradiction
 - Assume the opposite of your goal
 - Given that prove a contradiction, then your goal is proved
Activity Selection Problem

- What does having optimal substructure mean?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming
Activity Selection Problem

- What does having optimal substructure mean?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming
- Instead, can we make a **greedy** choice?
 - i.e., take the best choice so far, reduce the problem size, and solve a subproblem later
Activity Selection Problem

- What does having optimal substructure mean?
 - We can solve smaller problems, then expand to larger
 - Similar to dynamic programming

- Instead, can we make a **greedy** choice?
 - i.e., take the best choice so far, reduce the problem size, and solve a subproblem later

- Greedy choices
 - Longest first
 - Shortest first
 - Earliest start first
 - Earliest finish first
 - ...?
Activity Selection Problem

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
Activity Selection Problem

- Greedy choice: earliest finish first
 - Why? It leaves as much resource as possible for other tasks
- Solution:
 - Include earliest finish activity a_m in solution A
 - Remove all a_m’s incompatible activities
 - Repeat for the remaining earliest finish activity
Activity Selection Problem: Greedy Solution

- \(a_3[0,6) \)
- \(a_1[1,4) \)
- \(a_9[8,12) \)
- \(a_5[3,9) \)
- \(a_2[3,5] \)
- \(a_7[6,10) \)
- \(a_6[5,9) \)
- \(a_{10}[2,14) \)
- \(a_{11}[12,16) \)
Activity Selection Problem: Greedy Solution

a3[0,6)

a10[2,14)

a1[1,4) a9[8,12)

a5[3,9) a8[8,11) a11[12,16)

a2[3,5) a7[6,10)
Activity Selection Problem: Greedy Solution

- $a_1[1,4)$
- $a_9[8,12)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_7[6,10)$
- $a_{11}[12,16)$
- $a_6[5,9)$
Activity Selection Problem: Greedy Solution
Activity Selection Problem: Greedy Solution

- \(a_1[1,4) \)
- \(a_4[5,7) \)
- \(a_8[8,11) \)
- \(a_9[8,12) \)
- \(a_{11}[12,16) \)
Activity Selection Problem: Greedy Solution

- $a_1[1,4)$
- $a_4[5,7)$
- $a_8[8,11)$
- $a_9[8,12)$
- $a_{11}[12,16)$
Activity Selection Problem: Greedy Solution

\begin{itemize}
 \item a1[1,4)
 \item a4[5,7)
 \item a8[8,11)
 \item a11[12,16)
\end{itemize}
Activity Selection Problem: Greedy Solution

- \(a_1[1,4]\)
- \(a_4[5,7]\)
- \(a_8[8,11]\)
- \(a_{11}[12,16]\)
Activity Selection Problem

» Pseudo code?
Pseudo code?

findMaxSet(Array a, int n)
{
 - Sort “a” based on earliest finish time
 - result ← {}
 - for i = 1 to n
 validAi = true
 for j = 1 to result.size
 if (a[i] is incompatible with result[j])
 validAi = false
 if (validAi)
 result ← result U a[i]
 - return result
}
Activity Selection Problem

- Is greedy choice is enough to get optimal solution?
Activity Selection Problem

› Is greedy choice is enough to get optimal solution?
› Greedy choice property
 › Prove that if a_m has the earliest finish time, it must be included in some optimal solution.
Activity Selection Problem

- Is greedy choice is enough to get optimal solution?
- Greedy choice property
 - Prove that if \(a_m \) has the earliest finish time, it must be included in some optimal solution.
- Assume a set \(S \) and a solution set \(A \), where \(a_m \notin A \)
 - Let \(a_j \) is the activity with the earliest finish time in \(A \) (not in \(S \))
 - Compose another set \(A' = A - \{a_j\} \cup \{a_m\} \)
 - \(A' \) still have all activities disjoint (as \(a_m \) has the global earliest finish time and \(A \) activities are already disjoint), and \(|A'| = |A| \)
 - Then \(A' \) is an optimal solution
 - Then \(a_m \) is always included in an optimal solution
Elements of a Greedy Algorithm

1. Optimal Substructure
2. Greedy Choice Property
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices
Greedy vs. Dynamic Programming

- Solving the bigger problem include:
 - One choice (greedy) vs Multiple possible choices

 - One subproblem vs A lot of overlapping subproblems
Greedy vs. Dynamic Programming

- Solving the bigger problem include
 One choice (greedy) vs Multiple possible choices
 - One subproblem
 - A lot of overlapping subproblems

- Both have optimal substructure
Greedy vs. Dynamic Programming

- Solving the bigger problem includes:
 - One choice (greedy) vs Multiple possible choices

- One subproblem vs A lot of overlapping subproblems

- Both have optimal substructure

- Elements:

<table>
<thead>
<tr>
<th>Greedy</th>
<th>DM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Optimal substructure</td>
<td>Optimal substructure</td>
</tr>
<tr>
<td>Greedy choice property</td>
<td>Overlapping subproblems</td>
</tr>
</tbody>
</table>
Knapsack Problem

item 1

10

$60

item 2

20

$100

item 3

45

$120

knapsack

50
Knapsack Problem

- 0-1 Knapsack: Each item either included or not
- Greedy choices:
 - Take the most valuable → Does not lead to optimal solution
 - Take the most valuable per unit → Works in this example
Knapsack Problem

0-1 Knapsack: Each item either included or not

Greedy choices:

- Take the most valuable → Does not lead to optimal solution
- Take the most valuable per unit → Does not work
Knapsack Problem

Fractional Knapsack: Part of items can be included
Knapsack Problem

Fractional Knapsack: Part of items can be included

Greedy choices:
- Take the most valuable → Does not lead to optimal solution
- Take the most valuable per unit → Does work
Fractional Knapsack Problem

- Greedy choice property: take the most valuable per weight unit
Fractional Knapsack Problem

- Greedy choice property: take the most valuable per weight unit
- Proof of optimality:
 - Given the set S ordered by the value-per-weight, taking as much as possible x_j from the item j with the highest value-per-weight will lead to an optimal solution X
 - Assume we have another optimal solution $X`$ where we take less amount of item j, say $x_j` < x_j$.
 - Since $x_j` < x_j$, there must be another item k which was taken with a higher amount in $X`$, i.e., $x_k` > x_k$.
 - We create another solution $X``$ by doing the following changes in $X`$
 - Reduce the amount of item k by a value z and increase the amount of item j by a value z
 - The value of the new solution $V`` = V` + z \frac{v_j}{w_j} - z \frac{v_k}{w_k}$
 $= V` + z (\frac{v_j}{w_j} - \frac{v_k}{w_k}) \Rightarrow \frac{v_j}{w_j} - \frac{v_k}{w_k} \geq 0 \Rightarrow V`` \geq V`$
Fractional Knapsack Problem

- Optimal substructure
Fractional Knapsack Problem

- Optimal substructure
- Given the problem S with an optimal solution X with value V, we want to prove that the solution $X' = X - x_j$ is optimal to the problem $S' = S - \{j\}$ and the knapsack capacity $W' = W - x_j$
- Proof by contradiction
 - Assume that X' is not optimal to S'
 - There is another solution X'' to S' that has a higher total value $V'' > V'$
 - Then $X'' \cup \{x_j\}$ is a solution to S with value $V'' + x_j > V' + x_j > V$
 - Contradiction as V is the optimal value
Fractional Knapsack Problem

Fknapsack (W, S, v’s, w’s) {
 - Sort S based on vi/wi value
 - rw = W
 - result = { }
 - for each si in S
 if(wi <= rw)
 result = result U si
 rw = rw-wi
 else
 result = result U rw/wi * si
 rw = 0
 - return result
}
Huffman Codes

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (in thousands)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>
Huffman Codes

Prefix Codes: No code is allowed to be a prefix of another code
- Prefix codes give optimal data compression

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (in thousands)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>

Huffman Codes

Prefix Codes: No code is allowed to be a prefix of another code

Prefix codes give optimal data compression

Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”
Encrypted message “110100” Decoding “110100”
Huffman Codes

Prefix Codes: No code is allowed to be a prefix of another code
- Prefix codes give optimal data compression

Example: Message ‘JAVA’ a = “0”, j = “11”, v = “10”
Encoded message “110100” Decoding “110100”

In the table:
- Encoding with fixed-length needs 300K bits
- Encoding with variable-length needs 224K bits

<table>
<thead>
<tr>
<th></th>
<th>a</th>
<th>b</th>
<th>c</th>
<th>d</th>
<th>e</th>
<th>f</th>
</tr>
</thead>
<tbody>
<tr>
<td>Frequency (in thousands)</td>
<td>45</td>
<td>13</td>
<td>12</td>
<td>16</td>
<td>9</td>
<td>5</td>
</tr>
<tr>
<td>Fixed-length codeword</td>
<td>000</td>
<td>001</td>
<td>010</td>
<td>011</td>
<td>100</td>
<td>101</td>
</tr>
<tr>
<td>Variable-length codeword</td>
<td>0</td>
<td>101</td>
<td>100</td>
<td>111</td>
<td>1101</td>
<td>1100</td>
</tr>
</tbody>
</table>
Huffman Codes

Fixed-length tree

Variable-length tree
Huffman Codes

Fixed-length tree

Variable-length tree

We need an algorithm to build the optimal variable-length tree
Huffman Codes: Tree Construction

Huffman(C)

1. $n = |C|$
2. $Q = C$
3. **for** $i = 1$ **to** $n - 1$
4. allocate a new node z
5. $z.left = x = \text{Extract-Min}(Q)$
6. $z.right = y = \text{Extract-Min}(Q)$
7. $z.freq = x.freq + y.freq$
8. \text{Insert}(Q, z)$
9. **return** $\text{Extract-Min}(Q)$ \hspace{1em} // return the root of the tree
Huffman Codes: Tree Construction

f:5 e:9 c:12 b:13 d:16 a:45
Huffman Codes: Tree Construction

c:12 b:13

14

0 1

f:5 e:9
d:16 a:45
Huffman Codes: Tree Construction

```
       14
      /  \
     0    1
    f:5  e:9

       d:16
      /  \
     0    1
    c:12  b:13

       25
      /  \
     0    1
    a:45
```
Huffman Codes: Tree Construction
Huffman Codes: Tree Construction

![Huffman Tree](image)
Huffman Codes: Tree Construction

```
100
 |
0  1
 |
  0  1 0 1
 |          |
a:45 55    25 30
 |
  0 1 0 1
 |     |    |
c:12 b:13 14 d:16
 |
  0 1
 |
  0 1
 |
f:5 e:9
```
Huffman Codes

- Details of optimal substructure and greedy choice property in the text book
Book Readings and Credits

Book Readings:
 16.1 – 16.3

Credits to:
 Prof. Ahmed Eldawy notes