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Abstract

In this work, we examine the feasibility of secure and undetectable point-to-point com-
munication in a world where governments can read all the encrypted communications of
their citizens. We consider a world where the only permitted method of communication
is via a government-mandated encryption scheme, instantiated with government-mandated
keys. Parties cannot simply encrypt ciphertexts of some other encryption scheme, because
citizens caught trying to communicate outside the government’s knowledge (e.g., by encrypt-
ing strings which do not appear to be natural language plaintexts) will be arrested. The
one guarantee we suppose is that the government mandates an encryption scheme which is
semantically secure against outsiders: a perhaps reasonable supposition when a government
might consider it advantageous to secure its people’s communication against foreign entities.
But then, what good is semantic security against an adversary that holds all the keys and
has the power to decrypt?

We show that even in the pessimistic scenario described, citizens can communicate se-
curely and undetectably. In our terminology, this translates to a positive statement: all
semantically secure encryption schemes support subliminal communication. Informally, this
means that there is a two-party protocol between Alice and Bob where the parties exchange
ciphertexts of what appears to be a normal conversation even to someone who knows the
secret keys and thus can read the corresponding plaintexts. And yet, at the end of the
protocol, Alice will have transmitted her secret message to Bob. Our security definition
requires that the adversary not be able to tell whether Alice and Bob are just having a nor-
mal conversation using the mandated encryption scheme, or they are using the mandated
encryption scheme for subliminal communication.

Our topics may be thought to fall broadly within the realm of steganography : the sci-
ence of hiding secret communication within innocent-looking messages, or cover objects.
However, we deal with the non-standard setting of an adversarially chosen distribution of
cover objects (i.e., a stronger-than-usual adversary), and we take advantage of the fact that
our cover objects are ciphertexts of a semantically secure encryption scheme to bypass im-
possibility results which we show for broader classes of steganographic schemes. We give
several constructions of subliminal communication schemes under the assumption that key
exchange protocols with pseudorandom messages exist (such as Diffie-Hellman, which in fact
has truly random messages). Each construction leverages the assumed semantic security of
the adversarially chosen encryption scheme, in order to achieve subliminal communication.
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1 Introduction

Suppose that we lived in a world where the government wished to read all the communications
of its citizens, and thus decreed that citizens must not communicate in any way other than
by using a specific, government-mandated encryption scheme with government-mandated keys.
Even face-to-face communication is not allowed: in this Orwellian world, anyone who is caught
speaking to another person will be arrested for treason. Similarly, anyone whose communica-
tions appear to be hiding information will be arrested: e.g., if the plaintexts encrypted using
the government-mandated scheme are themselves ciphertexts of a different encryption scheme.
However, the one assumption that we entertain in this paper, is that the government-mandated
encryption scheme is, in fact, semantically secure: this is a tenable supposition with respect to
a government that considers secure encryption to be in its interest, in order to prevent foreign
powers from spying on its citizens’ communications.

A natural question then arises: is there any way that the citizens would be able to com-
municate in a fashion undetectable to the government, based only on the semantic security of
the government-mandated encryption scheme, and despite the fact that the government knows
the keys and has the ability to decrypt all ciphertexts?1 What can semantic security possibly
guarantee in a setting where the adversary has the private keys?

This question may appear to fall broadly within the realm of steganography : the science
of hiding secret communications within other innocent-looking communications (called “cover
objects”), in an undetectable way. Indeed, it can be shown that if two parties have a shared
secret, then based on slight variants of existing techniques for secret-key steganography, they
can conduct communications hidden from the government.2

However, the question of whether two parties who have never met before can conduct hidden
communications is more interesting. This is related to the questions of public-key steganogra-
phy and steganographic key exchange which were both first formalized by von Ahn and Hop-
per [vAH04]. Public-key steganography is inadequate in our setting since exchanging or pub-
lishing public keys is potentially conspicuous and thus is not an option in our setting. All prior
constructions of steganographic key exchange require the initial sampling of a public random
string that serves as a public parameter of the steganographic scheme. Intuitively, in these
constructions, the public random string can be thought to serve the purpose of selecting a spe-
cific steganographic scheme from a family of schemes after the adversary has chosen a strategy.
That is, the schemes crucially assume that the adversary (the dystopian government, in our
story above) cannot choose its covertext distribution as a function of the public parameter.

It is conservative and realistic to expect a malicious adversary to choose the covertext dis-
tribution after the honest parties have decided on their communication protocol (including the
public parameters). After all, malice never sleeps [Mic16]. Alas, we show that if the covertext
distribution is allowed to depend on the communication protocol, steganographic communica-
tion is impossible. In other words, for every purported steganographic communication protocol,
there is a covertext distribution (even one with high min-entropy) relative to which the com-
munication protocol fails to embed subliminal messages. The relatively simple counterexample
we construct is inspired by the impossibility of deterministic extraction.

Semantic Security to the Rescue? However, this impossibility result does not directly apply
to our setting, as our covertext distribution is restricted to be a sequence of ciphertexts (that may
encrypt arbitrary messages). Moreover, the ciphertexts are semantically secure against entities
that are not privy to the private keys. We define the notion of a subliminal communication

1We note that one could, alternatively, consider an adversary with decryption capabilities arising from pos-
session of some sort of “backdoor.” For the purposes of this paper, we opted for the simpler and still sufficiently
expressive model where the adversary’s decryption power comes from knowledge of all the decryption keys.

2We refer the reader to Section 1.3 for more details.
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scheme (Definition 3.1) as a steganographic communication scheme where security holds relative
to covertext distributions that are guaranteed to be ciphertexts of some semantically secure
encryption scheme. Is there a way to use semantic security to enable subliminal communication?

Our first answer to this question is negative. In particular, consider the following natural
construction: first, design an extractor function f ; then, to subliminally transmit a message
bit b, sample encryptions c of a (even adversarially prescribed) plaintext m using independent
randomness every time, until f(c) = b. There are two reasons this idea does not work. First,
if the plaintext bit b is not random, the adversary can detect this fact by simply applying
the extractor function f to the transmitted covertext. Second, the government can pick an
adversarial (semantically secure) encryption scheme where the extractor function f is constant
on all ciphertexts; this is again similar to the impossibility of deterministic extraction.

Nevertheless, we show how to circumvent these difficulties and use the semantic security
of the underlying (adversarial) encryption scheme and construct a subliminal communication
scheme.

Theorem 1.1 (Informal version of Theorem 5.1). Under the decisional Diffie-Hellman (DDH)
assumption—or any other assumption that gives rise to a key exchange protocol with messages
indistinguishable from random—there is a subliminal communication scheme which allows the
transmission of O(log κ) many bits per ciphertext after a setup phase of Õ(log κ) ciphertexts (κ
is the security parameter).

We then show how to improve our first construction to reduce the length of the setup phase
under additional assumptions.

1.1 Overview of Our Construction

The first idea in our construction is implicit in essentially all the works in steganography starting
from [Sim83]: namely, to achieve subliminal communication of arbitrary messages, it is suffi-
cient to be able to undetectably communicate uniformly randomly distributed strings of one’s
choice. In other words, Alice samples a string r which is randomly distributed, produces some
ciphertext(s) to be sent to Bob, such that Bob is able to learn r from them, and yet a PPT
eavesdropper Eve who sees the entire communication transcript cannot distinguish between the
following two cases:

1. Alice is indeed sending (hereafter, “embedding”) random strings to Bob, or

2. Alice is producing ciphertexts using the unmodified government-mandated encryption
algorithm, without embedding such random strings.

To be more precise, the indistinguishability requirement holds for any given (adversarially
specified) distribution M of message sequences that Alice may choose to encrypt using the
government-mandated encryption scheme. Notice that this does not preclude that Eve may be
able to learn r and indeed, our constructions do allow an eavesdropper to learn the embedded
strings. Given the ability to undetectably communicated randomly distributed strings, Alice
and Bob can then embed to each other the messages of a key-exchange protocol with randomly
distributed messages (such as Diffie-Hellman) to establish a shared secret, and then embed to
each other ciphertexts of a secret-key encryption scheme with pseudorandom ciphertexts, using
the established secret as the key.

All known constructions of such undetectable random string embedding rely on the sampling
of a public random seed after the adversarial strategy is fixed. In this paper, however, we are
interested in bootstrapping hidden communications from the very ground up, and we are not
willing to assume that the parties start from a state where such a seed is already present.
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We observe that the ability to embed randomly distributed strings of one’s choice — rather
than, e.g., to apply a deterministic function to ciphertexts of the government-mandated en-
cryption scheme, and thereby obtain randomly distributed strings which the creator of the
ciphertexts did not choose — is crucial to the above-outlined scheme. The notion of unde-
tectably embedding exogenous random strings — i.e., strings that are randomly distributed
outside of Alice’s control, but both Alice and Bob can read them — is seemingly much weaker,
and certainly cannot be used to embed key exchange messages or secret-key ciphertexts. How-
ever, we observe that this weaker primitive turns out to be achievable, for our specific setting,
without the troublesome starting assumption of a public random seed. We identify a method
for embedding exogenous random strings into ciphertexts of an adversarially chosen encryption
scheme (interestingly, our method does not generalize to embedding into arbitrary min-entropy
distributions). We then exploit this method to allow the communicating parties to establish a
random seed — from which point they can proceed to embed random strings of their choice, as
described above.

In building this weaker primitive, in order to bypass our earlier-described impossibility result,
we extract from two ciphertexts at a time, instead of one. We begin with the following simple
idea: for each consecutive pair of ciphertexts c and c′, a single hidden (random) bit b is defined
by b = f(c, c′) where f is some two-source extractor. It is initially unclear why this should work
because (1) c and c′ are encryptions of messages m and m′ which are potentially dependent,
and two-source extractors are not guaranteed to work without independence; and (2) even if
this difficulty could be overcome, ciphertexts of semantically secure encryption scheme can have
min-entropy as small as ω(log κ) (where κ is the security parameter) and no two-source extractor
known to this day can extract from such a small min-entropy.

We overcome difficulty (1) by relying on the semantic security of the ciphertexts of the
adversarially chosen encryption scheme. Paradoxically, even though the adversary knows the
decryption key, we exploit the fact that semantic security still holds against the extractor, which
does not have the decryption key. The inputs in our case are ciphertexts which are not necessar-
ily independent, but semantic security implies that they are computationally indistinguishable
from being independent. Thus, the output of f(c, c′) is pseudorandom. Indeed, when f outputs
a single bit (as in our construction), the output is also statistically close to random. The cru-
cial point here is that the semantic security of the encryption scheme is used not against the
government, but rather against the extraction function f .

Our next observation, to address difficulty (2), is that the ciphertexts are not only com-
putationally independent, but they are also computationally indistinguishable from i.i.d. In
particular, each pair of ciphertexts is indistinguishable from a pair of encryptions of 0, by se-
mantic security. Based on this observation, we can use a very simple “extractor”, namely, the
greater-than function GT. In fact, GT is an extractor with two input sources, whose output
bit has negligible bias when the sources have ω(log κ) min-entropy and are independently and
identically distributed (this appears to be a folklore observation; see, e.g., [BIW04]). Because
of the last condition, GT is not a true two-source extractor according to standard definitions,
but is still suitable for our setting.

By repeatedly extracting random bits from pairs of consecutive ciphertexts using GT, Alice
and Bob can construct a shared random string s. Note that in this process, Alice and Bob
generate ciphertexts using the unmodified government-mandated encryption scheme, so the
indistinguishability requirement clearly holds. We stress again that s is also known to a passive
eavesdropper of the communication. This part of our construction, up to the construction
of the string s, is presented in details in Section 5.1. From there, constructing a subliminal
communication scheme is not hard: Alice and Bob use s as the seed of a strong seeded extractor
to subliminally communicate random strings of their choice as explained in Section 5.2. The
complete description of our protocol is given in Section 5.3.
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1.2 Improved Constructions for Specific Cases

While our first construction has the advantage of simplicity, the initial phase to agree on shared
random string (using the GT function) transmits only one hidden bit per ciphertext of the
government-mandated encryption scheme. A natural question is whether this rate of transmis-
sion can be improved. We show that if the government-mandated encryption scheme is succinct
in the sense that the ciphertext expansion factor is at most 2, then it is possible to improve the
rate of transmission in this phase to O(log κ) hidden bits per ciphertext using an alternative
construction based on the extractor from [DEOR04]. In other words, our first result showed
that if the government-mandated encryption scheme is semantically secure, we can use it to
communicate subliminally; the second result shows that if the government-mandated encryp-
tion scheme is efficient, that is even better for us, in the sense that it can be used for more
efficient subliminal communication.

Theorem 1.2 (Informal version of Theorem 6.1). If there is a secure key exchange protocol
whose message distribution is pseudorandom, then there is a subliminal communication scheme
in which a shared seed is established in two exchanges of ciphertexts of a succinct encryption
scheme.

Theorem 1.1 exploited the specific nature of the cover object distribution in our setting
(specifically, that a sequence of encryptions of arbitrary messages is indistinguishable from an
i.i.d. sequence of encryptions of zero). Theorem 1.2 exploits an additional consequence of
the semantic security of the government-mandated encryption scheme: if it is succinct, then
ciphertexts are computationally indistinguishable from sources of high min-entropy (i.e., they
have large HILL-entropy).

It may be possible to use more advanced two-source extractors to work with a larger class
of government-mandated encryption schemes (with larger expansion factors); however, the best
known such extractors have an inverse polynomial error rate [CZ16] (whereas our construction’s
extractor has negligible error). Consequently, designing a subliminal communication protocol
using these extractors seems to require additional ideas, and we leave this as an open problem.

Finally, we show yet another approach in cases where the distribution of “innocent” messages
to be encrypted under the government-mandated encryption scheme has a certain amount of
conditional min-entropy. For such cases, we construct an alternative scheme that leverages the
semantic security of the encryption scheme in a rather different way: namely, the key fact for
this alternative construction is that (in the absence of a decryption key) a ciphertext appears
independent of the message it encrypts. In this case, running a two-source extractor on the
message and the ciphertext works. The resulting improvement in the efficiency of the scheme
is comparable to that of Theorem 1.2.

Theorem 1.3 (Informal version of Theorem 6.2). If there is a secure key exchange protocol
whose message distribution is pseudorandom, then there is a subliminal communication scheme:

• for any cover distribution consisting of ciphertexts of a semantically secure encryption
scheme, if the innocent message distribution M has conditional min-entropy rate 1/2, or

• for any cover distribution consisting of ciphertexts of a semantically secure and succinct
encryption scheme, if the innocent message distribution M has conditional min-entropy
ω(log κ).

In both cases, the shared seed is established during the setup phase in only two exchanges of
ciphertexts.

We conclude this introductory section with some discussion of our results in a wider context.
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On Our Modeling Assumptions. Our model considers a relatively powerful adversary
that, for example, has the ability to choose the encryption scheme using which all parties must
communicate, and to decrypt all such communications. We believe that this can be very realistic
in certain scenarios, but it is also important to note the limitations that our model places on
the adversary.

The most obvious limitation is that the encryption scheme chosen by the adversary must
be semantically secure (against third parties that do not have the ability to decrypt). Another
assumption is that citizens are able to run algorithms of their choice on their own computers
without, for instance, having every computational step monitored by the government. More-
over, citizens may use encryption randomness of their choice when producing ciphertexts of the
government-mandated encryption scheme: in fact, this is a key fact that our construction ex-
ploits. Interestingly, secrecy of the encryption randomness from the adversary is irrelevant: after
all, the adversary can always choose an encryption scheme where the encryption randomness is
recoverable given the decryption key. Despite this, the ability of the encryptor to choose the
randomness to input to the encryption algorithm can be exploited—as by our construction—to
allow for subliminal communication.

The Meaning of Semantic Security when the Adversary Can Decrypt. In an alternate
light, our work may be viewed as asking the question: what guarantee, if any, does semantic
security provide against adversary in possession of the decryption key? Our results find, perhaps
surprisingly, that some meaningful guarantee is still provided by semantic security even against
an adversary is able to decrypt: more specifically, that any communication channel allowing
transmission of ciphertexts can be leveraged to allow for undetectable communications between
two parties that have never met. From this perspective, our work may be viewed as the latest in a
scattered series of recent works that consider what guarantees can be provided by cryptographic
primitives that are somehow “compromised”—examples of recent works in this general flavor
are cited in Section 1.3 below.

Concrete Security Parameters. From a more practical perspective, it may be relevant to
consider that the government in our hypothetical Orwellian scenario would be incentivized to opt
for an encryption scheme with the least possible security level so as to ensure security against
foreign powers. In cases where the government considers itself to have more computational
power than foreign adversaries (perhaps by a constant factor), this could create an interesting
situation where the security parameter with which the government-mandated scheme must
be instantiated is below what is necessary to ensure security against the government’s own
computational power.

Such a situation could be risky for citizens’ hidden communications: intuitively, our construc-
tions guarantee indistinguishability against the citizens’ own government between an “innocent”
encrypted conversation and one which is carrying hidden subliminal messages. However, the
distinguishing advantage in this indistinguishability game depends on the security parameter of
the government-mandated encryption scheme. Thus, it could be that the two distributions are
far enough apart for the citizens’ own government to distinguish (though not for foreign govern-
ments to distinguish). We observe that citizens cognizant of this situation can further reduce the
distinguishing advantage beyond that provided by our basic construction, using the standard
technique of amplifying the proximity of a distribution (which is far from random) to uniformly
random, by taking the XOR of several samples from the far-from-random distribution.

Having outlined this potential concern and solution, in the rest of the paper we will disregard
these issues in the interest of clarity of exposition, and present a purely asymptotic analysis.

Open Problems. Our work suggests a number of open problems. A natural one is the
extent to which the modeling assumptions that this work makes — such as the ability of honest
encryptors to use true randomness for encryption — can be relaxed or removed, while preserving
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the ability to communicate subliminally. For example, one could imagine yet another alternate
universe, in which the hypothetical Orwellian government not only mandates that citizens use
the prescribed encryption scheme, but also that their encryption randomness must be derived
from a specific government-mandated pseudorandom generator.

The other open problems raised by our work are of a more technical nature and better
understood in the context of the specific details of our constructions; for this reason we defer
their discussion to Section 7.

1.3 Other Related Work

The scientific study of steganography was initiated by Simmons more than thirty years ago
[Sim83], and is the earliest mention of the term “subliminal channel” referring to the con-
veyance of information in a cryptosystem’s output in a way that is different from the intended
output,3 of which we are aware. Subsequent works such as [Cac98, Mit99, ZFK+98] initially
explored information-theoretic treatments of steganography, and then Hopper, Langford, and
von Ahn [HLv02] gave the first complexity-theoretic (secret-key) treatment almost two decades
later. Public-key variants of steganographic notions—namely, public-key steganography and
steganographic key exchange—were first defined by [vAH04]. There is very little subsequent lit-
erature on public-key steganographic primitives; one notable example is by Backes and Cachin
[BC05], which considers public-key steganography against active attacks (their attack model,
which is stronger than that of [vAH04], was also considered in [HLv02] but had never been
applied to the public-key setting).

The alternative perspective of our work as addressing the question of whether any sort
of secret communication can be achieved via transmission of ciphertexts of an adversarially
designed cryptosystem alone fits into a scattered series of recent works that consider what
guarantees can or cannot be provided by compromised cryptographic primitives. For example,
Goldreich [Gol11], and later, Cohen and Klein [CK16], consider what unpredictability guaran-
tee is achieved by the classic GGM construction [GGM86] when the traditionally secret seed is
known; Austrin et al. [ACM+14] study whether certain cryptographic primitives can be secure
even in the presence of an adversary that has limited ability to tamper with honest parties’ ran-
domness; Dodis et al. [DGG+15] consider what cryptographic primitives can be built based on
backdoored pseudorandom generators; and Bellare, Jaeger, and Kane [BJK15] present attacks
that work against any symmetric-key encryption scheme, that completely compromise security
by undetectably corrupting the algorithms of the encryption scheme (such attacks might, for
example, be feasible if an adversary could generate a bad version of a widely used cryptographic
library and install it on his target’s computer).

The last work mentioned above, [BJK15], is actually part of the broader field of kleptography,
originally introduced by Young and Yung [YY97, YY96b, YY96a], which is also relevant context
for the present work. Broadly speaking, a kleptographic attack “uses cryptography against
cryptography” [YY97] — i.e., changes the behavior of a cryptographic system in a fashion
undetectable to an honest user with black-box access to the cryptosystem, such that the use
of the modified system leaks some secret information (e.g., plaintexts or key material) to the
attacker who performed the modification. An example of such an attack might be to modify
the key generation algorithm of an encryption scheme such that an adversary in possession
of a “back door” can derive the private key from the public key, yet an honest user finds
the generated key pairs to be indistinguishable from correctly produced ones. Kleptography
has enjoyed renewed research activity since [BPR14] introduced a formal model of a specific
type of kleptographic attack called algorithm substitution attacks (ASAs), motivated by recent
revelations suggesting that intelligence agencies have successfully implemented attacks of this

3This phrasing is loosely borrowed from [YY97].
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nature at scale. Recently, [BL17] formalized an equivalence between certain variants of ASA
and steganography.

Our setting differs significantly from kleptography in that the encryption algorithms are
public and not tampered with (i.e., adhere to a purported specification), and in fact may be
known to be designed by an adversarial party.

2 Preliminaries

Notation. κ is the security parameter throughout. PPT means “probabilistic polynomial
time.” [n] denotes the set {1, . . . , n}. Un is a uniform variable over {0, 1}n, independent of
every other variable in this paper. We write X ∼ Y to express that X and Y are identically
distributed. Given two variables X and Y over {0, 1}k, we denote by ‖X − Y ‖s the statistical
distance defined by:

‖X − Y ‖s =
1

2

∑
x∈{0,1}k

∣∣Pr[X = x]− Pr[Y = x]
∣∣ = max

S⊆{0,1}k

∣∣Pr[X ∈ S]− Pr[Y ∈ S]
∣∣.

For a random variable X, we define the min-entropy of X by H∞(X) = − log maxx Pr[X = x].
The collision probability is CP(X) =

∑
x Pr[X = x]2.

2.1 Encryption and Key Exchange

We assume familiarity with the standard notions of semantically secure public-key and private-
key encryption, and key exchange. This subsection defines notation and additional terminology.

Public-Key Encryption. We use the notation E = (E.Gen,E.Enc,E.Dec) for the public-key
encryption scheme mandated by the adversary.

Secret-key Encryption. We write SKE = (SKE.Gen,SKE.Enc, SKE.Dec) to denote a secret-key
encryption scheme. We define a pseudorandom secret-key encryption scheme to be a secret-key
encryption scheme whose ciphertexts are indistinguishable from random. It is a standard result
that pseudorandom secret-key encryption schemes can be built from one-way functions.

Key Exchange. We define a pseudorandom key-exchange protocol to be a key-exchange proto-
col whose transcripts are distributed indistinguishably from random messages. Recall that the

standard security guarantee for key-exchange protocols requires that (T,K)
c
≈ (T,K$), where T

is a key-exchange protocol transcript, K is the shared key established in T , and K$ is a random

unrelated key. A pseudorandom key-exchange protocol instead requires that (T,K)
c
≈ (U,K$)

where U is the uniform distribution over strings of the appropriate length.
Most known key agreement protocols are pseudorandom; in fact, most have truly random

messages. This is the case, for example, for the classical protocol of Diffie and Hellman [DH76].

2.2 Extractors

We will need the following definitions of two-source and seeded extractors.

Definition 2.1. The family 2Ext : {0, 1}n×{0, 1}m → {0, 1}` is a (k1, k2, ε) two-source extractor
if for all κ ∈ N and for all pairs (X,Y ) of independent random variables over {0, 1}n(κ) ×
{0, 1}m(κ) such that H∞(X) ≥ k1(κ) and H∞(Y ) ≥ k1(κ), it holds that:∥∥2Extκ(X,Y )− U`(κ)

∥∥
s
≤ ε(κ). (1)

We say that 2Ext is strong w.r.t. the first input if it satisfies the following stronger property:∥∥(X, 2Extκ(X,Y ))− (X,U`(κ))
∥∥
s
≤ ε(κ).

7



A strong two-source extractor w.r.t. the second input is defined analogously. Finally, we say
that 2Ext is a (k, ε) same-source extractor if n = m and (1) is only required to hold when (X,Y )
is a pair of i.i.d. random variables with H∞(X) = H∞(Y ) ≥ k(κ).

Definition 2.2. The family Ext : {0, 1}n × {0, 1}m → {0, 1}` is a (k, ε) seeded extractor if for
all κ ∈ N and any random variable X over {0, 1}m(κ) such that H∞(X) ≥ k(κ), it holds that:∥∥Extκ(Un(κ), X)− U`(κ)

∥∥
s
≤ ε(κ).

We say moreover that Ext is strong if it satisfies the following stronger property:∥∥(Un(κ),Extκ(Un(κ), X))− (Un(κ), U`(κ))
∥∥
s
≤ ε(κ).

3 Subliminal Communication

Conversation Model. The protocols we will construct take place over a communication
between two parties P0 and P1 alternatingly sending each other ciphertexts of a public-key
encryption scheme. W.l.o.g., we assume that P0 initiates the communication, and that com-
munication occurs over a sequence of exchange-rounds each of which comprises two sequential
messages: in each exchange-round, one party Pb sends a message to P1−b and then P1−b sends
a message to Pb. Let mb,i denote the plaintext message sent by Pb to P1−b in exchange-round
i, and let mi = (m0,i,m1,i) denote the pair of messages exchanged. For i ≥ 1, let us denote by

τ 0,i = (m1, . . . ,mi−1) and τ 1,i = (m1, . . . ,mi−1,m0,i)

the plaintext transcripts available to P0 and P1 respectively during exchange-round i, in the case
when P0 sends the first message in exchange-round i.4 We define τ 0,0 and τ 1,0 to be empty lists
(i.e., empty starting transcripts). (Note that when a notation contains both types of subscripts,
we write the subscripts denoting the party and round in blue and red respectively, to improve
readability.)

Recall that our adversary has the power to decrypt all ciphertexts under its chosen public-
key encryption scheme E. Intuitively, it is therefore important that the plaintext conversation
between P0 and P1 appears innocuous (and does not, for example, consist of ciphertexts of
another encryption scheme). To model this, we assume the existence of a next-message dis-
tribution M, which outputs a next innocuous message given the transcript of the plaintext
conversation so far. This is denoted by mb,i ←M(τ b,i).

Remark 1. We emphasize that our main results make no assumptions at all on the distribution
M, and require only that the parties have oracle access to their own next-message distributions.
Our main results hold in the presence of arbitrary message distributions: for example, they hold
even in the seemingly inauspicious case whenM is constant, meaning the parties are restricted
to repeatedly exchanging a fixed message.

In Section 6, we discuss other more efficient constructions that can be used in settings where
a stronger assumption — namely, thatM has a certain amount of min-entropy — is acceptable.
This stronger assumption, while not without loss of generality, might be rather benign in certain
contexts (for example, if the messages exchanged are images).

In all the protocols we consider, the symbol s is used to denote internal state kept locally
by P0 and P1. It is implicitly assumed that each party’s state contains an up-to-date transcript
of all messages received during the protocol. Parties may additionally keep other information

4If instead P1 spoke first in round i, then τ 0,i would contain m1,i, and τ 1,i would not contain m0,i.
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in their internal state, as a function of the local computations they perform. For i ≥ 1, sb,i
denotes the state of Pb at the conclusion of exchange-round i. Initial states sb,0 = ∅ are empty.

We begin with a simpler definition that only syntactically allows for the transmission of a
single message (Definition 3.1). This both serves as a warm-up to the multi-message definition
presented next (Definition 3.3), and will be used in its own right to prove impossibility results.
See Remark 2 for further discussion of the relationship between these two definitions.

Definition 3.1. A subliminal communication scheme is a two-party protocol:

ΠE =
(
ΠE

0,1,Π
E
1,1,Π

E
0,2,Π

E
1,2, . . . ,Π

E
0,r,Π

E
1,r; ΠE

1,out

)
where r ∈ poly is the number of exchange-rounds and each ΠE

b,i is a PPT algorithm with oracle
access to the algorithms of a public-key encryption scheme E. Party P0 is assumed to receive
as input a message msg (of at least one bit) that is to be conveyed to P1 in an undetectable
fashion. The algorithms ΠE

b,i are used by Pb in round i, respectively, and ΠE
1,out denotes the

algorithm run by P1 to produce an output msg′ at the end of the protocol.
A subliminal communication scheme must satisfy the following syntax, correctness and se-

curity guarantees.

• Syntax. In each exchange-round i = 1, . . . , r:

P0 performs the following steps:

1. Sample “innocuous message” m0,i ←M(τ 0,i−1).

2. Generate ciphertext and state (c0,i, s0,i)← ΠE
0,i(msg,m0,i, pk1, s0,i−1).

3. Locally store s0,i and send c0,i to P1.

Then, P1 performs the following steps:5

1. Sample “innocuous message” m1,i ←M(τ 1,i−1).

2. Generate ciphertext and state (c1,i, s1,i)← ΠE
1,i(m1,i, pk0, s1,i−1).

3. Locally store s1,i and send c1,i to P0.

After r rounds, P1 computes msg′ = ΠE
1,out(sk1, s1,r) and halts.

• Correctness. For any msg ∈ {0, 1}κ, if P0 and P1 play ΠE honestly, then msg′ =
msg with probability 1 − negl(κ). The probability is taken over the key generation
(pk1, sk1), (pk2, sk2) ← E.Gen and the randomness of the protocol algorithms, as well
as the message distribution M.

• Subliminal Indistinguishability. For any semantically secure public-key encryption
scheme E, any msg ∈ {0, 1}κ and any next-message distributionM, for (pk1, sk1), (pk2, sk2)←
E.Gen, the following distributions are computationally indistinguishable:

Ideal(pk1, sk1, pk2, sk2,M): SubliminalΠ(msg, pk1, sk1, pk2, sk2,M):

for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
c0,i ← E.Enc(pk1,m0,i)
c1,i ← E.Enc(pk0,m1,i)

output
(
pk1, sk1, pk2, sk2; (cb,i)b∈{0,1},i∈[r]

)

for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
(c0,i, s0,i)← ΠE

0,i(msg,m0,i, pk1, s0,i−1)

(c1,i, s1,i)← ΠE
1,i(m1,i, pk0, s1,i−1)

output
(
pk1, sk1, pk2, sk2; (cb,i)b∈{0,1},i∈[r]

)
5Note that the steps executed by P0 and P1 are entirely symmetric except in the following two aspects: first,

P0’s input msg is present in step 2 but not in step 2; and secondly, the state s1,i−1 used in step 2 contains the
round-i message c0,i, whereas the state s0,i−1 used in step 2 depends only on the transcript until round i− 1.
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If the subliminal indistinguishability requirement is satisfied only for next-message distri-
butionsM in a restricted set M, rather than for anyM, then Π is said to be a subliminal
communication scheme for M.

Definition 3.2. The rate of a subliminal communication protocol Π is defined as 2r
κ , where

r is defined as in Definition 3.1.6 This is the average number of bits which are subliminally
communicated per ciphertext of E.

For simplicity, Definition 3.1 presents a communication scheme in which only a single hidden
message msg is transmitted. More generally, it is desirable to transmit multiple messages,
and bidirectionally, and perhaps in an adaptive manner.7 In multi-message schemes, it may
be beneficial for efficiency that the protocol have a two-phase structure where some initial
preprocessing is done in the first phase, and then the second phase can thereafter be invoked
many times to transmit different hidden messages.8 This will a useful notion later in the paper,
for our constructions, so we give the definition of a multi-message scheme here.

Definition 3.3. A multi-message subliminal communication scheme is a two-party protocol
defined by a pair (Φ,Ξ) where Φ (“Setup Phase”) and Ξ (“Communication Phase”) each define
a two-party protocol. Each party outputs a state at the end of Φ, which it uses as an input in
each subsequent invocation of Ξ. An execution of a multi-message subliminal communication
scheme consists of an execution of Φ followed by one or more executions of Ξ. More formally:

ΦE =
(
ΦE

0,1,Φ
E
1,1,Φ

E
0,2,Φ

E
1,2, . . . ,Φ

E
0,r,Φ

E
1,r

)
ΞE =

(
ΞE

0,1,Ξ
E
1,1,Ξ

E
0,2,Ξ

E
1,2, . . . ,Ξ

E
0,r′ ,Ξ

E
1,r′ ; ΞE

1,out

)
where r, r′ ∈ poly are the number of exchange-rounds in Φ and Ξ respectively. and where each
ΦE
b,i,Ξ

E
b,i is a PPT algorithm with oracle access to the algorithms of a public-key encryption

scheme E. The protocol must satisfy the following syntax, correctness and security guarantees.

• Syntax. In each exchange-round i = 1, . . . , r of Φ: P0 executes the following steps for
b = 0, and then P1 executes the same steps for b = 1.

1. Sample “innocuous message” mb,i ←M(τ b,i−1).

2. Generate ciphertext and state (cb,i, sb,i)← ΦE
b,i(mb,i, pk1−b, sb,i−1).

3. Locally store sb,i and send cb,i to P1−b.

After the completion of Φ, either party may initiate Ξ by sending a first message of the Ξ
protocol (with respect to a message msg to be steganographically hidden, known to the
initiating party). Let PS and PR denote the initiating and non-initiating parties in
an execution of Ξ, respectively.9 Let msg ∈ {0, 1}κ be the hidden message that PS is to
transmit to PR in an undetectable fashion during an execution of Ξ.

The execution of Ξ proceeds as follows over exchange-rounds i′ = 1, . . . , r′:

6The factor of two comes from the fact that each exchange-round contains two messages.
7That is, the messages to be transmitted may become known as the protocol progresses, rather than all being

known at the outset. This is the case, for example, if future messages depend on responses to previous ones.
8As a concrete example: consider a simple protocol for transmitting a single encrypted message, consisting of

key exchange followed by the transmission of message encrypted under the established key. When adapting this
protocol to support multiple messages, it is beneficial to split the protocol into a one-time “phase 1” consisting
of key exchange, and a “phase 2” encompassing the ciphertext transmission which can be invoked many times on
different messages using the same phase-1 key. Such a protocol has much better amortized efficiency than simply
repeating the single-message protocol many times, i.e., establishing a new key for each ciphertext.

9Subscripts S,R ∈ {0, 1} stand for “sender” and “receiver,” respectively.
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– PS acts as follows:

1. Sample mS,r+i′ ←M(τS,r+i′−1).

2. Generate (cS,r+i′ , sS,r+i′)← ΞE
0,i′(msg,mS,r+i′ , pkR, sS,r+i′−1).

3. Locally store sS,r+i′ and send cS,r+i′ to PR.

– PR acts as follows:

1. Sample mR,r+i′ ←M(τ ′R,r+i′−1).

2. Generate (cR,r+i′ , sR,r+i′)← ΞE
1,i′(mR,r+i′ , pkS , sR,r+i′−1).

3. Locally store sR,r+i′ and send cR,r+i′ to PS .

At the end of an execution of Ξ, PR computes msg′ = ΞE
1,out(sk1, s1,r+r′).

• Correctness. For any msg ∈ {0, 1}κ, if P0 and P1 execute (Φ,Ξ) honestly, then for every
execution of Ξ, the transmitted and received messages msg and msg′ are equal with over-
whelming probability. The probability is taken over the key generation (pk1, sk1), (pk2, sk2)←
E.Gen and the randomness of the protocol algorithms, as well as the message distribution
M.

• Subliminal Indistinguishability. For any semantically secure public-key encryption
scheme E, any polynomial p = p(κ), any sequence of hidden messages ~msg = (msgi)i∈[p] ∈
({0, 1}κ)p, any sequence of bits ~b = (b1, . . . , bp) ∈ {0, 1}p and any next-message distribu-
tion M, for (pkb, skb)← E.Gen, b ∈ {0, 1} the following distributions are computationally
indistinguishable:

Ideal(pk1, sk1, pk2, sk2,M): SubliminalΦ,Ξ( ~msg,~b, pk1, sk1, pk2, sk2,M):

for i = 1, . . . , r + pr′:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
c0,i ← E.Enc(pk1,m0,i)
c1,i ← E.Enc(pk0,m1,i)

output:(
pk1, sk1, pk2, sk2; (cb,i)b∈{0,1},i∈[r+pr′]

)

for i = 1, . . . , r:
m0,i ←M(τ 0,i)
m1,i ←M(τ 1,i)
(c0,i, s0,i)← ΦE

0,i(msg,m0,i, pk1, s0,i−1)

(c1,i, s1,i)← ΦE
1,i(m1,i, pk0, s1,i−1)

for j = 1, . . . , p:
let β = bj and β̄ = 1− bj
for i′ = 1, . . . , r′:

let ι = r + (j − 1)r′ + i′

mβ,ι ←M(τβ,ι)
mβ̄,ι ←M(τ β̄,ι)

(cβ,ι, sβ,ι)← ΞE
β,i′(msg,mβ,ι, pkβ̄ , sβ,ι−1)

(cβ̄,ι, sβ̄,ι)← ΞE
β̄,i′

(mβ̄,ι, pkβ , sβ̄,ι−1)
output:(

pk1, sk1, pk2, sk2; (cb,i)b∈{0,1},i∈[r+pr′]

)
If the subliminal indistinguishability requirement is satisfied only for M in a restricted
set M, rather than for any M, then (Φ,Ξ) is said to be a multi-message subliminal
communication scheme for M.

Definition 3.4. The asymptotic rate of a multi-message subliminal communication protocol
(Φ,Ξ) is defined as κ

2r′ , where r′ is defined as in Definition 3.3. The asymptotic rate is the average
number of bits which are subliminally communicated per ciphertext exchanged between P0 and
P1 after the one-time setup phase is completed.

Definition 3.5. The setup cost of a multi-message subliminal communication protocol (Φ,Ξ)
is defined as r, i.e., the number of rounds in Φ. The setup cost is the number of ciphertexts
which must be sent back and forth between P0 and P1 in order to complete the setup phase.
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Remark 2. Definition 3.3 is equivalent to Definition 3.1 in the sense that the existence of
any single-message scheme trivially implies a multi-message scheme and vice versa. We present
Definition 3.3 as it will be useful for presenting and analyzing asymptotic efficiency of our
constructions, but note that this equivalence means that the simpler Definition 3.1 suffices in
the context of impossibility (or possibility) results, such as that given in Section 4.

4 Impossibility Results

4.1 Locally Decodable Subliminal Communication Schemes

A first attempt at achieving subliminal communication might consider schemes with the follow-
ing natural property: the receiving party P1 extracts hidden bits one ciphertext at a time, by
the application of a single (possibly randomized) decoding function. We refer to such schemes
as locally decodable and our next impossibility theorem shows that non-trivial locally decodable
schemes do not exist if the encryption scheme E is chosen adversarially.

Theorem 4.1. For any locally decodable protocol Π satisfying the syntax of a single-message10

subliminal communication scheme, there exists a semantically secure public-key encryption
scheme E dependent on the public randomness of Π, such that E violates the correctness condi-
tion of Definition 3.1. Therefore, no locally decodable protocol Π is a subliminal communication
scheme.

Proof. Let us consider a locally decodable scheme such as in the statement of the theorem,
and let us denote by Π2,out : {0, 1}n × {0, 1}m → {0, 1} the decoding function of the scheme
where the second input consists of random bits (the public randomness) and the first input is
a ciphertext c. Since we allow the encryption scheme to depend on the public randomness of
the subliminal scheme, define the partial function fr(c) = Π1,out(c, r). fr is now a deterministic
function of the ciphertext and we conclude the proof by constructing an encryption scheme
which biases the output of fr arbitrarily close to a constant bit. This is a contradiction,
since by correctness and subliminal indistinguishability, fr(c) should have negligible bias when
subliminally communicating a uniformly random message msg← {m1,m2}.

Let E, be a semantically secure encryption scheme with ciphertext space C = {0, 1}n and
message space M. Without loss of generality we assume that for at least half the messages
m ∈ M, we have Pr[fr

(
E.Enc(pk,m)

)
= 1] ≥ 1

2 (otherwise we can just replace 1 by 0 in the
construction below). We now define the encryption scheme E′ which is identical to E except for
E′.Enc which on input (pk,m) runs as follows for some constant t.

1. Repeat at most t times:

(a) Sample encryption c← E.Enc(pk,m).

(b) If fr(c) = 1, exit the loop; otherwise, continue.

2. Output c.

It is clear that E′ is also semantically secure: oracle access to E′.Enc can be simulated with
oracle access to E.Enc, so a distinguisher which breaks the semantic security of E′ can also be
used to break the semantic security of E. Finally, for a message m such that Pr[fr(Cm) = 1] ≥ 1

2 ,
by definition of E′.Enc, it holds that

Pr[fr(E
′.Enc(PK,m)) = 1] ≥ 1− 1

2t
.

This shows that the output of fr can be arbitrarily biased and concludes the proof.
10Remark 2 discusses the sufficiency of proving impossibility for single-message schemes.

12



Remark 3. The essence of the above theorem is the impossibility of deterministic extraction:
no single deterministic function can deterministically extract from ciphertexts of arbitrary en-
cryption schemes. The way to bypass this impossibility is to have the extractor depend on the
encryption scheme. Note that multiple-source extraction, which is used in our constructions in
the subsequent sections, implicitly do depend on the underlying encryption scheme, since the
additional sources of input depend on the encryption scheme and thus can be thought of as
“auxiliary input” that is specific to the encryption scheme at hand.

4.2 Steganography for Adversarial Cover Distributions

Our second impossibility result concerns a much more general class of communication schemes,
which we call steganographic communication schemes. Subliminal communication schemes,
as well as the existing notions of public-key steganography and steganographic key exchange
from the steganography literature, are instantiations of the more general definition of a (multi-
message) steganographic communication scheme. To our knowledge, the general notion of a
steganographic communication scheme has not been formalized in this way in prior work. In
the context of this work, the general definition is helpful for proving broad impossibilities across
multiple types of steganographic schemes.

As mentioned in the introduction, a limitation of all existing results in the steganographic
literature, to our knowledge, is that they assume that the cover distribution — i.e., the distri-
bution of innocuous objects in which steganographic communication is to be embedded — is
fixed a priori. In particular, the cover distribution is assumed not to depend on the description
of the steganographic communication scheme. The impossibility result given in Section 4.1 is an
example illustrative of the power of adversarially choosing the cover distribution: Theorem 4.1
says that by choosing the encryption scheme E to depend on a given subliminal communication
scheme, an adversary can rule out the possibility of any hidden communication at all.

Our next impossibility result (Theorem 4.2) shows that if the cover distribution is chosen
adversarially, then non-trivial steganographic communication is impossible.

Theorem 4.2. Let Π be a steganographic communication scheme. Then for any k ∈ N, there
exists a cover distribution C of conditional min-entropy k such that the steganographic indistin-
guishability of Π does not hold for more than one message.

In Appendix A, we give the formal definition of a steganographic communication scheme,
along with the proof of Theorem 4.2. We have elected to present these in the appendix as the
definition introduces a set of new notation only used for the corresponding impossibility result,
and both the definition and the impossibility result are somewhat tangential to the main results
of this work, whose focus is on subliminal communication schemes.

5 Construction of the Subliminal Scheme

The goal of this section is to establish the following theorem, which states that our construction
(Φ?,Ξ?) is a subliminal communication scheme when instantiated with a pseudorandom key-
exchange protocol (such as Diffie-Hellman).

Theorem 5.1. The protocol (Φ?,Ξ?) given in Definition 5.13, when instantiated with a pseu-
dorandom key-exchange protocol Λ, is a multi-message subliminal communication scheme.

The detailed description and proofs of security and correctness of our scheme can be found
in the following subsections. Our construction makes no assumption on the message distribution
M and in particular holds when the exchanged plaintexts (of the adversarially mandated en-
cryption scheme E) are a fixed, adversarially chosen sequence of messages. An informal outline
of the construction is given next.
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Definition 5.2. Outline of the construction.

1. Setup Phase Φ?

(a) A Õ(log κ)-bit string S is established between P0 and P1 by extracting randomness
from pairs of consecutive ciphertexts. (Protocol overview in Section 5.1.)

(b) Let Ext be a strong seeded extractor, and let S serve as its seed. By rejection-sampling
ciphertexts c until ExtS(c) = str, either party can embed a random string str of their
choice in the conversation. (Protocol overview in Section 5.2.) By embedding in
this manner the messages of a pseudorandom key-exchange protocol, both parties
establish a shared secret sk∗.11

2. Communication Phase Ξ?

Both parties can now communicate arbitrary messages of their choice by (1) encrypting
them using a pseudorandom secret-key encryption scheme SKE using sk∗ as the secret
key, and (2) embedding the ciphertexts of SKE using the rejection-sampling technique
described in Step 1b.12 (Detailed protocol in Section 5.3.)

The full protocol is given, and proven to be a subliminal communication scheme, in Section 5.3.

5.1 Establishing a Shared Seed

In this section, we give a protocol which allows P0 and P1 to establish a random public parameter
which will be used in subsequent phases of our subliminal scheme. As such, this can be thought of
as drawing a subliminal scheme at random from a family of subliminal schemes. The parameter
is public in the sense that anyone eavesdropping on the channel between P0 and P1 gains
knowledge of it. A crucial point is that the random draw occurs after the adversarial encryption
scheme E is fixed, thus bypassing the impossibility results of Section 4.

Our strategy is simple: extract randomness from pairs of ciphertexts. Since the extractor
does not receive the key, semantic security holds with respect to the extractor: a pair of cipher-
texts for two arbitrary messages is indistinguishable from two encryptions of a fixed message;
thus, a same-source extractor suffices for our purposes (see Lemma 5.6). Even though semantic
security guarantees only ω(log κ) min-entropy of ciphertexts (see Lemma 5.4), we will be able
to make use of the “greater-than” extractor (Definition 5.3) applied to pairs of ciphertexts, and
obtain Theorem 5.8.

Definition 5.3. The greater-than extractor GT is defined by GT(x, y) = 1[x ≥ y].

Lemma 5.4 (Ciphertexts have super-logarithmic min-entropy). Let PKE be a semantically
secure encryption scheme. Then there exists a negligible function ε such that for all κ ∈ N,
m ∈Mκ, writing Cpkm ∼ PKE.Enc(pk,m):

Pr

[
(pk, sk)← PKE.Gen(1κ) : H∞

(
Cpkm

)
≥ log

1

ε(κ)

]
≥ 1− ε(κ) .

Proof. In Appendix B.

11Note that the random string str is known to an eavesdropper who has knowledge of the seed S. Nonetheless,
(1) the established secret sk∗ is unknown to the eavesdropper by the security of the key-exchange protocol and
(2) the transcript is indistinguishable to the eavesdropper from one in which no key exchange occurred at all,
due to the pseudorandomness of the key-exchange messages.

12Again, an eavesdropper could know the SKE ciphertexts exchanged, if he knew the seed S, but could not
distinguish the SKE ciphertexts from truly random strings, and thus could not tell whether any subliminal
communication was occuring at all. Cf. footnote 11.
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Given that ciphertexts of semantically secure encryption schemes have min-entropy ω(log κ),
we will consider extractors which have negligible bias on such sources. This motivates the
following definition.

Definition 5.5. Let 2Ext : {0, 1}n × {0, 1}m → {0, 1}` be a two-source extractor, we say that
2Ext is an extractor for super-logarithmic min-entropy if 2Ext is a (d log κ, d log κ, 1

κd
) extractor

for any d ∈ N. In particular, for any negligible function ε, there exists a negligible function ε′

such that 2Ext is a (log 1
ε , log 1

ε , ε
′) extractor.

The following lemma shows that the output of a same-source extractor for super-logarithmic
min-entropy on two ciphertexts is statistically indistinguishable from uniform, even in the pres-
ence of the key.

Lemma 5.6. Let PKE be a semantically secure encryption scheme with ciphertext length n,
and let 2Ext : {0, 1}n × {0, 1}n → {0, 1}` be a same-source extractor for super-logarithmic min-
entropy with `(κ) = O(log κ), then there exists a negligible function ε such that, for any κ ∈ N,

(m0,m1) ∈M2
κ, writing (PK,SK) ∼ PKE.Gen(1κ), Cpki ∼ PKE.Enc(pk,mi), i ∈ {0, 1}:∥∥(PK,SK, 2Ext(CPK0 , CPK1 )

)
− (PK,SK,U`(κ))

∥∥
s
≤ ε(κ) .

Proof. We will prove that for any polynomial p and for large enough κ:

Pr

[
(pk, sk)← PKE.Gen(1κ) :

∥∥∥2Ext(Cpk0 , Cpk1 )− U`(κ)

∥∥∥
s
≤ 1

p(κ)

]
≥ 1− 1

p(κ)
.

Assume by contradiction that there exists p ∈ poly(κ) and an infinite set I ⊆ N such that for
κ ∈ I:

Pr

[
(pk, sk)← PKE.Gen(1κ) :

∥∥∥2Ext(Cpk0 , Cpk1 )− U`(κ)

∥∥∥
s
≥ 1

p(κ)

]
≥ 1

p(κ)
. (2)

We now construct an adversary D distinguishing between (PK,CPK0 ) and (PK,CPK1 ) with
non-negligible advantage. On input (pk, c), D runs as follows:

1. Sample two encryptions of m0: c0, c
′
0
iid← PKE.Enc(pk,m0), and c1 ← PKE.Enc(pk,m1).

2. If 2Ext(c0, c1) = 2Ext(c′0, c) output 1, otherwise output 0.

First, note that on input (PK,CPK1 ), D outputs 1 iff a collision occurs at step 2. By (2),
with probability at least 1

p over the draw of the (pk, sk), a collision occurs with probability at

least 1
2`

+ 1
2`p2

. Otherwise, a collision occurs with probability at least 1
2`

. Overall, for κ ∈ I:

Pr[D(PK,CPK1 ) = 1] ≥ 1

2`
+

1

2`p3
. (3)

By Lemma 5.4, after conditioning on the event that H∞(Cpk0 ) ≥ log q(κ), the guarantee
of 2Ext applies to a pair of independent encryptions of m0 under pk and we obtain, for large
enough κ:

Pr

[
(pk, sk)← PKE.Gen(1κ) :

∥∥∥2Ext(Cpk0 , C
′pk
0 )− U`(κ)

∥∥∥
s
≤ 1

q(κ)

]
≥ 1− 1

q(κ)
,

This implies that for large enough κ:

Pr[D(PK,CPK0 ) = 1] ≤ 1

2`
+

2

q
. (4)
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Together, (3) and (4) imply, after choosing q = 2`+2p3 ∈ poly, that for large enough κ ∈ I:

Pr[D(PK,CPK0 ) = 1]− Pr[D(PK,CPK1 ) = 1] ≥ 2

q
.

This contradicts the security of PKE and concludes the proof.

Finally, we observe that the “greater-than” extractor is a same-source extractor for super-
logarithmic min-entropy (Lemma 5.7). To the best of our knowledge, this is a folklore fact
which is for example mentioned in [BIW04].

Lemma 5.7. For any k ≤ n, GT is a (k, 1
2k

) same-source extractor.

Proof. In Appendix C.

We now conclude this section with a full description of our method for establishing the
public parameter S introduced in Step 1a.

Theorem 5.8. Let E be a semantically secure public-key encryption scheme and let ρ ∈ poly.
Define random variables as follows.

• For b ∈ {0, 1}, let Kb = (PKb, SKb) = E.Gen(1κ).

• For b ∈ {0, 1} and i ∈ [2ρ], let Cb,i = E.Enc(PK1−b,mb,i) representing the ciphertexts
exchanged between P0 and P1 during 2ρ exchange-rounds.

• Let S =
(
GT(C0,1, C0,2),GT(C1,1, C1,2), . . . ,GT(C0,2ρ−1, C0,2ρ),GT(C1,2ρ−1, C1,2ρ)

)
.

There exists a negligible function ε such that:

‖(K0,K1, S)− (K0,K1, U2ρ)‖s ≤ ε .

Proof. Writing S = (S1, S
′
1, . . . , Sρ, S

′
ρ), we have:

‖(K0,K1, S)− (K0,K1, U2ρ)‖s ≤
ρ∑
i=1

(
‖(K0,K1,i )− (K0,K1, U1)‖s

+
∥∥(K0,K1, S

′
i)− (K0,K1, S1)

∥∥
s

)
≤ 2ρε ,

where the first inequality follows by independence of the ciphertexts conditioned on the keys,
and the second inequality follows by Lemma 5.6.

Remark 4. In the construction of Theorem 5.8, the ciphertexts exchanged between P0 and P1

are sent without any modification, so subliminal indistinguishability clearly holds at this point.

5.2 Embedding Random Strings

In this section, we assume that both parties have access to a public parameter S and con-
struct a protocol which allows for embedding of uniformly random strings into ciphertexts of
an adversarially chosen encryption scheme E, as required by Steps 1b and 2 of the construction
outline (Definition 5.2). The security guarantee is that for a uniformly random parameter S
and uniformly random strings to be embedded, the ciphertexts of E with embedded random
strings are indistinguishable from ciphertexts of E produced by direct application of E.Enc, even
to an adversary who knows the decryption keys of E. This can be thought of as a relaxation of
subliminal indistinguishability (Definition 3.1) where the two main differences are that (1) the
parties have shared knowledge of a random seed, and (2) indistinguishability only holds when
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embedding a random string, rather than for arbitrary strings. We first present a construction
to embed logarithmically many random bits (Theorem 5.9) and then show how to sequentially
compose it to embed arbitrarily polynomially many random bits (Theorem 5.10). These con-
structions rely on a strong seeded extractor that can extract logarithmically many bits from
sources of super-logarithmic min-entropy. Almost universal hashing is a simple such extractor,
as stated in Proposition 5.11.

Theorem 5.9. Let Ext : {0, 1}d × {0, 1}n → {0, 1}v be a strong seeded extractor for super-
logarithmic min-entropy with v = O(log κ), and let E be a semantically secure encryption scheme
with ciphertext space C = {0, 1}n. Let ΣE,S be defined as in Algorithm 1, then the following
guarantees hold:

Algorithm 1 Rejection sampler ΣE,S

Public parameter: S (a d-bit seed).
Input: (str,m, pk) where str is the string to be embedded.

1. Generate encryption c← E.Enc(pk,m).

2. If Ext(r, c) = str, then output c. Else, go back to step 1.

1. Correctness: for any S ∈ {0, 1}d and str ∈ {0, 1}v, if c = ΣE,S(str,m, pk), and str′ =
Ext(S, c), then str′ = str.

2. Security: there exists a negligible function ε such that writing (PK,SK) = E.Gen(1κ),
C = E.Enc(PK,m) and C ′ = ΣE,Ud(Uv,m, PK), the following holds:∥∥(PK,SK,Ud, C)− (PK,SK,Ud, C

′)
∥∥
s
≤ ε(κ) .

Proof. Define C ′′ = E.Enc(PK2,m), an encryption of m independent of C. By definition of
rejection sampling, C ∼ ΣE,S

(
Ext(S,C ′′),m, PK2

)
. Since Ext is a strong extractor for super-

logarithmic min-entropy, and since C has super-logarithmic min-entropy, there exists a negligible
function ε such that:∥∥(PK2, SK2, Ud,Ext(Ud, C

′′)
)
− (PK2, SK2, Ud, Uv)

∥∥
s
≤ ε(κ) .

The statistical distance can only decrease by applying ΣE on both sides, hence:∥∥(PK2, SK2, Ud, C)− (PK2, SK2, Ud, C
′)
∥∥
s
≤ ε(κ) .

which proves the security guarantee. Correctness is immediate.

Remark 5. Rejection sampling is a simple and natural approach that has been used by prior
work in the steganographic literature, such as [BC05]. Despite the shared use of this common
technique, our construction is more different from prior art than it might seem at first glance.
The novelty of our construction arises from the challenges of working in a model with a stronger
adversary who can choose the distribution of ciphertexts (i.e., the adversary gets to choose the
public-key encryption scheme E). We manage to bypass the impossibilities outlined in Section
4 notwithstanding this stronger adversarial model, and in contrast to prior work, construct a
protocol to established a shared seed from scratch, rather than simply assuming that one has
been established in advance.

We now sequentially compose Theorem 5.9 to embed longer strings.
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Theorem 5.10. Let Σ be the rejection sampler defined in Algorithm 1. Let ` ∈ poly and U` be a
uniformly random message of ` bits. For v ≤ `, we write U` = U`,1|| . . . ||U`,ν where U`,i is a block
of v bits from U` and ν = `

v . Given cover messages m1, . . . ,m`, define (PK,SK) = E.Gen(1κ),
C ′i = ΣE,Ud(U`,i,mi, pk), Ci = E.Enc(PK,mi), then there exists a negigible function ε such that:∥∥(PK,SK,Ud, (Ci)i∈[ν])− (PK,SK,Ud, (C

′
i)i∈[ν])

∥∥
s
≤ ε(κ) .

Proof. Define K = (PK,SK), then:

∥∥(K,Ud, (Ci)i∈[ν]

)
−
(
K,Ud, (C

′
i)i∈[ν]

)∥∥
s
≤

ν∑
i=1

∥∥(K,Ci)− (K,C ′i)
∥∥
s
≤ νε ,

where the first inequality is by independence of the sequences (Ci)i∈[ν] and (C ′i)i∈[ν] conditioned
on the keys, and the second inequality is by Theorem 5.9.

Finally, we observe that almost universal hashing is a strong seeded extractor for super-
logarithmic min-entropy which has negligible error when the output length is O(log(κ)) (Propo-
sition 5.11). This exactly satisfies the requirement of Theorem 5.9. Moreover, the seed legnth
of this extractor is only super-logarithmic, meaning that the seed can be established, in Step
1a of the Setup Phase (Definition 5.2), in Õ(log κ) many exchange-rounds of communication.

Proposition 5.11. Let δ be a negligible function and let H be a family of δ-almost pairwise in-
dependent hash functions mapping {0, 1}n to {0, 1}c·logn, then the extractor Ext : H×{0, 1}n →
{0, 1}c·logn defined by Ext(h, x) = h(x) is a strong seeded extractor for super-logarithmic min-
entropy. Furthermore, there exists an explicit family H of such hash functions, such that sam-
pling uniformly from H requires O

(
c · log n+ log 1

δ

)
bits.

Proof. See [SZ94].

5.3 Full Protocol (Φ?,Ξ?)

First, we establish some notation for the syntax of a key-exchange protocol.

Definition 5.12 (Key-exchange protocol syntax). A key-exchange protocol is a two-party pro-
tocol defined by

Λ = (Λ0,1,Λ1,1,Λ0,2,Λ1,2, . . . ,Λ0,k,Λ1,k,Λ0,out,Λ1,out) .

We assume k simultaneous communication rounds, where Λb,i represents the computation per-
formed by Pb in the ith round. The parties are stateful and their state is implicitly updated at
each round to contain the transcript so far and any local randomness generated so far. Each
Λb,i takes as input the transcript up to round i− 1 and the state of Pb, and outputs a message
λb,i to be sent in the ith round. For notational simplicity, we write explicitly only the first
input to Λb,i, and leave the second input (i.e., the state) implicit. Λ0,out,Λ1,out are run by P0, P1

respectively to compute the shared secret at the conclusion of the protocol.

Next, we give the full construction of (Φ?,Ξ?) following the outline in Definition 5.2.

Definition 5.13. (Φ?,Ξ?) is parametrized by the following.

• Ext : {0, 1}d × {0, 1}n → {0, 1}v, a strong seeded extractor.

• Λ, a pseudorandom key-exchange protocol with `-bit messages.13

13In presenting our construction (Φ?,Ξ?), we do not denote the state of parties w.r.t. the key-exchange protocol
Λ by a separate variable, but assume that it is part of the state sb,i of the overall protocol.
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• SKE, a pseudorandom secret key encryption scheme with ξ-bit ciphertexts.

We define each phase of our construction in turn.

1. Setup Phase Φ?
1

(a) Establishing a d-bit shared seed2

• For b ∈ {0, 1} and i ∈ {1, . . . , d}, Φ?
b,i(mb,i, pk1−b, sb,i−1) outputs a ciphertext3

cb,i = E.Enc(pk1−b,mb,i) and sets the updated state sb,i to be the transcript of4

all protocol messages sent and received so far.5

• At the conclusion of the d exchange-rounds, each party updates his state to
contain the seed S which is defined by

S =
(
GT(c0,1, c0,2),GT(c1,1, c1,2), . . . ,GT(c0,d−1, c0,d),GT(c1,d−1, c1,d)

)
.

This seed S is assumed to be accessible in all future states throughout both6

phases during the remainder of the protocol.7

(b) Subliminal key exchange8

Let ν = `
v . Subliminal key exchange occurs over k · ν exchange-rounds.9

• For j ∈ {1, . . . , k} and b ∈ {0, 1}:10

– Pb retrieves from his state the key-exchange transcript so far (λb,j′)b∈{0,1},j′<j .11

– Pb computes the next key-exchange message

λb,j ← Λb,j
(
(λb,j′)b∈{0,1},j′<j

)
.

– Pb breaks λb,j into v-bit blocks λb,j = λ1
b,j || . . . ||λνb,j .12

– The ν blocks are transmitted sequentially as follows. For ι ∈ {1, . . . , ν}:13

Let i = d+ (j − 1)ν + ι.14

Φ?
b,i(mb,i, pk1−b, sb,i−1) outputs cb,i ← ΣE,S(λιb,j ,mb,i, pk1−b) and sets the15

updated state sb,i to contain the transcript of all protocol messages sent16

and received so far.17

– At the conclusion of the ι exchange-rounds, each party b ∈ {0, 1} updates his18

state to contain the jth key-exchange message λ1−b,j computed as follows:19

λ1−b,j = Ext(S, cb,d+(j−1)ν+1)|| . . . ||Ext(S, cb,d+jν)

• At the conclusion of the k · ν exchange rounds, each party updates his state to20

contain the secret key sk∗ computed as follows:21

sk∗ = SKE.Gen
(
1κ; Λout

(
(λb,j)b∈{0,1},j∈[k]

))
.

2. Communication Phase Ξ?22

Each communication phase occurs over r′ = ξ/v exchange-rounds.23

Let β ∈ {0, 1} be the initiating party and let β̄ = 1− β.24

Pβ performs the following steps.25

• Generate c∗ ← SKE.Enc(sk∗,msg).26

• Break c∗ into v-bit blocks c∗ = c∗1|| . . . ||c∗r′ .27

For i′ ∈ {1, . . . , r′}:28

• Let i′′ = r + i′.29
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• Ξ?0,i′(msg,m0,i′′ , pkβ̄, sβ,i′′−1) outputs cβ,i′′ ← ΣE,S(c∗i′ ,mβ,i′′ , pkβ̄).30

• Ξ?1,i′(mβ̄,i′′ , pkβ, sβ̄,i′′−1) outputs cβ̄,i′′ ← E.Enc(pkβ,mβ̄,i′′).31

• Both parties update their state to contain the transcript of all protocol messages32

exchanged so far.33

After the r′ exchange-rounds, Pβ̄ computes c∗∗ as follows:34

c∗∗ = Ext(S, cβ,r+1)|| . . . ||Ext(S, cβ,r+r′) .

Then, Pβ̄ outputs msg′ ← SKE.Dec(sk∗, c∗∗). (That is, Ξ?1,out(sβ̄,r′) = msg′.)35

5.4 Proof that (Φ?,Ξ?) Is a Subliminal Communication Scheme

Finally, we give the proof of our main theorem. We recall the statement here.

Theorem 5.1. Assume there exists a pseudorandom key-exchange protocol. Then there is a
multi-message subliminal communication scheme (Φ?,Ξ?), given in Definition 5.13.

Proof. We define three hybrids.

• Hybrid 0 (“real world”): Parties execute (Φ?,Ξ?).

• Hybrid 1: Exactly like Hybrid 0, except that the seed S in Phase 1a is replaced by a
truly random d-bit string (the same string for both parties).

• Hybrid 2: Exactly like Hybrid 1, except that the key exchange messages λb,j in Φ? are
replaced by random strings. That is, Line 12 is replaced by:

Pb samples λb,j ← {0, 1}` at random.

• Hybrid 3: Exactly like Hybrid 2, except that the ciphertexts of SKE in Ξ? are replaced
by random strings. That is, Line 26 is replaced by:

Sample c∗ ← {0, 1}ξ at random.

Hybrids 0 and 1 are indistinguishable by direct application of Theorem 5.8.
Hybrids 1 and 2 are indistinguishable by the pseudorandomness of the key-exchange protocol

(defined in Section 2.1). Note that it is essential that the Λ-transcript’s indistinguishability from
random holds even in the presence of the established key sk∗, since in our protocol (Φ?,Ξ?), the
later protocol messages are produced as a function of sk∗.

Hybrids 2 and 3 are indistinguishable because ciphertexts of SKE are pseudorandom in the
absence of the corresponding secret key sk∗. Because we already replaced the messages of Λ
with random messages independent of sk∗, the distribution of all protocol messages in Hybrid
1 can be generated based on just the SKE-ciphertexts c∗ (of line 26).

Finally, Hybrid 3 is indistinguishable from the ideal distribution

Ideal(pk1, sk1, pk2, sk2,M)

from Definition 3.3 by Theorem 5.10. Note that the rejection sampler ΣE,Ud of Algorithm 1 has
a truly random d-bit seed, so to invoke Theorem 5.10 we rely on the fact that S is truly random
in Hybrid 3.

20



5.5 On the Setup Cost and Asymptotic Rate of (Φ?,Ξ?)

Setup Cost. The setup cost of our scheme can be broken down into the costs of Step 1a and
Step 1b as follows.

• Step 1a: If our scheme is instantiated with the extractor Ext from Proposition 5.11, then
we need to establish a seed of length Õ(log κ), which implies that Õ(log κ) exchange-
rounds are required in Step 1a. This is arguably the least efficient step in our scheme; this
inefficiency stems from the use of the GT extractor which only outputs one bit: to the
best of our knowledge this the only extractor which applies to our setting. In Section 6,
we discuss ways in which this cost can be reduced under additional assumptions on the
next-message distribution or the encryption scheme E by replacing GT by extractors with
longer outputs.

• Step 1b: The cost of this step is k · `v , where k is the number of rounds of the key-exchange
protocol Λ that we use, ` is the length of messages in Λ and v is the output length of Ext.
(Concretely, the Diffie-Hellman key exchange protocol achieves k = 1 and ` = O(κ).) If
we use the extractor from Proposition 5.11 as Ext, then we can achieve v = c log κ for any
c > 0. This implies that the cost of Step 1b is upper-bounded by c′ κ

log κ for any c′ > 0.

Note that because the min-entropy of ciphertexts from E can be as small as ω(log κ) and
is a priori unknown to the designer of the subliminal scheme, the output of Ext must be
O(log κ).14 The extractor Ext from Proposition 5.11 is optimal in this respect.

Asymptotic Rate. The asymptotic rate of our scheme depends on the output length of Ext.
Using the extractor from Proposition 5.11, we can subliminally embed c log κ random bits per
ciphertext of E and hence achieve an asymptotic rate of c log κ for any c > 0. As in the discussion
regarding the cost of Step 1b, this is optimal given that the min-entropy of ciphertexts can be
as small as ω(log κ).

Trade-off Between Running Time and Rate. Note that the parameter c from the previous
paragraph controls the trade-off between the running time of our scheme and its asymptotic
rate. Indeed, the expected running time of the rejection sampler defined in Algorithm 1 is
O(κc), when embedding c log κ random bits. This trade-off is inherent to rejection sampling,
and it is an interesting open question to determine whether it can be improved by an alternative
technique.

6 Improving Setup Cost

In this section, we present alternative constructions which improve the setup cost of subliminal
communication under additional assumptions, either on the next-message distribution M, or
on the public-key encryption scheme E. These additional assumptions allow us to replace the
“greater-than” extractor in Step 1a of Definition 5.2 with extractors with longer output, thus
reducing the number of exchange-rounds required to establish the shared seed. Section 6.1 gives
a construction when E is “succinct” (i.e., has a constant expansion factor). Section 6.2 presents
a construction when M has a known amount of min-entropy. Both these constructions yield a
seed establishment in two exchange-rounds.

14Suppose not, i.e., suppose that the output of Ext were v ∈ ω(log κ) bits long. Then the adversary could
choose an encryption scheme whose ciphertexts have min-entropy z ∈ ω(log κ) ∩ o(v) (e.g., z =

√
v(κ) log κ).

Since the extractor output cannot have more min-entropy than its input, the extractor’s output when evaluated
on ciphertexts would be distinguishable from random v-bit strings.
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6.1 Succinct Encryption Schemes

Let us suppose that the adversarially chose scheme E is succinct. Here we define succinct as
having an expansion factor less than 2. Recall that the expansion factor is defined to be the ratio
of ciphertext length to plaintext length. Under this assumption, we can improve the number of
rounds in the construction of Section 5.1 by replacing the extractor GT by the extractor Ble
from [DEOR04]. Note that this extractor requires the min-entropy rate of the sources to be
slightly above 1

2 , yet ciphertexts of E only have min-entropy ω(log κ). However, the succinctness
assumption combined with semantic security implies that cipertexts have sufficiently large HILL
entropy: they are computationally indistinguishable from sources of min-entropy rate slightly
above 1

2 . Since the extractor is a polynomial time algorithm, its output when computed on
ciphertexts from E will be computationally indistinguishable from the uniform distribution.
Formally, we prove the following theorem.

Theorem 6.1. Let us denote by n (resp. p) the bit-lengths of ciphertexts (resp. plaintexts) from
E. Let Ble be the function constructed in [DEOR04] and let us denote by B : {0, 1}n×{0, 1}n →
{0, 1}v its truncation to v = O(log κ) bits. With the same notations as Theorem 5.8, define:

S =
(
B(C0,1, C0,2),B(C1,1, C1,2), . . . ,B(C0,2ρ−1, C0,2ρ),B(C1,2ρ−1, C1,2ρ)

)
.

There is a negligible function ε such that ‖(K0,K1, S)− (K0,K1, U2ρv)‖s ≤ ε.

Proof. For any γ > 0, the function Ble from [DEOR04] can extract 2p − n − γp random bits
with bias ε = 2−1/2γp from two independent n-bit sources of min-entropy p. Note that for
n ≤ (1 − γ)2p, 2p − n − γp ≥ γp, and by semantic security of E, we have that n (and hence
p) are super-logarithmic. Hence the function B defined in Theorem 6.1 is well-defined and has
bias ε ∈ negl for independent sources of min-entropy p.

For public key pk, define Y pk = E.Enc(pk, Up) the random variable obtained by encrypt-
ing a message chosen uniformly at random. By correctness of E, Y pk is a flat source sup-
ported on {0, 1}p, hence H∞(Y pk) = p. Hence for Zpk an independent copy of Y pk, we have∥∥B(Y pk, Zpk)− Uv

∥∥
s
≤ ε(κ). By semantic indistinguishability of E, we have that for any cipher-

text C of E, C
c
≈ Y pk; i.e., C has HILL-entropy p. Adapting the proof of Lemma 5.6 and using

the same notation, since v = O(log κ), we get
∥∥(PK,SK,B(CPK0 , CPK1 )

)
−
(
PK,SK,Uv

)∥∥
s
≤

ε. From there, the proof of Theorem 6.1 follows verbatim the proof of Theorem 5.8.

Remark 6. Theorem 6.1 implies in particular that a Õ(log κ) random seed can be established
in step 1a of our subliminal scheme in only two exchange-rounds of communication, whereas
the construction of Theorem 5.8 with the GT extractor requires Õ(log κ) exchange-rounds.

6.2 Next-Message Distributions with Min-Entropy

The previous subsection reduced the number of rounds to establish the shared seed by using
a two-source extractor with more than one bit of output (unlike the GT extractor). However,
this required E to be succinct to guarantee that ciphertexts of E have sufficient HILL-entropy.
In this section, we observe that if the message distribution itself has enough min-entropy, then
we can use the plaintext and corresponding ciphertext as a pair of sources to extract from, and
obtain a similar improvement without requiring that E be succinct. Note that this construction
again exploits the semantic security of E to guarantee that the plaintext and the ciphertext are
indistinguishable from independent sources to the two-source extractor.

All we require of E in this subsection is that the ciphertext distribution has min-entropy
at least ω(log κ), which follows from semantic security (Lemma 5.4); however, we additionally
require that the next message distribution M have min-entropy rate above 1

2 . While this
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is quite a lot of min-entropy to demand from M, we note that the precise requirement of
1
2 arises from the current state of the art in two-source extractors, and improved two-source
extractor constructions would directly imply improvements in the min-entropy requirement of
our construction. Recent research in two-source extraction has been quite productive; with luck,
future advances will provide us with an alternative which demands much less entropy fromM.

Theorem 6.2. Suppose that k1 is such that for all k2 = ω(log κ) there exists a negligible function
ε and a (k1, k2, ε)-two source extractor 2Ext with output length ` = O(log κ). and let ρ ∈ poly.
Define random variables as follows.

• For b ∈ {0, 1}, let Kb = (PKb, SKb) = E.Gen(1κ).

• For b ∈ {0, 1} and i ∈ [ρ], let Mb,i and Cb,i = E.Enc(PK1−b,mb,i) be the messages and
ciphertexts exchanged between P0 and P1 in ρ exchange-rounds.

• S =
(
2Ext(M0,1, C0,1), 2Ext(M1,1, C1,1), . . . , 2Ext(M0,ρ, C0,ρ), 2Ext(M1,ρ, C1,ρ)

)
.

Then if the next message distribution M(conv) has min-entropy at least k1:

‖(K0,K1, S)− (K0,K1, Uρ)‖s ≤ ε .

Proof. Let us consider M and M ′ two independent samples from the next-message distribution
and let us denote by CPKM and CPKM ′ their encryption under key PK. Consider a two-source
extractor 2Ext as in the statement of the theorem. By semantic security, it follows that for some
negligible function ε′:

2Ext(M,CPKM )
c
≈ε′ 2Ext(M ′, CPKM ) .

By property of 2Ext it follows that
∥∥2Ext(M ′, CPKM )− U`

∥∥
s
≤ ε. Since ` = O(log κ), we can

prove similarly to Lemma 5.6:∥∥(PK,SK, 2Ext(M,CPKM )
)
− (PK,SK,U`)

∥∥
s
≤ ε+ ε′ .

We can now conclude similarly to the proof of Theorem 5.8.

The following result from [Raz05] implies that for any δ > 0, when k1 = 1
2 + δ, two-source

extractors exist which may be used in the above theorem. The output length of such extractors
is logarithmic, implying that a Õ(log κ)-bit random seed S can be established in two exchange-
rounds of communication.

Lemma 6.3 (Theorem 1 in [Raz05]). For any δ > 0, k1 ≥ 1
2 + δ and k2 = ω(log κ), there exists

a negligible function ε and a (k1, k2, ε)-two source extractor with output length ` = O(log κ).

7 Open problems

Deterministic Extraction. Our impossibility result in Theorem 4.1 holds because the adver-
sary can choose the encryption scheme E as a function of a given candidate subliminal scheme.
However, note that under the additional assumption that E is restricted to a predefined class C
of encryption schemes, we could bypass this impossibility as long as a deterministic extractor
that can extract randomness from ciphertexts of any encryption scheme in C exists. We are
only aware of two deterministic extractors leading to a positive result for restricted classes of
encryption schemes:

• if an upper bound on the circuit size of E is known, then we can use the deterministic
extractor from [TV00]. This extractor relies on strong complexity-theoretic assumptions
and requires the sources to have min-entropy (1− γ)n for some unspecified constant γ.
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• if E is computed by a circuit of constant depth (AC0), then the deterministic extractor
of [Vio11] can be used and requires

√
n min-entropy.

Note that both these extractors have a min-entropy requirement which is too strict to be
directly applicable to ciphertexts of arbitrary encryptions schemes, but it would be interesting
to give improved constructions for the specific case of encryption schemes. This would also
have direct implications for the efficiency of the subliminal scheme we construct in Section 5.2:
indeed, one could then skip Step 1a and use a deterministic extractor directly in Steps 1b and
and 2, thus saving Õ(log κ) exchange-rounds in the setup phase.

Multi-Source Extraction. Another interesting question is whether multi-source extractors
for the specific case when the sources are independent and identically distributed can achieve
better parameters than extractors for general independent sources. We already saw that a very
simple extractor (namely, the “greater-than” function) works for i.i.d. sources and extracts
one bit with negligible bias, even when the sources only have ω(log κ) min-entropy. The non-
constructive result of [CG88] guarantees the existence of a two-source extractor of negligible
bias and output length ω(log κ) for sources of min-entropy ω(log κ). However, known explicit
constructions are far from achieving the same parameters, and improving them in the specific
case of identically distributed sources is an interesting open problem which was also mentioned
in [BIW04].

Acknowledgements

We are grateful to Omer Paneth and Adam Sealfon for insightful remarks on an earlier draft of
this paper.

References

[ACM+14] Per Austrin, Kai-Min Chung, Mohammad Mahmoody, Rafael Pass, and Karn Seth.
On the impossibility of cryptography with tamperable randomness. In Garay and
Gennaro [GG14], pages 462–479.

[Auc98] David Aucsmith, editor. Information Hiding, Second International Workshop, Port-
land, Oregon, USA, April 14-17, 1998, Proceedings, volume 1525 of Lecture Notes
in Computer Science. Springer, 1998.

[BC05] Michael Backes and Christian Cachin. Public-key steganography with active at-
tacks. In Joe Kilian, editor, Theory of Cryptography, Second Theory of Cryptography
Conference, TCC 2005, Cambridge, MA, USA, February 10-12, 2005, Proceedings,
volume 3378 of Lecture Notes in Computer Science, pages 210–226. Springer, 2005.

[BIW04] Boaz Barak, Russell Impagliazzo, and Avi Wigderson. Extracting randomness using
few independent sources. In 45th Symposium on Foundations of Computer Science
(FOCS 2004), 17-19 October 2004, Rome, Italy, Proceedings, pages 384–393, 2004.

[BJK15] Mihir Bellare, Joseph Jaeger, and Daniel Kane. Mass-surveillance without the state:
Strongly undetectable algorithm-substitution attacks. In Indrajit Ray, Ninghui Li,
and Christopher Kruegel, editors, Proceedings of the 22nd ACM SIGSAC Conference
on Computer and Communications Security, Denver, CO, USA, October 12-6, 2015,
pages 1431–1440. ACM, 2015.

24
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A Steganographic communication schemes

Here, we give a formal definition of a steganographic communication scheme, formalized as a pro-
tocol consisting of r exchange-rounds in which two parties P0 and P1 engage in communication
distributed according to a cover distribution C, and in which P0 steganographically transmits
a hidden message msg to P1. The cover distribution C is a parameter of the communication
scheme.

Definition A.1 (Steganographic communication scheme). A steganographic communication
scheme with respect to a cover distribution C is a two-party protocol:

ΠC =
(
ΠC0,1,Π

C
1,1,Π

C
0,2,Π

C
1,2, . . . ,Π

C
0,r,Π

C
1,r, ; ΠC1,out

)
where r ∈ poly and where each ΠCb,i is a PPT algorithm with oracle access to a C−sampler.
Party P0 is assumed to receive as input a message msg that is to be conveyed to P1 in an
undetectable fashion. The protocol must satisfy the following syntax, correctness and security
guarantees.

• Syntax. For each i = 1, . . . , r:

1. P0 draws (c0,i, s0,i)← ΠC0,i(msg, s0,i−1), locally stores s0,i, and sends c0,i to P1.

2. P1 draws (c1,i, s1,i)← ΠC1,i(s1,i−1), locally stores s1,i, and sends c1,i to P0.

After the rth exchange-round, P1 computes msg′ = ΠC1,out(c0,1, c1,1, . . . , c0,r, c1,r) and halts.

• Correctness. For any msg ∈ {0, 1}κ, msg′ = msg with overwhelming probability. The
probability is taken over the randomness of all of the ΠCb,i and their C-samples.

• Steganographic Indistinguishability w.r.t. M. The following distribution{
(c0,1, c1,1, . . . , c0,r, c1,r) : msg←M, (c0,i, s0,i)← ΠC0,i(msg, s0,i−1), (c1,i, s1,i)← ΠC1,i(s1,i−1)

}
is computationally indistinguishable from the cover distribution of length 2r − 1. (Note
that C2r−1 is not necessarily a product distribution.)

Depending on the specific application at hand, a steganographic communication scheme
might require that steganographic indistinguishability hold w.r.t. all message distributionsM,
or alternatively, only require that it hold w.r.t. certain specific message distributions (e.g.,
uniformly random messages).

Definition A.1 concerns the transmission of only a single message. There is a natural general-
ization of this definition to a more general multi-message version, analogous to how Definition 3.3
is a multi-message generalization of Definition 3.1 in the context of subliminal communication
schemes. Much as observed in Remark 2 in the context of subliminal communication schemes,
the natural multi-message generalization of Definition A.1 is equivalent to Definition A.1 in the
sense that the existence of any single-message scheme easily implies a multi-message scheme
and vice versa; the multi-message version of the definition is mainly useful when considering
the asymptotic efficiency of schemes. We present only Definition A.1 here as the simpler single-
message definition suffices in the context of an impossibility result.

The existing notions of public-key steganography and steganographic key exchange, as well
as the subliminal communication schemes introduced in this work, are all instantiations of the
more general definition of a (multi-message) steganographic communication scheme.15

15Public-key steganography protocols can be thought of as being parametrized by the public/private key pairs of
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A.1 Proof of Theorem 4.2

In this subsection we give the proof of impossibility of non-trivial steganographic communica-
tion in the presence of an adversarially chosen cover distribution. We recall the statement of
Theorem 4.2 from Section 4.2.

Theorem 4.2. Let Π be a steganographic communication scheme. Then for any k ∈ N,
there exists a cover distribution C of conditional min-entropy k such that the steganographic
indistinguishability of Π does not hold for more than one message.

Proof. The proof exploits the impossibility of extracting more than one bit from Santha-Vazirani
(SV) sources (cf. Proposition 6.6 in [Vad12]). Recall that a δ-SV source X ∈ {0, 1}n is defined
by the following conditions:

δ ≤ Pr[Xi = 1 |X1 = x1, . . . , Xi−1 = xi−1] ≤ 1− δ

for all i ∈ [n] and all (x1, . . . , xi−1) ∈ {0, 1}i−1.
Consider δ > 0 and Π a steganographic communication scheme with r-rounds. Let n ∈ N be

such that δ-SV sources of length n have conditional min-entropy k when interpreted as 2r − 1
blocks of size n

2r−1 . Assume for contradiction that Π can embed at least two messages m1 and
m2. Steganographic indistinguishability applied to the case where msg← {m1,m2} implies the
existence of a negligible ε such that 1[Π2,out(C2r−1) = m1] is a random bit with bias at most ε.

But Proposition 6.6 in [Vad12] implies the existence of a δ-SV source C2r−1 such that
Pr[Π2,out(C2r−1) = m1] ≥ 1− δ or Pr[Π2,out(C2r−1) = m1] ≤ δ. In other words, 1[Π2,out(C2r−1 =
m1] has bias at least 1

2 − δ. For δ < 1
2 − ε, this is a contradiction.

Remark 7. At first glance, it may seem that one could bypass this impossibility and com-
municate more than one bit of information by sequentially repeating the same steganographic
scheme. However, one could then apply Theorem 4.2 to the sequential composition and obtain
a new cover distribution which would break this scheme.

B Min-Entropy of Ciphertexts

Lemma 5.4. Let PKE be a semantically secure encryption scheme. Then there exists a negli-
gible function ε such that for all κ ∈ N, m ∈Mκ, writing Cpkm ∼ PKE.Enc(pk,m):

Pr

[
(pk, sk)← PKE.Gen(1κ) : H∞

(
Cpkm

)
≥ log

1

ε(κ)

]
≥ 1− ε(κ) .

Proof. Let us assume by contradiction that there exists p ∈ poly(κ), a countably infinite set I
and a family {mκ}κ∈I such that for all κ ∈ I:

Pr
[
(pk, sk)← PKE.Gen(1κ) : H∞

(
Cpkmκ

)
≤ log p(κ)

]
≥ 1

p(κ)
. (5)

Since PKE is non-trivial, for all κ ∈ I there exists m′κ 6= mκ.
Consider the distinguisher D which on input (pk, c) runs as follows:

the communicating parties, which are initially sampled by the parties according to some key generation algorithm.
However, the definition of a steganographic communication protocol as stated is not parametrized in an analogous
way. This syntactic discrepancy can be resolved by equivalently thinking of the public-key steganography as
a family of steganographic communication protocols each of which has the key pairs hardwired, induced by
the sampling of key pairs according to the key generation algorithm; and then requiring the steganographic
indistinguishability guarantee to hold only with overwhelming probability over key generation.
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1. Sample encryption e← PKE.Enc(pk,mκ).

2. If e = c output 1, otherwise output 0.

Writing (PK,SK) ∼ PKE.Gen(1κ), we claim that D distinguishes
(
PK,Enc(PK,mκ)

)
from(

PK,Enc(PK,m′κ)
)

with non-negligible advantage. First note that by (5), with probablity at
least 1

p(κ) over the draw of pk, Enc(pk,mκ) has collision probability at least 1
p(κ)2

. By definition,

D outputs 1 on input (pk,Enc(pk,mκ)) if and only if a collision occurs in step 1. Hence:

Pr[D(PK,Enc(PK,mκ)) = 1] ≥ 1

p(κ)3
.

Second, since PKE is correct, there exists a negligible function ε′ such that Enc(pk,mκ) =
Enc(pk,m′κ) with probability at most ε′. Hence:

Pr[D(PK,Enc(PK,m′κ)) = 1] ≤ ε′(κ) .

The previous two inequalities together imply that for large enough κ ∈ I:∣∣Pr[D(PK,Enc(PK,mκ)) = 1]− Pr[D(PK,Enc(PK,m′κ)) = 1]
∣∣ ≥ 1

2p(κ)3
,

which contradicts the semantic security of PKE.

C Greater-Than is a Same-Source Extractor

Lemma 5.7. For any k ≤ n, GT is a (k, 1
2k

) same-source extractor.

Proof. Let X and Y be two i.i.d. variables with H∞(X) = H∞(Y ) ≥ k. Then

2 Pr[X ≥ Y ] = Pr[X ≥ Y ] + Pr[X ≤ Y ] = 1 + CP(X) ≤ 1 +
1

2k
,

where the last inequality uses the standard upper bound on the collision probability CP(X)
with respect to the min-entropy of X.
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