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Abstract—Software Defined Networking (SDN) and Network
Function Virtualization (NFV) are transforming Data Center
(DC), Telecom, and enterprise networking. The programmability
offered by P4 enables SDN to be more protocol-independent
and flexible. Data Centers are increasingly adopting SmartNICs
(sNICs) to accelerate packet processing that can be leveraged
to support packet processing pipelines and custom Network
Functions (NFs). However, there are several challenges in in-
tegrating and deploying P4 based SDN control as well as host
and sNIC-based programmable NFs. These include configuration
and management of the data plane components (Host and sNIC
P4 switches) for the SDN control plane and effective utilization
of data plane resources. P4NFV addresses these concerns and
provides a unified P4 switch abstraction framework to simplify
the SDN control plane, reducing management complexities, and
leveraging a host-local SDN Agent to improve the overall resource
utilization. The SDN agent considers the network-wide, host, and
sNIC specific capabilities and constraints. Based on workload
and traffic characteristics, P4NFV determines the partitioning
of the P4 tables and optimal placement of NFs (P4 actions) to
minimize the overall delay and maximize resource utilization.
P4NFV uses Mixed Integer Linear Programming (MILP) based
optimization formulation and achieves up to 2.5X increase in
system capacity while minimizing the delay experienced by flows.
P4NFV considers the number of packet exchanges, flow size,
and state dependency to minimize the delay imposed by data
transmission over PCI Express interface.

I. INTRODUCTION

Software-Defined Networking (SDN) provides a logically
centralized control plane for network service providers, en-
abling them to program and control the network forwarding
plane (e.g., SDN controller like ONOS [1]). OpenFlow [2],
[3] is a standard for communication between the controller
and switches to implement SDN. To overcome OpenFlow’s
limitations on being protocol specific and not being able to
match on arbitrary packet fields [4], programmability using
P4 [5] has been introduced. P4 enables simple networking
devices to be programmed to support custom protocols and
functionality [6]. This programmability provides flexibility
to implement a custom networking stack and to quickly
adapt (upgrade) to new protocols in the field. In addition,
P4 being protocol-independent allows the implementation of
custom switching pipelines and provides an API for the SDN
controller to populate tables. Thus, P4 augments OpenFlow
and extends SDN’s capability to offer a new level of control
and flexibility to dynamically configure and adapt the network
forwarding plane to perform custom match-action processing.

Network Function Virtualization (NFV) is being widely
adopted in large scale enterprise and data center networks
to cater to more complex and diverse in-network processing.
Although NFV supports dynamic instantiation of network

functions (NFs) and scaling-out of the network’s capabilities in
response to demand, NFV creates new challenges concerning
service management and orchestration. Since each NFV node
is an integral part of the data plane, the SDN controller
continues to have a critical role in directing packet flows
appropriately through NFV nodes, and NFs within each node.

To ease the burden on the computing resources (CPU pro-
cessing, data movement) as network link bandwidths increase
(going from 10 to 100 Gbps), smart Network Interface Cards
(sNICs) are becoming increasingly common. Modern sNICs
provide programmable multi-core processors that enable the
host to offload custom-built packet processing functions dy-
namically. These include OpenFlow and P4 match-action pro-
cessing capabilities. They also support custom NF processing
that can be offloaded from the host to the sNIC [7]. However,
effectively leveraging the sNIC capabilities and integrating the
sNIC into the SDN control domain poses several challenges,
namely i) Configurability: The hypervisor or the host software
switch needs to be aware of the sNIC capabilities and provide
the necessary flow routing configuration to ensure the traffic
is routed appropriately between the host and sNIC through
specific virtual (SR-IOV) ports. ii) Manageability: An SDN
controller now has to control and program both the switch
instances (in the host hypervisor) and the attached sNICs
to configure the data plane operations. This increases the
complexity of the SDN controllers. iii) Utilization: Since
sNICs have limited computation and memory capabilities, not
all NFs and switching can be realized on sNICs. Complex
NFs, including stateful NFs, still need to be realized in the
host. Further, chaining different NFs across the host and sNIC
may result in a packet making multiple traversals across the
host PCIe bus. This can result in high latency and excessive
overhead [8]. To overcome these challenges, we have designed
and implemented P4NFV, which offers a unified host and
sNIC data plane environment to the SDN controller. Our
framework takes into account both host and sNIC capabilities
(viz., compute and memory resources), communication consid-
erations (sNIC to host virtual port mappings, PCIe bandwidth,
and delay) and SDN policies (service chain configuration,
service level objectives) to provide a unified view of a P4
capable NFV processing engine. The key contributions of
P4NFV are:
• We create a DPDK [9] based P4 NFV framework to facili-

tate and configure SR-IOV based virtual ports for accessing
the sNIC [10].

• We present a unified SDN-agent for the host and sNIC P4
switch. The SDN controller does not need to be aware of the
differences between the host and the sNIC P4 capabilities.
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Fig. 1: P4NFV Architecture

• We provide an optimization framework for partitioning the
P4 pipeline across the host and sNIC, accounting for the
sNIC compute and memory constraints and the NF chain
processing requirements.

II. ARCHITECTURE

P4NFV is a framework that abstracts a server that benefits
from a SmartNIC as a single entity to the SDN controller.
In this framework, different Network Functions (NFs) that
can be executed by the OpenNetVM NFV host [11] or the
SmartNIC are sent to the SDN controller as possible external
P4 actions which enables the central controller to shape the
desired service chain within a P4 pipeline (hereon we use
NFs and actions interchangeably) . When SDN Agent of
this framework receives the pipelines configurations from the
controller, it optimizes the placement of network functions and
P4 tables between the host and sNIC. The decision is made
locally, thus avoiding the overheads and complexity on the
SDN controller. The design also minimizes communication
between the host and sNIC, thus judiciously managing PCIe
bus overheads. The overall architecture is depicted in Fig. 1.

A. OpenNetVM

We build P4NFV on top of OpenNetVM [11], which is a
scalable and efficient NFV framework that supports dynamic
steering of packets through NF service chains. Routing pack-
ets to appropriate NFs is performed by an NF Manager in
OpenNetVM, while packet data stays in shared memory. The
NF Manager mediates packet access by NFs through packet
descriptors. First, we extend OpenNetVM to support sNICs
that require the host device to interface with Single Root-
I/O Virtualization (SR-IOV) based virtual ports (vport). Open-
NetVM was initially designed with simpler DPDK-enabled
NICs (that support multiple, 64-128 queues per port), where
it maintains a fixed mapping between Ethernet port queues
and the host Rx/Tx threads that poll one-or-more of the port
queues. However, this design cannot support SR-IOV based
vports, especially the Netronome sNIC [12] which limits to
only one queue per vport, entailing a strict restriction of 1 Tx
and 1 Rx thread per vport. This severely limits the throughput

OUT

SmartNIC

IN Flow
Cache

P4
Ingress
Parser

Match
Action
Tables

C
Sandbox

P4
Egress
Parser

Micro EnginesMicro EnginesMicro EnginesME Island (Flow Processing Cluster)

Cluster
Target

Memory

Micro
Engine

Micro
Engine

Cluster
Local

Storage

IMEM
4MB Internal
MEM 

IMEM
4MB IMEM
4MB External
MEM

External DRAM 

Micro
Engine

Micro
Engine

Fig. 2: SmartNIC - Typical Blocks and Processing pipeline
(based on Netronome NFP-Agilio4000) design [12]

of the NF processing pipeline. To overcome this limitation,
we design a scalable Tx Gateway component (thread with
dedicated ring buffer) based on the Facade architectural pat-
tern [13]. Tx Gateway thread can serve packets from different
NFs and forward to dedicated vport queues.

Second, we extend OpenNetVM to provide the P4 switch
capabilities conforming to the P416 switch specifications [14],
[15], i.e., include the P4 based tables (match-action processing
pipeline) to process and route the packets. The p4 switch reads
the input JSON file and generates the respective pipeline and
tables. The progress through the tables is recorded by storing
the pointer to the next table in the metadata of each packet.
When a packet needs to be processed by an NF, the packet
is sent to that NF’s queue, receives the service, and then is
processed in the switch by using the next table pointer. Hence,
the p4 switch can keep processing other packets while a packet
is processed in an NF. The p4 forwarding tables are stored
in the shared memory and SDN agent can update the rules
directly to lower update delay in the tables.

B. Overview of SmartNIC architecture and capabilities

sNICs accelerate network processing by offloading some
or all of the network protocol processing functions usually
performed by the server CPU. Beyond the on-chip network
acceleration capabilities of traditional NICs, e.g., checksum,
segmentation and reassembly, sNICs provide several pro-
grammable processing cores that can be used to implement
complex network functions usually part of server processing.

We used the Netronome SmartNIC [12], as part of the
P4NFV framework. The sNIC comprises of 60 flow processing
cores also known as Microengines, running at 633MHz that is
shared by eight threads running the same program. The sNIC
also has a hierarchical memory subsystem, providing memory
for a FlowCache, and custom user-defined data structures, and
match action tables through memory transactions. Different
memory subsystem components in the sNIC vary in capacity
and also result in different access delays.

The sNIC Microengines can support MicroC programs that
are written as actions in the packet processing pipeline as well
as separate functions that can be executed asynchronously,
invoked e.g., by timer expiration. Typically stateful actions are
carried out in MicroC. This allows the programmer to select
the appropriate memory subsystem on the sNIC for custom
data structures. To fully utilize the sNIC, the host-resident



SDN agent must be aware of the capabilities of the attached
sNIC, including partitioning tasks between P4 packet pipeline
vs. MicroC programs, and then place data structures on on-
chip (of the order of MBytes) memory vs. DRAM.

We focus on providing SDN support for sNICs, paying
attention to the modification of rules in the P4 match action
table, and handling the effects of caching those rules in a
FlowCache. While the logical P4 pipeline is mapped to the
sNIC and the table entries drive the selected action set, a
FlowCache, similar to the Unified Flow Table fast path [16]
and OVS megaflow [17], is employed to achieve high through-
put. Since the sNIC supports P4, it allows for programmable
parsing, including the definition of new headers. The packet
processing cores conduct parsing (or header extraction) along
with checksum verification. Subsequent packet processing is
load balanced across available flow processing cores (Micro-
engines) for match action processing. Based on the actions
selected, packets may be DMA’d to the host using the PCIe
DMA or sent to the egress packet processing cores that deliver
the packets to the MAC buffer.

Typical flow processing pipelines involve multiple table
lookups (hash key and index computation) for each packet
at each stage of the table pipeline and executing the specified
actions. These activities are generally repeated for subsequent
packets. To accelerate the data-path processing, sNICs can also
include a dedicated cache (called a FlowCache) to store the
flow lookup information. However, using such a FlowCache
comes with its limitations. The caching of packet processing
actions is not suitable for the cases where the action set for
different packets of the same flow can differ (such as sampling,
when a timer or a metric of interest reaches a certain threshold)
because only the first packet’s action-set is applied to all the
subsequent packets.

C. SDN Agent on the host

We construct an SDN agent in the host to communicate
with the central SDN controller, presenting a unified view of
the host-based P4 switch and the P4 switch in the sNIC. As
shown in Fig 1, SDN agent is a module in the OpenNetVM
P4 switch and maintains the host P4 tables in shared memory
which is accessible by P4NFV P4 switch.

Upon startup, the SDN Agent gathers information on the
capabilities of the sNIC and the software-based OpenNetVM
P4 switch and provides it to the SDN controller. The controller
uses the P4 Runtime interface to send the unified packet
pipeline to the SDN agent. The SDN Agent also receives
the set of tables and actions proactively for expected flows.
When the SDN agent receives this information, it uses its
optimization engine to decide the placement of the NFs (P4
actions) and division of tables between the host and sNIC.
The optimization engine (see Section III) seeks to minimize
overall packet latency by accounting for the data dependencies,
whether the functions best execute at the sNIC or the host
and provides the SDN agent the information on the tables to
populate on the host and the sNIC (some tables of a pipeline
may be on both the host P4 switch and the sNIC). While the

SDN controller views the host and sNIC as a unified packet
processing pipeline (and associated tables), the SDN agent
will need to update the rules appropriately on the host and
the sNIC based on its initial partitioning. This may require
inserting or updating additional rules in the intermediate table
entries, or tagging additional state information through the
chaining of multiple actions for same rules across the sNIC
and host P4 tables. E.g., suppose we have the rule in Table
3 (on both host and sNIC) to send all the TCP packets with
destination port 80 to a firewall (FW) NF (i.e., FW is run
on both sNIC and host). The optimization engine may have
partitioned the FW functionality so that those packets that need
to undergo deep packet inspection (rule in Table 4 of host) -
a compute intensive function run only on the host, are sent to
the host through an entry in Table 2 of sNIC, while rest of
the packets are processed within the sNIC. Thus, in this case,
the SDN agent will have to add new rules for sending the
subset of the flows to the host by adding an entry into Table
2, with a corresponding action to DMA the packets to the host.
However, these rules need some changes before being applied
on the tables of the OpenNetVM P4 switch or the tables on
the SmartNIC because the rules are sent based on the original
pipeline and tables. The SDN Agent finds proper tables based
on the assignment it has done before and update the rules
accordingly. The act of sending packets to the other device can
be done by using intermediate tables between original tables
and add an action to send to the other device or by defining
a specific action in p4 architecture.

Also, when the SDN controller seeks statistics from dif-
ferent tables, the SDN Agent does the aggregation of the
results obtained from both devices (host and sNIC) before
sending to the controller. Note: it is possible to infer such
required state dependency based on the P4 code provided
by the SDN controller. Overall, the SDN Agent ensures the
different switching components (host P4 switch and sNIC) are
opaque to the SDN controller and optimizes resource usage to
reduce the packet latency by intelligent assignment of NFs and
tables to different P4 switches within the node.

D. Interfacing with SmartNIC

The SDN Agent administers rules for the sNIC’s P4 Match
action tables via a Thrift Remote Procedure Call (RPC)
interface. As Apache Thrift [18] is a cross-language code
generation engine, we generate a Thrift client in C and
integrate it with the Host’s SDN Agent to add, delete, edit,
and retrieve table entries. To add a table entry to the sNIC,
the Thrift client first creates an instance of a table entry object.
The client then populates the instance’s match attribute with
a JSON string that indicates which packets should match this
rule and the action attribute with a JSON string that indicates
the action to undertake and the corresponding arguments to
pass to the action subroutine. The client must also specify
whether this is the default rule and the rule name. Once the
object is constructed, the runtime API is invoked with the table
ID and entry instance as arguments. The API runs over Thrift’s
binary protocol with a blocking socket I/O protocol.



III. OPTIMIZATION OF TASK ASSIGNMENT BETWEEN HOST
AND SMARTNIC

The optimization engine is a subcomponent of SDN Agent,
responsible to efficiently partition and assign packet processing
tasks across the host and sNIC P4 switches. It accounts for
the forwarding latency, packet processing cost, PCIe bus band-
width, and packet data dependency constraints. We formulate a
Mixed Integer Linear Programming Problem (MILP) to guide
the partitioning of the pipeline and functions between the
host P4 switch and the sNIC. Overall the optimizer has the
following features:
• Considers the delay caused by the number of PCIe traversal
• Considers the update rate of the rules governing different

flows (sNIC update rate is limited)
• Considers the data dependency and delay caused by the

amount of data exchanged over PCIe.
• Satisfying the maximum tolerable delay of each flow and

minimizes the overall delay of the flows.
• Decides the place of different actions and path of the flows.
• If possible, runs NF clones on both (Host and sNIC) devices.
We assume N flows are being served. Our objective is to
minimize the total delay observed by all the flows:

Obj :

N∑
f=1

TotalDelayf =

N∑
f=1

(ProcessingDelayf+

PCIFixedDelayf + PCITransDelayf )

Each packet is being processed through a number of tables (t)
of the pipeline, where L denotes the length of the pipeline.
CH

a & CS
a denote the time needed to perform action (a) on

the packet by the host and sNIC respectively. Note that the
time for performing different actions vary and the time for the
same action when performed on host differs from the time it
takes to perform the same action on sNIC. E.g., large state
manipulation is faster on the host, while simpler actions like
forward to next table are faster on sNIC. If only primitive
actions are being performed on the packet, then it is one of
the special cases of the actions in which the forwarding delay
on the tables for that device is the major part of the delay. The
delay for forwarding on each table is represented as TH and
TS for the host and sNIC respectively. If the device does not
support a specific type of action, then the delay for this action
can be defined as infinity. Finally, Si, j, k shows the action k
is applied for flow i in table j and A shows the total number
of actions. We define the Processing delay as:

ProcessingDelayf =

L∑
t=1

A∑
a=1

Df,t ∗ Sf,t,a ∗ (CH
a + TH)+

(1−Df,t) ∗ Sf,t,a ∗ (CS
a + TS)

Df,t is a decision variable that determines that what device
serves table t for flow f . If Df,t is one, it is served by host,
otherwise it is served by sNIC ((1−Df, t) = 1) .

Df,1 = Df,L = 0

Each traversal over the PCIe imposes additional delay on the
packets. This delay is reflected in PCIFixedDelayf .

∀f ∈ 1..N, ∀t ∈ 1..(L− 1) :

D′f,t = Df,t+1 −Df,t

D′′f,t ≥ D′f,t , D′′f,t ≥ −1 ∗D′f,t

Uf =

L−1∑
t=1

D′′f,t

PCIFixedDelayf = Uf ∗ E
To calculate the delay caused by PCIFixedDelayf , the
number of PCIe traversal is needed. As a first step, we define
D′. This helping variable shows the changes in the serving
place of the flow, from sNIC to host (it will be equal to
1) and from host to sNIC (with value −1) or showing no
change with value 0. To count the number of traversals, we
need to the absolute value of this variable and a summation
over the number of ones in this variable. However, using
absolute value function makes the problem nonlinear, which
is not desired. To avoid using absolute value function, we
used D′′ binary variable. By having the introduced constraints,
whenever D′’s index is one or minus one, D′′ will be equal to
one for those elements. The only other problem is that other
elements can be either zero or one, so an over reporting on
the number of PCIe traversal could be expected. However,
this miscalculation will not happen, as we are minimizing the
overall delay and optimizer will choose zeros instead of ones
for non-constrained elements to keeps the number of PCIe
traversal minimum.

In addition, to the fixed delay for crossing the PCIe in-
terface, we also add a term for the delay caused by the
transmission over this interface, which is dependent on the
data size.

PCITransDelayf =

L−1∑
t=1

(Pf +Mf,t) ∗D′′f,t ∗ ED

Mf,t shows the amount of state needed in table t + 1 for
the flow f from previous steps. For example, forwarding data
in this step may be depending on the metadata stored in the
previous table. Pf is the average packet size for this flow and
ED is the delay in microsecond per byte for the data transfer
over PCIe.

So far, we introduced constraints which are related to the
objective directly. Hereon, we cover the constraints used to
provide the correctness of the solution. The first constraint in
this group is to assure the PCIe bandwidth is not violated.

BE ≥
N∑

f=1

L−1∑
t=1

((Pf +Mf,t) ∗D′′f,t) ∗Bf/Pf

In this constraint, we adjust the bit rate of the flow (Bi),
base on the overhead of necessary state (M ) and calculate
the overall bandwidth usage of the traversal between sNIC
and the host. The summation over all the bandwidths of the
flows, should be less than the bandwidth of the PCIe (BE).

In addition to the bandwidth limit of PCIe, each flow is



required to meet its maximum delay requirement, which is
received as input:

TotalDelayf ≤ DelayRequirementf
Each action instance can serve a limited number of flows:

ActHCapacitya ≥ NumActHa =

N∑
f=1

L∑
t=1

Df,t ∗ Sf,t,a

ActSCapacitya ≥ NumActSa =

N∑
f=1

L∑
t=1

(1−Df,t) ∗ Sf,t,a

Each device can accommodate several actions at the same
time. For example, in OpenNetVM, it is suggested to dedicate
a CPU core to each NF. Hence, the number of actions can
be limited to the number of available cores. To count the
number of actions running on each device, we need a binary
representation of the above variable to be able to run summa-
tion over them. To convert these variables (NumActH&S)
to binary variables (IsActH&S), we define the first four of
the following constraints. The next two constraints are for
applying the maximum number of actions that can be running
on the host (RH ) and the SmartNIC (RS). Finally, the last
one does not allow to have multiple instances of the action
on two devices if that action is not cloneable. The values for
NotCloneablea, a binary vector, is provided by the system
admin. If shared state between different flows is used in an
action, we cannot have multiple instances of that action. If
an action is stateless or its state is only related to the flows
currently using the action, it is cloneable.

NumActHa ≥ IsActHa , NumActSa ≥ IsActSa

NumActHa ≤ IsActHa ∗N , NumActSa ≤ IsActSa ∗N

RH ≥
A∑

a=1

IsActHa , RS ≥
A∑

a=1

IsActSa

1 ≤ (IsActHa + IsActSa)NotClonablea

Another consideration for deployment of P4 tables on the host
and sNIC is maximum rate of the updates that can be handled
by each device. Especially in our experiment the maximum
rate for the rule update on sNIC was limited. To ensure that
device will not be overwhelmed by the amount of rule updates,
following constraints need to be considered:

MaxHostUpdates ≤
N∑

f=1

L∑
t=1

ExpUpdatesf,t ∗Df,t

MaxSnicUpdates ≤
N∑

f=1

L∑
t=1

ExpUpdatesf,t ∗ (1−Df,t)

MaxHostUpdates and MaxSnicUpdates show the capacity
of the devices in rules updates. ExpUpdatesf,t shows how
many updates we expect for flow f on table t, and as we
explained earlier, decision variable D shows if host or sNIC
is selected for serving flow f on table t.

TABLE I: Table entry modification response
time on sNIC and P4 OpenNetVM switch

Operation sNIC (µs) Host (µs)

Insert 221± 11 0.42± 0.69
Edit 220± 18 0.31± 0.61

Delete 169± 20 0.31± 0.61
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IV. EVALUATION

We evaluate the P4NFV framework on a server with 40
Intel Xeon 2.20GHz CPU cores and 256GB memory and
Netronome Agilio4000 CX Dual-Port 10 Gigabit sNIC.

A. sNIC and Software P4 Switch Performance

In the first experiment, we evaluate the elapsed time between
the table entry modification request and when it took effect.
The delay incurred before observing the impact of the new
rule on the traffic can be found in Table I. The updates are
drastically slower on the sNIC, which limits the sNIC’s ability
to host flows with a higher rate of rule updates. In the next
set of experiments, we demonstrate the processing delay for
various NFs resident on the sNIC and host.

In Figure 4, we show that the processing delay experienced
by packets in the host NFs are lower compared to that of the
sNIC NFs. This can be attributed to the higher frequency of
the CPU core that is 2.2 GHz vs. 633 MHz attained from
sNIC flow processing cores. However, we observe the latency
overhead of one round-trip over PCIe incurs approx. 15µs.
Furthermore, the sNIC exploits parallelism by load balancing
packets, for processing, on all of its 60 Microengines.

In Figure 3 we compare the total round trip time over the
PCIe, observed from the sNIC, for varying burst sizes of 1500-
byte packets. sNIC sends these batches of the packets and
host returns the packets to the sNIC. We observe a linear
relationship between the amount of sent data and the total
round trip time. By assuming a linear trend equation and
using the least square method, the slope of 1.66 and intercept
of -4.27 is obtained. These values are used to minimize the
overhead of PCIe traversal in the optimization engine.

B. Optimization Engine

We used the Gurobi MILP solver to implement and solve
the optimization formulation. In the first experiment, two of
the actions have a limit on the maximum number of flows that
they can support on the sNIC. The limit for the first action is
100 flows (stateless) and 300 flows for the second (stateful).
The first, stateless, action can be scaled out as needed by
having instances on the host as well as the sNIC. Increasing
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the number of flows from 50 to 400, we see that the delay
for all the flows goes up, as seen in Fig. 5. With 50 to 100
flows, all flows are served by the sNIC. Above 100 flows,
the instance for the first action reaches the sNIC limit. The
overflow of flows is sent to the host. Thus, the delay increases
more rapidly. Once we reach 300 flows, the limit for the
second action on the sNIC is reached. Since this action cannot
be split across the host and sNIC, we observe a sharp increase
in the total delay. Beyond this, the delay increases depending
on the service time for both actions to be executed on the host.
Thus, the optimizer decides to forward packets between the
sNIC and host intelligently as needed, leveraging on the ability
to instantiate multiple instances of stateless NFs. It initially
chooses to instantiate an NF on faster sNIC, but will switch
to the host because of its higher capacity, while sharing the
execution of actions across both when possible.

Since the rule update rate is lower on the sNIC compared
to the host, we then measured the maximum number of flows
that can be served in the network. For the update workload,
we vary the number of updates for each flow using a uniform
distribution varying from 1 to 10 updates per second for each
table. Based on our measurement, the maximum update rate
of the sNIC is set to 10000 updates per second based on the
order of 100 micro seconds to update the rules in tables of
sNIC (Table I). The result for this experiment is illustrated in
Fig. 6. It is possible to serve up to 2.5 times more flows if
update rate is one of the considerations for the placement of
the NFs and routing of the flows.

As we observed in Fig. I, the delay over PCIe is depending
on the amount of data transmission. Fig. 7 shows if a number
of the flows with different average packet sizes and data
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dependency need to be exchanged between the host and sNIC,
the optimizer will select flows with smaller packet size and
state dependency to traverse the PCIe. In this experiment,
some of the NFs in the sNIC can handle half of the flows and
packets of the rest of flows are sent to the host. In addition,
packets are separated into two groups. In one group, packets
are larger (1500 bytes) and they need 1kB of state from the
previous tables. In the other group, packets are smaller (64
bytes) and they do not need any state from previous tables.
By selecting the smaller packets with smaller data dependency,
the optimizer reduces the delay imposed by PCIe transmission.

Finally, we compared the performance of the proposed
optimization engine with one of the related work, UNO [7].
We implemented UNO’s optimization formulation for the same
solver that we used to solve our problem. We considered a
scenario that 20 NFs serve a single flow. Six of these NFs are
complex NFs which are faster on the host (10µs processing
delay on the host and 40 µs on the sNIC, 4x difference is
based on our observation in Fig. 4). Other actions are faster
on sNIC (1µs on the sNIC and 2µs on the host). The result of
this comparison is depicted in Fig. 8. We have considered
two different scenarios for UNO. In UNO-More resources,
complex actions need more resources in comparison to other
actions and in UNO-Same resources, they use a similar amount
of resources. UNO focuses on minimizing resource usage on
the host, while our engine considers all the available resources
on both host and sNIC, and uses resources on the host if they
are available for different NFs. This difference allows P4NFV
engine to minimize the delay caused by the processing of the
packets and PCIe traversal.



V. RELATED WORK

sNIC as VNF accelerators and Optimization frameworks
for offloading: Several works [7], [8], [19], [20] address
NF acceleration by offloading NFs from the CPU to sNIC.
Uno [7] presents an ILP based NF placement algorithm.
They proposed an intuitive NF migration solution to alleviate
overloads by identifying the bottleneck NF with maximum
processing capacity and migrating it to CPU. However, this
approach may adversely impact the latency of the service
chain due to increased cross PCIe bus data transfers and not
considering the differences in processing delays. In [8], authors
propose the NF selection scheme, PAM, that tries to reduce
the service chain latency by alleviating the hot spots on the
SmartNIC by pushing only the border NFs (i.e., either the start
or end of chain NFs on sNIC) or their immediate neighbor
NFs. They again seek to minimize the cross-PCIe transfers,
but do not account for the difference in the processing delay of
NFs, data dependency, or delay constraints of individual flows
that we account for in our work. Also, the details on supporting
the SDN controller to set up rules on sNIC and host are not
considered. Unlike offloading an entire NF, authors of [19]
identify a set of candidate operations e.g., TCP connection
setup and teardown, connection splicing and packet filtering
and coalescing operations for stateful middleboxes that can be
dynamically offloaded to programmable NICs, and gauge the
expected benefits in terms of CPU load reduction, throughput,
and latency improvements.
Virtualization on P4 platforms: The focus of another body
of the work, such as [21], [6], [22] , and [23] is on providing
the virtualization on P4 platforms. They facilitate serving
multiple pipelines on a single P4 switch. While because of
the virtualization, they are close to the area of this paper
and our framework can benefit from these approaches to
support multiple pipelines in parallel, the focus of this paper
is on designing an efficient sNIC enabled P4 switch which
differentiates the focus point of this paper. Another contri-
bution of the studies, such as [22] and [23], is providing
uninterrupted reconfigurability of data plane in P4 switches.
Similar techniques are applicable on P4NFV as well.

VI. CONCLUSION

We identified key challenges (configuration, management,
and utilization), in incorporating P4 capability into NFV
platforms, including both the host and sNICs. We propose
P4NFV as a framework to provide a unified P4 data plane
component, including both the host and sNIC P4 switches that
can be managed by an SDN controller. P4NFV incorporates
local intelligence to efficiently partition the packet processing
tables and NF functionality on both the host and sNIC. P4NFV
accounts for both networking i.e., bandwidth, workload and
packet forwarding latency of the unified host device (sNIC
and the host P4 switches) specific constraints in a MILP
formulation. We consider the packet processing cost, PCIe
bus bandwidth, and latency for crossing the PCIe boundary
as well as packet data dependencies. We demonstrate that
P4NFV can achieve 2.5x improvement in system utilization

and throughput, and minimize overall latency by up to 4x
compared to the placement engine of [7].
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