Problem 1. (10 points) Write an algorithm to construct the actual solution of the matrix chain multiplication problem (i.e., the parentheses order). Trace its output on the following examples:
(a) Three matrices (A, B, and C) with dimensions 10 x 50 x 5 x 100, respectively.
(b) Four matrices (A, B, C, and D) with dimensions 20 x 5 x 10 x 30 x 10, respectively.

Problem 2. (20 points) Given two strings A and B and the following operations that can performed on A. Find minimum number of operations required to make A and B equal.
1. Insert
2. Delete
3. Replace

Problem 3. (25 points) Let $A = \{a_1, a_2, \ldots, a_n\}$ and be a set of n positive integer and let T be another integer. Design a dynamic programming algorithm that determines whether there exists a subset of A whose total sum is exactly T. Analyze the time—and space—complexity of your solution.
For instance, if $A = \{4, 5, 17, 23, 11, 2\}$ and $T = 35$ the algorithm should return True because the subset $\{5, 17, 11, 2\}$ sums to 35. For the same set of numbers if we choose $T = 31$ the problem has no solution, and the algorithm will return False.

Problem 4. (25 points) Let A be a $n \times m$ matrix of 0’s and 1’s. Design a dynamic programming $O(nm)$ time algorithm for finding the largest square block of 1’s only.
Hint: Define the dynamic programming table $l(i, j)$ be the length of the side of the largest square block of 1’s whose bottom right corner is $A[i, j]$.

Problem 5. (20 points) Given n dice each with m faces, numbered from 1 to m, find the number of ways to get sum X, where X is the sum of values on each face when all the dice are thrown.