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Abstract

In [Eurocrypt 2004] Katz and Ostrovsky establish the exact round complexity of secure
two-party computation with respect to black-box proofs of security. They prove that 5 rounds
are necessary for secure two-party protocols (4-round are sufficient if only one party receives
the output) and provide a protocol that matches such lower bound. The main challenge when
designing such protocol is to parallelize the proofs of consistency provided by both parties –
necessary when security against malicious adversaries is considered– in 4 rounds. Toward this
goal they employ specific proofs in which the statement can be unspecified till the last round
but that require non-black-box access to the underlying primitives.

A rich line of work [IKLP06, Hai08, CDSMW09, IKOS07, PW09] has shown that the non-
black-box use of the cryptographic primitive in secure two-party computation is not necessary
by providing black-box constructions matching basically all the feasibility results that were
previously demonstrated only via non-black-box protocols.

All such constructions however are far from being round optimal. The reason is that they are
based on cut-and-choose mechanisms where one party can safely take an action only after the
other party has successfully completed the cut-and-choose phase, therefore requiring additional
rounds.

A natural question is whether round-optimal constructions do inherently require non-black-
box access to the primitives, and whether the lower bound shown by Katz and Ostrovsky can
only be matched by a non-black-box protocol.

In this work we show that round-optimality is achievable even with only black-box access to
the primitives. We provide the first 4-round black-box oblivious transfer based on any enhanced
trapdoor permutation. Plugging a parallel version of our oblivious transfer into the black-
box non-interactive secure computation protocol of [IKO+11] we obtain the first round-optimal
black-box two-party protocol in the plain model for any functionality.

1 Introduction

Secure two-party computation allows two mutually distrustful parties to compute a function of
their secret inputs without revealing any information except what can be gathered from the output.
It is known that achieving secure two-party computation information theoretically is impossible,
and thus computation assumptions are required. In this work we are interested in construction for
two-party computation based on general hardness assumptions in the plain model. Protocols based
on general assumptions are flexible in that they allow the protocol to be implemented based on
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a variety concrete assumptions; even possibly ones which where not considered when the protocol
was designed. Constructions based on general assumptions may use the cryptographic primitive
based on the assumption in two ways: black-box usage, if the construction refers only to the
input/output behavior of the underlying primitive; non-black-box usage, if the construction uses
the code computing the functionality of the primitive. The advantage of black-box constructions
is that their complexity is independent of the complexity of the implementation of the underlying
primitive and are typically considered the first step towards practical constructions.

Secure two-party computation under general assumptions. Yao [Yao86] provided an ele-
gant construction which securely realizes any two-party functionality, and which uses the underlying
cryptographic primitives as black-box. This construction however guarantees security only against
semi-honest adversaries, i.e., adversaries that honestly follow the protocol. [GMW87] show that
semi-honest security is sufficient, as any protocol tolerating semi-honest adversaries can be compiled
into one secure against malicious adversaries (i.e., adversaries who can arbitrarily deviate from the
protocol), by forcing the parties to prove, after each step, that they behaved honestly. Roughly, in
this compiler, each party commits to his input at the very beginning and use a coin-flipping protocol
to define the randomness that will be used in the semi-honest protocol. Then, for each protocol
message, they add a zero-knowledge “proof of consistency” proving that the message was correctly
computed according to the input committed and the randomness generated in the coin-flipping.

Unfortunately, this compiler is highly inefficient as the proofs of consistency require Karp re-
ductions involving the circuits of the cryptographic primitives used. The exact complexity of these
reductions grows more than linearly in the circuit complexity of the cryptographic primitive.1 Re-
searchers naturally began to wonder whether security against malicious adversaries could be achieved
without relying on non-black-box use of cryptographic primitives.

Black-box secure two-party computation. Ishai et al. [IKLP06, Hai08] show that malicious
security can be achieved without using expensive zero-knowledge proofs involving the code of the
cryptographic primitives. Their work is based on the following observation: we can check that a
party is honestly computing the protocol messages, by challenging the party to reveal the input
and the randomness used in the computation. While this will certainly prove consistency2, it is not
zero-knowledge, as it leaks parties’ entire inputs. Thus, the next idea is to have the parties engage
in several parallel executions of the semi-honest protocol, where they run with random inputs.
When a party is challenged on a random subset of protocol executions, she can safely reveal the
randomness/inputs used in those executions which are independent of her actual inputs. If the party
provides all convincing answers, then the challenger is guaranteed that the majority of the remaining
executions are honestly computed as well. This step is repeated again in the opposite direction.
Eventually after both parties have passed the tests, they run an additional step to “connect” the
random inputs with their actual inputs and combine them across the remaining executions.

Following [IKLP06, Hai08] subsequent work have shown black-box construction for adaptively se-
cure two-party protocols [CDSMW09], and constant-round black-box two-party protocols [IKOS07,
PW09].

1We note that a different approach altogether was taken by Kilian in [Kil88], which does not require the use of
cryptographic assumptions at all. However, his compiler works in the OT-hybrid model, thus we still need a protocol
that implements the oblivious transfer functionality against malicious adversaries.

2For sake of better clarity we are oversimplifying here. In [IKLP06] they introduce the definition of defensible
adversaries and show how to use it in the cut-and-choose. We refer the reader to [IKLP06] for more details.
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Round-optimal secure two-party computation. In [KO04] Katz and Ostrovsky establish the
exact round complexity of secure two-party computation from general assumptions. They show that
5 rounds are necessary and sufficient to compute any two-party functionality where both parties
obtain the output, and 4 rounds are sufficient if only one party receives the output. To prove the
upper bound they give a protocol that uses non-black-box proofs of consistency to enforce semi-
honest behavior. The main technical difficulty they face is getting these proofs to complete in only
4 rounds − not an easy task as zero-knowledge in the standard model requires at least 4 rounds.
Nevertheless, they manage to parallelize the proof and the computation into just 4 rounds using
special properties of certain constructions of witness-indistinguishable (WI) proofs of knowledge.
Namely, they crucially use the fact that in the WI proof of [LS90], the statement can be specified in
the last round. Unfortunately, however, the statements to be proved concern values committed or
computed in the protocol, and require the use of the circuits of the cryptographic primitives used
in the protocol.

Previous results [IKLP06, CDSMW09, PW09] have shown that essentially any feasibility result
for two-party computation demonstrated using non-black-box techniques can also be obtained via
black-box constructions. A natural question however, which so far has not been answered, is whether
this is true for round optimal non-black-box constructions. This question is the focus of the current
work. Namely,

Can we construct a round-optimal fully black-box protocol for two-party computation
based on general assumptions?

Black-box round-optimal two-party computation? When it comes to round optimality, the
current state of the art suggests a negative answer. All known black-box protocols for secure com-
putation achieve malicious security using a cut-and-choose mechanism that introduces additional
rounds. The need for additional rounds seems inherent because in such mechanisms a party will
take an action only after the other party has successfully completed the cut-and-choose phase. Ad-
ditional rounds are used to combine and connect the random inputs used in the unopened sessions
of the cut-and-choose with the real inputs.

An alternative to the traditional cut-and-choose approach for black-box construction was shown
by Ishai et al. in [IKO+11], where they provide a black-box protocol for non-interactive secure two-
party computation (NISC) based on the “MPC-in-the-head” paradigm of [IKOS07]. This approach
however, following [IPS08, Kil88], works in the OT-hybrid model, and thus can only hope to achieve
round optimality in the plain model if there exists a 4-round black-box oblivious transfer protocol
in the plain model with parallel security.

One might hope that perhaps we can build a 4-round black-box oblivious transfer in the plain
model starting from the 2-round OT protocol of Peikert et al. [PVW08] − whose security is in the
CRS model − by running a two-party coin flipping protocol to generate the CRS. We note that this
approach seems doomed to fail because, as proved in [KO04], secure coin-flipping requires at least
5 rounds, regardless of the use of the underlying cryptographic primitives.

Our Contribution. In this paper we answer the above question positively by constructing a
4-round black-box oblivious transfer protocol based on the existence of (enhanced) trapdoor permu-
tations. Our construction is easily extended to achieve parallel secure oblivious transfer which, using
the compiler of [IKO+11], gives a round-optimal black-box protocol for two-party computation in
the plain model.
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1.1 Our Techniques

As mentioned above, it suffices to build a 4-round black-box oblivious transfer protocol based on
general assumptions. We start with a high-level overview of the main ideas behind the construction.

Our starting point is the following basic 3-round protocol for OT based on black-box use of
enhanced trapdoor permutations (TDP).

1. S chooses trapdoor permutation (f, f−1)← Gen(1κ) and sends f to R.

2. R chooses x R← {0, 1}κ, and sends (z0, z1) to S where zb = f(x) and where z1−b
R← {0, 1}κ is

random.

3. S returns (w0, w1) where wa = sa ⊕ hc
(
f−1(za)

)
, a ∈ {0, 1}

where hc(·) is a hardcore bit of f . If both parties follow the protocol then S can’t learn anything
about R’s input bit b as both z0 and z1 are just random κ−bit strings. Similarly, the security of
the TDP f ensures that R cannot distinguish w1−b from random as long as z1−b was truly chosen
randomly. Unfortunately, there are two serious problems with this protocol. First, there is nothing
to stop a malicious R from sending (z0, z1) such that he knows the pre-images of both values under
f , thus allowing him to learn both s0 and s1. Indeed, the above protocol only offers security against
a semi-honest receiver. Second, while the above protocol leaks no information to S about R’s input
bit, it is not simulateably secure. Input indistinguishably is often sufficient if a protocol is to be
executed once in isolation, however we aim to use our OT as a building block for general 2PC, as
such, stronger security is required.

Katz and Ostrovsky [KO04] solve the first problem by having the parties engage in a secure
coin-flipping protocol to produce a random r ∈ {0, 1}κ and forcing R to prove that either z0 = r or
z1 = r using a witness-indistinguishable proof of knowledge. This denies R the freedom to generate
both z0 and z1. Such WI proofs, however, require using the underlying commitment scheme, used for
the coin-flipping, in a non-black-box way. Our solution to this problem can be seen as implementing
the coin-flipping idea of [KO04] while making only black-box use of the commitment scheme. For
this we use an adaptation of the black-box commit-and-prove protocol of Kilian [Kil92].

We solve the second problem by having S commit the inputs already in the second round and
prove that such committed inputs are the ones used for the OT. Doing this naïvely would require
making non-black-box use of cryptographic primitives, so, in typical cut-and-choose style, we instead
have S commit to shares of the inputs, and play the protocol many times in parallel where R opens
mostly the shares corresponding to his input bit (to enable reconstruction of sb) but enough shares
of s1−b to be convinced that S is playing fairly. This introduces several subtleties, that we discuss
in the next paragraph.

We construct our OT protocol in two steps. First, we construct a 4-round OT protocol, ΠR
OT,

that is simulatable only against a malicious receiver. Then, we use ΠR
OT as a building block to build

the final OT protocol that is simulatable for both parties. In the next two paragraphs we describe
the ideas outlined above in greater details.

A 4-round black-box OT Secure Against Malicious Receivers. We want to implement
the coin-flipping that we mentioned above, without requiring R to give non-black-box proofs about
the committed values. We do it by recasting the above problem in terms of equivocal and binding
commitments, and having the output of the coin-flipping to be the pair of strings (z0, z1) (instead of
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a random r such that either z0 = r or z1 = r). We provide a mechanism that allows R to compute
one binding commitment and one equivocal commitment. In the coin-flipping, R first sends such
commitments to S, then after seeing S’s random strings, she opens both commitments. The crucial
point is that R can control the output of one of the strings by equivocating one the commitments,
while the other string will be truly random. With this tool we can directly obtain a black-box OT
protocol that is simulatable for the receiver as follows.

1. R, on secret input b, chooses random strings r0, r1. Then sends commitments C0, C1 such that
commitment Cb is equivocal. R proves that one of the commitments is binding.

2. S chooses trapdoor permutation (f, f−1) ← Gen(1κ) and sends f to R. Additionally S sends
a random string r to R.

3. R chooses x R← {0, 1}κ and computes zb = f(x). Then it equivocates commitment Cb so that
it opens to rb = zb ⊕ r, while it honestly opens value r1−b.

4. S upon receiving r0, r1, computes z0 = r ⊕ r0 and z1 = r ⊕ r1 and sends (w0, w1) where
wa = sa ⊕ hc

(
f−1(za)

)
.

If the proof in Step 1 is sound, R can only equivocate one string and thus knows the preimage
of one value only. If the proofs and the commitments are hiding, the sender has no advantage
in distinguishing which string is controlled by the receiver. Additionally, if we make the proof
extractable, then the above protocol is simulatable against a malicious receiver.

Thus, what is left to do is to construct the tool that allows R to compute an equivocal commit-
ments and a binding commitment and a WI proof of the binding of one of the two. This proof must
be black-box and 3 rounds only. We implement this proof, by employing ideas from the black-box
commit-and-prove protocol due to Kilian [Kil92] which allows a party to commit to two bits x0

and x1 and prove the equality x0 = x1 without revealing the value of the committed bit. Kilian’s
protocol for proving equality of two committed bits goes as follows. (In the following matrix, think
of each column of the matrix as the shares of one bit.)

1. R chooses M =

(
x0,0 x0,1

x1,0 x1,1

)
∈ {0, 1}2×2 randomly such that x0,a⊕x1,a = xa for a ∈ {0, 1}.

R then computes and sends Com(xa,a′) for a, a′ ∈ {0, 1} over to S along with v = x0,0 ⊕ x0,1.

2. S sends a random b
R← {0, 1} to R.

3. R sends to S the decommitments to xb,0 and xb,1. S verifies that v = xb,0 ⊕ xb,1.

Note that the sum of the columns of M are equal iff x0 = x1, in which case the sum of the rows of
M are also equal, and so if R is honest the protocol will complete and S’s verification will succeed.
On the other hand, if x0 6= x1 then the sum of the rows of M are different and so no matter which
value v was sent by R in Step 1, there is only a 1/2 chance that S will ask for the row which sums
to v. To decommit, R decommits to one of the remaining two values that he has not yet revealed,
x1−b,0 and x1−b,1. Revealing one is enough since either one can be used to reconstruct x0. The
interesting feature of this protocol, which was already used in [DS13], is that opening only one of
the columns, instead of two, can enable equivocality: assume R can guess the row S will ask to open,
then R could commit to a matrix where each column sums to a different bit, and compute v as the
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xor of the row that S will select. In this way S will be convinced and later R can adaptively choose
whether to decommit to 0 or 1, by opening one column or another. This observation is particularly
useful when combined with a standard trick for composing two Σ-protocols to compute the OR of
two statements [CDS94]. Recall that Σ-protocols satisfy the property that, if the challenge is known
in advance, then one can simulate an accepting transcript without knowledge of the witness. The
trick is to run two independent executions, say Σ0,Σ1, in parallel, but have the challenges c0, c1

derived in such a way that the prover can control exactly one of the challenge cb while the other
c1−b will be totally random, and the verifier cannot tell the difference. In this way, the prover can
successfully finish both protocols Σ0,Σ1 by simulating one of the transcripts and computing the
other one honestly.

Putting the two ideas together, we can build a protocol where R commits to a bit x and a bit
y, using two executions of the above protocol for equality proofs, and then using the trick for OR
composition, R can cheat in one of the equality proofs. Thus one of the value between x and y is
equivocal.

One can extend this idea to a string commitment having R commits to two strings X and Y
by committing each single bit and then cheat in all the proof for bits belonging to one string,
and being honest in all bits belonging to the other string, by using the OR trick as before. Note
however, that in the string case we must show that a malicious committer, cannot gain advantage
by committing equivocally only some of the bits of each string. We protect our protocol from such
behavior by using error-correction: we expand each n-bit string into a 3n bit string, while having
the committer being able to control in total only n bits for both strings. We are able to prove that
due to error-correcting property, corrupting only some bits for each string is not enough to control
the final value of the string. We provide more details on how this mechanism is implemented in
Section 3.

From one-side simulatable OT to Fully Simulatable OT. The protocol ΠR
OT is not simulat-

able against a malicious sender. Just as with the basic protocol, S is not committed to any value till
the last round so any rewinding strategy will be ineffective. Therefore we have the sender commit
to two secret keys in the second round via an extractable commitment3 and then have him play
ΠR

OT using the decommitments as inputs. In the last round the server encrypts the actual inputs
using the committed keys. This gives the simulator some hope of extracting S’s secret inputs by
rewinding. This idea by itself doesn’t exactly work; the simulator has no guarantee that S used valid
decommitments as inputs in the OT played with R. This opens the door to input-dependent abort
attacks. We fix this by having S first secret share his inputs and commit to the shares. Then R and
S run many executions of the OT protocol ΠR

OT, where in the i-th execution, S uses as input the
decommitments to the i−th shares. Intuitively, this helps solving the input-depended abort attack,
because now R will also check some of the shares corresponding to sb−1. This check, however, must
be done in such a way that the probability of S passing the check is independent of the bit b. A
bit more in details, obtaining a fully secure protocol requires dealing with two types of malicious
behavior. First, we need a mechanism that allows S to prove that he committed to valid shares of
a secret. For this we use t-out-of-n Shamir secret sharing scheme and another variant of Kilian’s
commit-and-prove protocol. Our main observation is that Kilian’s technique is actually quite gen-
eral and can be used, not only to prove equality of committed values, but that the committed values
satisfy any linear relation. In particular, it can be used to prove that a committed vector is a set

3We stress that extractable commitments can be build from black-box use of OWF [MOSV06].
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of valid shares of some secret according to Shamir secret sharing scheme.
Secondly, we must give R a strategy to detect the case in which S is not using valid decommitment

of the shares in some of the OT executions. Consider, for example, what happens if S were to give
correct decommitment in all of the parallel executions of ΠR

OT except one, where he uses a wrong
decommitment in correspondence of the bit 1. Then since R opens more of the ΠR

OT using input b he
is noticeably more likely to notice the bad input b = 1. We fix this problem by having R performing
first a test, which is independent on his secret bit b. R opens an equal number of execution of ΠR

OT,
say n/4, using inputs b = 0 and b = 1. This test is clearly independent on R’s actual input and
allows R to check that S is playing honestly in most of the OT executions for both inputs. If the
test passes, then R is guaranteed that he will obtain at least t − n/4 more valid decommitments
from the remaining OTs and will be able to reconstruct the secret.

1.2 Further Discussions

Following the OT protocol used in [KO04], our protocol is based only on enhanced trapdoor permu-
tation. We do not require any additional assumption. The aim of this paper is to match the upper
bound of 4-round for two-party computation from general assumptions, that so far was achieved
only with a non-black-box construction. As such, our result should be seen as a feasibility result
rather than an attempt of building more efficient two-party protocols under general assumptions.
It is an interesting direction to improve our techniques to achieve better efficiency.

1.3 Other Related Work on Black-box Secure Computation

We mention additional related work that are less relevant for our result but that have contributed in
the understanding of the power of black-box access to cryptographic primitives. In [DI05] Damgaard
and Ishai show a constant round multi-party protocol where the party have only black-box access to a
PRG. This work assumes honest majority. In [Wee10], Wee shows the first black-box constructions
with sub-linear round complexity for MPC, which Goyal [Goy11] improves to obtain constant-
round MPC constructions based on the black-box use of any OWF. In [GLOV12] black-box use
of OWFs has been shown to be sufficient to construct constant-round concurrent non-malleable
commitments. Other black-box constructions for commitment schemes have been considered w.r.t.
selective opening attacks in [Xia11, ORSV13]. In [LP12] Lin and Pass showed the first black-box
construction for MPC in the standard model that satisfies a non-trivial form of concurrent security.
Their construction requires a non-constant number of rounds. Very recently, Kiyoshima et al.
in [KMO14] improved on the round complexity providing a constant- round construction for the
same result. Finally, another line of research has looked at achieving black-box construction for
protocols that requires non-black-box simulation, such as black-box public coin ZK [GOSV14] and
resettably-sound ZK from OWF [OSV15]

2 Preliminaries

General Notation. We denote by κ the security parameter, and by PPT a machine running
in probabilistic polynomial time. We denote vector using bold notation v and we denote the i-th
coordinate of a vector v using notation [v]i. We denote a matrix using capital and bold letters M,
and we denote the element in position i, j of Mindex by xindexi,j . Let [n] be the set {1, . . . , n} and Zq
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be the integers mod q. For a bit b ∈ {0, 1} we write b as shorthand for 1− b. We write negl(·) for
an unspecified negligible function.

Trapdoor Permutations. Trapdoor permutations are permutations which are easy to compute
and hard to invert unless you know the trapdoor, in which case they are easy to invert. The formal
definition is as follows.

Definition 1 (Trapdoor Permutation). Let F = (Gen,Eval, Invert) be three PPT algorithms such
that

• Gen(1κ) outputs a pair (f, trap) where f : {0, 1}κ → {0, 1}κ is a permutation;

• Eval(f, ·) = f(·) evaluates f ; and

• Invert(f, trap, ·) = f−1(·) evaluates f−1.

We say that F is a family of trapdoor permutations (TDPs) if for any PPT algorithm R

Pr(f,trap)←Gen(1κ),y←{0,1}κ
(
R(f, y) = f−1(x)

)
= negl(κ).

Additionally, we assume that our TDP families have a weak form of certifiability. Namely, we
assume that given some f output by Gen(1κ) it is possible to tell in polynomial time whether f is
a permutation on {0, 1}κ or not. It will be convenient for us to have trapdoor permutations which
act on vector spaces over fields instead of just {0, 1}κ. This can be arranged by identifying {0, 1}κ

with Fκ2 , or if we need a larger alphabet, we can identify {0, 1}κ with Fκ/k
2k

. When we are using this

point of view we will write (f, trap)
R← Gen(Fκ2).

Hard-core Bits. We assume the reader is familiar with the notion of a hard-core bit of a oneway
permutation. Briefly, we say that a family of predicates H =

{
h : {0, 1}κ → {0, 1}

}
is hard-

core for the TDP family F if for random (f, trap)
R← Gen(1κ), h R← H, and x

R← {0, 1}κ, h(x) is
hard to predict given f(x). A hardcore big can be extended to output a vector in a natural way:
h(x) = h(x)◦h

(
f(x)

)
◦· · ·◦h

(
fk−1(x)

)
, which is indistinguishable from random, given fk(x). When

we identify the domain {0, 1}κ of f with a κ−dimensional vector space over F2, we will likewise
identify the output of h(·) with an F2−vector of the same dimension.

Oblivious Transfer. Oblivious Transfer (OT) is a two-party functionality FOT, in which a sender
S holds a pair of strings (s0, s1), and a receiver R holds an a bit b, and wants to obtain the string
sb. The security requirement for the FOT functionality is that any malicious receiver does not
learn anything about the string s1−b and any malicious sender does not learn which string has been
transfered. This security requirement is formalized via the ideal/real world paradigm. In the ideal
world, the functionality is implemented by a trusted party that takes the inputs from S and R and
provides the output to R and is therefore secure by definition. A real world protocol Π securely
realizes the ideal FOT functionalities, if the following two conditions hold. (a) Security against a
malicious receiver. The output of any malicious receiver R∗ running one execution of Π with an
honest sender S can be simulated by a PPT simulator Sim that has only access to the ideal world
functionality FOT and oracle access to R∗. (b) Security against a malicious sender. The joint
view of output of any malicious sender S∗ running one execution of Π with R and the output of
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R can be simulated by a PPT simulator Sim that has only access to the ideal world functionality
functionality FOT and oracle access to S∗. In this case the output of the malicious S∗ is combined
with the output of R in the ideal world.

We also consider a weaker definition of FOT that is called one-sided simulatable FOT, in which
we do not demand the existence of a simulator against a malicious sender, but we only require that
a malicious sender cannot distinguish whether the honest receiver is playing with bit 0 or 1. A bit
more formally, we require that for any PPT malicious sender S∗ the view obtained from executing
Π when the receiver R plays with bit 0 is computationally indistinguishable from the view obtained
when R is playing with bit 1. The formal definitions of FOT and one-sided secure FOT are provided
in Definition . A.2 and Definition A.1 respectively.

Finally, we consider the FmOT functionality where the sender S and the receiver R runs m execu-
tion of OT in parallel.

Secure Two-Party Computation. Let F(x1, x2) be a two-party functionality run between par-
ties P1 holding input x1 and P2 holding input x2. In the ideal world, Pi (with i ∈ {1, 2}) sends its
input xi to the f and obtains only y = F(x1, x2). We say that a protocol Π securely realizes F(·, ·)
if the view of any malicious P ∗i executing Π with an honest Pj with i 6= j combined with the output
of Pj (if any) can be simulated by a PPT simulator that has only access to F and has oracle access
to P ∗i .

Shamir Secret Sharing Scheme. A t-out-of-n secret sharing scheme gives a way to break a
secret into shares in such a way so that any set of shares either reveals nothing about the secret, if
the set has size less than t, or allows one to reconstruct the entire secret, if the set has size at least t.
Shamir secret sharing [Sha79] constructs such a scheme using polynomials. Fix a prime q > n. To
share a secret field element α ∈ Zq, the function Share chooses a random polynomial f(x) ∈ Zq[x]
of degree at most t − 1 and defines the vector [α] =

(
[α]1, . . . , [αn]

)
∈ Znq , by setting [α]i = f(i).

That this is a t−out−of−n secret sharing scheme follows from basic properties of polynomials. To
reconstruct a secret, the fuction Recon takes in input a set of t+ 1 valid shares and uses Lagrange
interpolation to compute the unique t-degree polynomial f defined by such shares and output the
free coefficient of f .

We briefly comment on another property of this scheme that we will use in our protocol. The
map which sends a degree t− 1 polynomial to its vector of shares is linear over Zq. It follows that
the set of vectors in Znq which are valid sharings is a t−plane in Znq , or equivalently, that there exists
a linear map ψ : Znq → Zn−tq such that ψ(v) = 0 iff v is a valid sharing.

Extractable Commitments. A commitment scheme scheme is a two-party functionality run
between a sender with input a secret message m and a committer that has no input, and consists of
two phase: commitment and decommitment phase. In the commitment phase the sender commits
to its message m. A commitment scheme is hiding if any PPT malicious receiver cannot distinguish
the secret message m in this phase. In the decommitment phase the message reveals m and the
randomness used to compute the commitment. This phase is statistically binding if any malicious
sender cannot successfully open to any message m′ 6= m in this phase.

We say that a commitment scheme is extractable if if there exists an efficient extractor that
having black-box access to any malicious sender that successfully performs the commitment phase,
is able to efficiently extract the committed string. The formal definition is provided in Appendix A.2.
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In the paper we employ the extractable commitment provided in [MOSV06] and described in Fig. 2.
The commitment phase consists of 3 rounds, that we denote by (ExtCom1, ExtCom2, ExtCom3).
The decommitment phase is non-interactive.

3 Four-Round Black-box Oblivious Transfer

In this section we describe our 4-round black-box OT protocol ΠOT in details. We present it in two
steps. First we give an OT protocol that is simulatable against a malicious receiver and provides
only indistinguishability security against a malicious sender. We denote this protocol by ΠR

OT. We
then show how to use (black-box) extractable commitments and Shamir secret sharing, to compile
ΠR

OT into a protocol that is fully simulatable.

3.1 Four-round Black-box OT Secure Against Malicious Receivers

The building block for ΠR
OT is a protocol that allows the receiver to compute two string commitments,

C0, C1, such that one commitment is equivocal, and prove that at least one commitment is binding.
As a warm up for our construction we show how to implement such building block for the

simpler case where the receiver commits to two bits, and then he is able to equivocate one bit. The
soundness of the warm up protocol is 1/2. The idea is to have two executions of Kilian’s black-box
commit-and-prove protocol (outlined in Section 1.1), and combine the two proofs using the OR trick
of Σ-protocols. The details are shown in Protocol 1

Protocol 1. Compute one biding and one equivocal commitment.
Input to R: A bit b indicating which commitment should be equivocal.

1. R chooses two matrices M0 and M1 where each Ma =

(
xa0,0 xa0,1
xa1,0 xa1,1

)
∈ {0, 1}2×2 is random

such that:

• Matrix Mb: this matrix represent two different bits, therefore the xor of the first column
is 0, and the xor of the second column is 1. Namely, xb0,0 ⊕ xb1,0 = 0 and xb0,1 ⊕ xb1,1 = 1;

• Matrix M1−b: both columns are representing the same bit: x1−b
0,0 ⊕ x

1−b
1,0 = x1−b

0,1 ⊕ x
1−b
1,1 =

r1−b for r1−b ∈ {0, 1}.

R commits to all of the xaa′,a′′in both matrixes and sends to S values v0 and v1 computed as
follows:

• v1−b is honestly computed as the xor of the first row (as in Kilian’s protocol), namely,
v1−b = x1−b

0,0 ⊕ x
1−b
0,1 .

• vb is a random bit.

2. S sends R a random r′
R← {0, 1} and a challenge c ∈ {0, 1}.

3. R computes challenges (c0, c1) such that c0⊕ c1 = c and the challenge cb is pointing exactly to
the row of Mb the xor of which is vb. Namely, cb is such that vb = xbcb,0 ⊕ x

b
cb,1

. Note this is
always possible as xb0,0 ⊕ xb0,1 6= xb1,0 ⊕ xb1,1.

Next, R decommits to x0
c0,0

, x0
c0,1

from matrix M0 as well as x1
c1,0

, x1
c1,1

from matrix M1.

10



Finally, for each matrix, R decommits to one column. For M1−b, which is honestly computed,
R opens one column chosen at random (R will need to decommit one value of the column as
the other one was already opened to answer the challenge). For Mb, R will decommit to the
column rb such that rb ⊕ r′ = sb where sb is the bit that R wants to obtain out of the coin-
flipping of the bit in position b. Formally, R decommits to one of xbcb,0 and xbcb,1 at random
(using the shorthand b = 1 − b), completing a decommitment to the value s1−b = r1−b. R
decommits to xbcb,rb (completing a decommitment to sb = rb ⊕ r′). R also sends (c0, c1).

4. Verification: S checks that c0 ⊕ c1 = c and that xaca,0 ⊕ x
a
ca,1 = va for a ∈ {0, 1}. If not S

aborts.

5. Output: Both parties set output to (z0, z1) where za = sa ⊕ r′.

If R correctly follows the protocol then the output (z0, z1) satisfies zb = rb while z1−b is random.
Furthermore, if R, in an attempt to cheat, choosesM0 andM1 both such that xa0,0⊕xa1,0 6= xa1,0⊕xa1,1,
then S will abort whenever c 6= d0 ⊕ d1 (which happens with probability 1/2), where da ∈ {0, 1} is
such that va = xada,0⊕x

a
da,1

. This protocol can be seen as partial coin-flipping protocol that output
two coins and guarantee that at least one coin is fair.

The ability for R to completely control one but not both of the output bits in the above protocol
is essentially exactly what we need in order to compile the OT which is secure only against a semi-
honest R into one which is maliciously secure. The basic idea is to extend the above coin-flipping
to strings and enable R to obtain two strings z0, z1 ∈ {0, 1}κ such that zb = fk(x) for some value
x chosen by her. As mentioned, this forces z1−b to be random, and so R cannot know a preimage
without breaking the trapdoor permutation.

However, when extending the above warm-up protocol to a string via bit-wise commit-and-proofs
we must enforce that a malicious receiver cannot cheat by controlling some of the bits of both z0

and z1 and wind up knowing preimages of both values. We protect our protocol from such behavior
by letting A ∈ Z3κ×κ

q be a matrix with good error correcting properties (such as a Vandermonde
matrix) and working in the image of A.

This introduces some complications. Specifically it requires moving to a non-binary base field
as we need an error correcting code with (constant but) large distance. In our actual protocol we
use a variant of the unfair coin flipping described above, adapted to work over over Zq for some
prime power q = (κ). The major difference is that instead of committing to every entry in 2−by−2
matrices, R commits to every entry in 2−by−q matrices. For each matrix R proves that the sum of
the elements in each column is the same. In order to commit equivocally, R chooses the q columns
of the matrices corresponding to his bit b to have distinct sums. Namely, for every α ∈ Zq there
is exactly one column whose entries add to α. The final protocol ΠR

OT is formally described in
Protocol 2

Protocol 2 (ΠR
OT). Public Input: A prime q = O(κ), a Vandermonde matrix A ∈ Z3κ×κ

q and a
statistically binding commitment scheme Com.

Sender’s Input: s0, s1 ∈ Zκq . Receiver’s Input: b ∈ {0, 1}.

1.
(
R −→ S

)
: R chooses rb

R←− Zκq and sets r̂b = Arb ∈ Z3κ
q . R then chooses 6κ matrices
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{
(M0,i,M1,i)

}
i=1,...,3κ

where Ma,i =

(
xa,i0,0 xa,i0,1 · · · xa,i0,q−1

xa,i1,0 xa,i1,1 · · · xa,i1,q−1

)
∈ Z2×q

q is random such

that:

• xb,i0,0 + xb,i1,0 = · · · = xb,i0,q−1 + xb,i1,q−1 = [r̂b]i, ∀ i.

• xb,i0,0 + xb,i1,0 = σi(0), . . . , xb,i0,q−1 + xb,i1,q−1 = σi(q − 1) ∀ i, where the σi are random
permutations of Zq.

R commits to all of the xa,ia′,a′′ using Com. Let xa,i0 = (xa,i0,0, . . . , x
a,i
0,q−1) ∈ Zqq be the top row

vector of Ma,i. Similarly, let xa,i1 be the bottom row of Ma,i. Also let ψ : Zqq → Zq−1
q be the

linear map ψ : x = (x0, . . . , xq−1) 7→ (x1 − x0, . . . , xq−1 − x0). R sends vectors
{v0,i,v1,i}i=1,...,3κ where each va,i ∈ Zq−1

q is generated as follows:

• vb,i = ψ(xb,i0 );

• draw cb
R← {0, 1}3κ and set vb,i = ψ(xb,i0 ) if cb,i = 0, vb,i = −ψ(xb,i1 ) if cb,i = 1.

2.
(
S −→ R

)
: S chooses random c

R←− {0, 1}3κ, r′ R←− Zκq , and sends c and r′. Additionally, S

chooses a trapdoor permutation (f, f−1)
R←− Gen(Zκq ) and sends f to R.

3.
(
R −→ S

)
: R parses c into (c0, c1) such that c0 ⊕ c1 = c where cb is as in step 1. For both

a ∈ {0, 1}, R decommits to every coordinate of xa,ica,i as well as to one coordinate, [xa,ica,i ]j, of

xa,ica,i. When a = b, this coordinate j is chosen randomly, completing a decommitment to r̂b

(defined in step 1). When a = b, R draws a random y
R←− Zκq and sets

r̂b = A
(
fκ(y)− r′

)
∈ Z3κ

q . Finally, R decommits to xb,icb,i,j ∀ i, where j is such that

[r̂b]i = xb,i0,j + xb,i1,j. Note that R has decommitted to (r̂0, r̂1).

4.
(
S −→ R

)
: For all (a, i), S has received decommitments to all of the coordinates of exactly one

of xa,i0 and xa,i1 . S checks either that vi,a = ψ(xa,i0 ) or that va,i + ψ(xa,i1 ) = 0. If any of these
checks fails, S aborts. Otherwise, S computes vectors (z0, z1) where za ∈ Zκq is the unique
vector such that Aza = r̂a + Ar′ (such a value exists by linearity). If no such za exists for
some a then S aborts. S sends (w0,w1) to R where wa = sa − h

(
f−κ(za)

)
.

Output: R outputs sb = wb + h(y).

3.2 Four-round Fully Simulatable Oblivious Transfer from ΠR
OT

We transform the one-sided simulatable ΠR
OT into an OT which is simulatable for both the sender

and the receiver using the following ingredients. We use a (κ+ 1, 2κ)-secure Shamir Secret sharing
scheme. Let A ∈ Z2κ×κ

q be the Vandermonde matrix and let φ be a linear map such that φ(A) = 0.
First, the sender picks two random keys x0, x1, and computes their correspondent vectors of 2κ

shares v0,v1 according to Shamir secret sharing. Then, the sender commits to each coordinate of
vectors v0,v1 and proves that they are valid shares, in a black-box way. We build this proof using
the observation that v is a valid vector of shares for a (κ + 1, 2κ)-secure Shamir secret sharing, iff
φ(v) = 0, and that for any pair of vectors a,b it holds that if a+b = v then also φ(a) + φ(b) = 0.
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Thus, to prove that a vector v is a vector of valid shares, the sender will commit to κ pairs of
vectors aj ,bj such that v = aj +bj , and prove that there exists at least a j such that the predicate
φ(a) +φ(b) = 0 holds. This proof is easily implemented by having the sender commit to aj ,bj and
zj = φ(aj) and having the receiver ask to either open aj and check that zj = φ(aj), or to open bj
and check that φ(bj) + zj = 0. Note that this proof only guarantees that there exists at least one
j for which the condition φ(a) + φ(b) = 0 is true. Summing up, S will commit to vectors a0,jb0,j

and a1,jb1,j (for shares v0,v1) with an extractable commitment scheme, and run a proof of validity
for each such pair. In the last round S will send the encryptions x0 + s0, x1 + s1 of his actual secret
inputs. Now we need a way for R to retrieve the decommitments of the shares for the secret he
is interested in, without the server knowing which decommitments are revealed. We accomplish
this by using the OT protocol ΠR

OT implemented above. Therefore, in parallel to such extractable
commitments and proofs, the sender and the receiver will engage in 2κ parallel executions of ΠR

OT:
in the i-th OT execution S plays with inputs the opening of the i-th coordinate of (a0,j ,b0,j) and
(a1,j ,b1,j) for all j, and R plays with bit bi. Note that, opening to the i-th coordinate of all j
vectors allows the receiver to check that all j vectors agree on the same coordinate [vbi ]i. This
check, together with the proof of consistency provided above, will guarantee that most of the shares
received via OT (and extracted by the simulator via the extractable commitments) are valid.

Before attempting to reconstruct the secret, R will test the consistency of κ/2 coordinates for
vector v0 and v1 by playing with bit 0 and 1 accordingly, in the correspondent OTs, while he plays
with the his secret bit b for the remaining κ executions. R will attempt to reconstruct the vector
vb only if the consistency test passes. We provide a formal description of such steps in Protocol 3.

Protocol 3. (ΠOT) Sub-protocols. Let ΠR
OT = {OTmsg1, OTmsg2, OTmsg3, OTmsg4} denote the

4 messages exchanged in protocol ΠR
OT (Prot. 2). Let OTmsg[i] denote the i-th parallel execution of

ΠR
OT. Let ExtCom = (ExtCom1, ExtCom2, ExtCom3) be a 3-round statistically binding extractable

commitment scheme with non-interactive decommitment ExtDec. Let Share,Recon be a (κ+ 1)-out-
of-2κ Shamir secret sharing scheme over Zp, together with a linear map ψ : Z2κ

p → Zκ−1
p such that

ψ(v) = 0 iff v is a valid sharing of some secret.
Public Input: A prime p and ` = blog qc st 2`/p = 1−negl(κ), a Vandermonde matrix A ∈ Z2κ×κ

p ,
linear map φ.

Sender’s Input: s0, s1 ∈ Zp. Receiver’s Input: b ∈ {0, 1}.

1.
(
R −→ S

)
: R randomly chooses a set T1−b ∈ [2κ] of κ/2 coordinates. R plays the i-th

execution of ΠR
OT with input bi = (1− b). For the remaining i /∈ T1−b set bi = b R sends

(OTmsg1[1], . . . ,OTmsg1[2κ]) to S, where OTmsg1[i] is computed on input bi.

2.
(
S −→ R

)
: Upon receiving a correct first message, S proceeds as follows.

• Pick random strings x0, x1 ∈ Zp and secret share each string: Compute shares
vb = ([vb]1, . . . , [vb]2κ)← Share(xb) for b ∈ {0, 1}.
• To commit to shares v0,v1 and prove that they are valid shares of a κ-degree
polynomial S proceeds as follows.
– For j = 1, . . . , κ, pick random a0,j ,b0,j ∈ Z2κ

p such that a0,j + b0,j = v0 and
compute z0,j = φ(a0,j) for all j. Resp., compute a1,j ,b1,j = v1

– Commit to each coordinate of ab,j and bb,j using ExtCom, namely send
acomb,j,i = ExtCom1([ab,j ]i)), bcomb,j,i = ExtCom1([bb,j ]i).
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S sends to R the messages (OTmsg2[1], . . . ,OTmsg2[2κ]),
{ExtCom1([ab,j ]i), {ExtCom1([bb,j ]i)}i∈2κ, and zb,j for b = 0, 1 and j ∈ [κ].

3.
(
R −→ S

)
: R sends (OTmsg3[1], . . . ,OTmsg3[2κ]), the second message ExtCom2 for the

extractable commitment, and a random challenge c1, . . . , cκ ∈ {0, 1}κ.

4.
(
S −→ R

)
: S computes OT message OTmsg4[i] using as inputs the i-th coordinate of all j

vectors committed before. Specifically, in the i-th OT it uses decommitment to values
(a[0,j ]i, [b0,j ]i) ∀j; (a[1,j ]i, b1,j ]i) ∀j.
Additionally, for each j, S reveals vector a0,j ,a1,j if cj = 0; or vectors b0,j ,b1,j if cj = 1;
and the messages for the third round of the extractable commitments, namely
{ExtCom3([ab,j ]i), {ExtCom3([bb,j ]i)}i∈2κ,j∈κ.

Finally, S sends C0 = s0 ⊕ x0 and C1 = s1 ⊕ x1.

Verification and Output: If the extractable commitments are all successfully completed,
proceeds as follows.

• Check Validity of Shares. For j = 1, . . . , κ, if cj = 0 check that z0,j = φ(a0,j) and
z1,j = φ(a1,j). Else, if cj = 1 check that φ(b0,j) + z0,j = 0 and φ(b1,j) + z0,j = 1.

• Test Phase. R randomly chooses a set Tb of κ/2 coordinates in {[2κ]/T1−b}. For each
i ∈ Tσ, with σ ∈ {0, 1}; let [aσ,j ]i, [bσ,j ]i be the coordinates obtained from the i-th OT. R
checkes that, for all j, there exists a unique [vσ]i such that [aσ,j ]i + [bσ,j ]i = [vσ]i. If so, [vσ]i
is then marked as consistent. If all shares obtained in this phase are consistent, R proceeds
to the reconstruction phase. Else abort.

• Reconstruction Phase. For i ∈ {[2κ]/T1−b}, if there exists a unique [vb]i such that
[ab,j ]i + [bb,j ]i = [vb]i, mark share [vb]i as consistent. If R obtains less than κ+ 1 consistent
shares, he aborts. Else, let [vb]j1 , . . . , [vb]jκ+1 be any set of κ+ 1 consistent shares. R
computes xb ← Recon([vb]j1 , . . . , [vb]jκ+1) and outputs sb = Cb ⊕ xb.

3.3 Proof of security

In this section we provide the intuition behind the security of our constructions. The reader is
referred to the full version for the complete proof.

3.3.1 Security of ΠR
OT

We start by proving that ΠR
OT is one-sided simulatable.

Indistinguishability against a malicious Sender. It follows from the hiding of the commit-
ment scheme used by R to commit to the secret vectors r0, r1. Indeed, the only difference between
the transcript of a completed execution of ΠR

OT when R uses input bit b = 0 and when R uses bit
1 is in the matrices that are computed equivocally. In turn, the equivocal matrix differs from a
binding matrix in that the sum of the rows of an equivocal Mi,b leads to the vector of all permuted
values in Zq while in a binding matrix the sum of the row of the i-th matrix corresponds to the
vector r̂bi .
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Simulatability against a malicious Receiver. For the case of a malicious receiver, we build
a simulator who rewinds S and extracts R’s input bit from the coin-flipping protocol. Note that
when R’s input bit is b, R commits equivocally to the matrices Mb,i, and therefore cannot commit
equivocally to theMb,i. It follows that when R is rewound and asked a new query, his decommitment
from the b matrices will be the same. In this way, our simulator can figure out R’s input bit. It
remains to show that a malicious R cannot gain some advantage by committing equivocally to some
of the M0,i and some of the M1,i. This follows from the error-correction property guaranteed by
the choice of the matrix A. A more detailed proof is provided in the full version.

3.3.2 Security of ΠOT

We now sketch the main ideas behind the security of ΠOT. Correctness follows from the correctness
of the underlying ΠR

OT protocol, the correctness of the statistically binding commitment scheme and
the Shamir secret sharing scheme: the receiver will be able to retrieve more than κ+ 1 shares and
reconstruct the key xb that allows to decrypt sb. We now analyze the security of the protocol in
case either of the parties is corrupted.

Simulatability against malicious receiver. We show a PPT simulator that simulates the
attack of the receiver in the ideal world as follows. Sim computes the messages of protocol ΠOT

honestly till the third round, by committing to randomly selected x0, x1. In parallel, Sim extracts
the bits played by R∗ in protocol ΠR

OT by running the simulator SimOT
R guaranteed by the one-sided

simulatability property of ΠR
OT. SimOT

R outputs the bits b1, . . . , b2κ which are the selections made
by R∗ in the first 3 rounds of protocol ΠR

OT. (Note that in ΠR
OT the server commits to its input

only in the fourth round, when the selection has already beed committed. However, this will not
be a problem because in ΠOT the sender is still using its secret input only in the last round). If
there are more than κ + 1 bits pointing to the same bit b then Sim sends this bit to FOT and
receives the string sb. Otherwise it will just send a random bit and continue the simulation of the
protocol with random values. In the last round the simulator uses SimOT

R to complete the OT using
in input the shares that were dictated by the bits b1, . . . , b2κ and it obtains messages OTmsg4[i]
for i ∈ [2κ]. Finally, Sim completes the protocol by honestly computing message CPmsg3, but it
prepares cb = xb ⊕ sb, c1−b = r, where r is a randomly chosen string.

The indistinguishability of the simulation follows from the simulatability of the underlying OT,
the security of Shamir secret sharing and the hiding of the underlying commitment scheme. We
stress that in the proof we need to argue about the hiding of the unopened shares. Namely, we
require to prove that the protocol satisfies a form of hiding in presence of selective opening attack.
This is not a problem as our protocol is interactive and the positions that the receiver is choosing
to open are fixed in advance before observing any commitment. This property allows us to prove
indistinguishability by relying on standard hiding definition.

Simulatability against malicious sender. We show a simulator that, having oracle access to
the malicious sender S∗, extracts both inputs s0, s1. Sim runs as receiver in the ΠOT protocol by
choosing sets T0 and T1, and playing with a random bit in the remaining OT executions. Then,
if the Test phase passes, Sim rewinds S∗ to extract the vectors (a0,j ,b0,j) and (a01,j ,b1,j) from the
extractable commitments. Due to the indistinguishability property of the underlying ΠR

OT we have
that any malicious sender cannot detect on which coordinates he will be tested. Therefore, if the test
phase passes, then it holds that, for each bit, at least κ/2 + 1 of the remaining OT were computed
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correctly for that bit. Due to the binding of the commitment scheme, to the correctness of Shamir’s
secret sharing, and the correctness of the proof of consistency of the shares, the values reconstructed
from the shares extracted by the simulator in the extractable commitments correspond to the unique
value that a honest receiver would have obtained from the shares retrieved via ΠR

OT.

3.4 Parallel OT

Protocol ΠOT can be used as a building block for constructing a protocol implementing the FmOT

functionality. The idea is to have the Sender S and the receiver R compute m executions of ΠOT in
parallel, and accepting a round of communication if and only if all the m executions are computed
correctly.

3.5 Round-optimal Secure Two-Party Computation

The non-interactive secure two-party protocol proposed in [IKO+11] it is based on Yao [Yao86]
garbled circuits and works in the OT-hybrid model. The main contribution of [IKO+11] is to show
an (asymptotically) more efficient black-box cut-and-choose for proving that a garbled circuit is
computed correctly. The cut-and-choose is non-interactive in the OT-hybrid model. We can cast
their construction to the simpler setting of stand-alone two-party computation and replace the ideal
calls to the OT with our parallel OT Πm

OT.
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A Definitions

In this section we provide the formal definitions of the cryptographic primitive implemented or used
in the main body.

A.1 Oblivious Transfer

The Oblivious Transfer functionality is provided in Fig. 1

Functionality FOT

FOT running with an oblivious sender S a receiver R and an adversary Sim proceeds as follows:

• Upon receiving a message (send, s0, s1, S,R) from S where each s0, s1 ∈ {0, 1}κ, record the
tuple (s0, s1) and send (send) to R and Sim. Ignore any subsequent send messages.

• Upon receiving a message (receive, b) from R, where b ∈ {0, 1} send ( sb) to R and (received)
to S and Sim and halt. (If no (send,·) message was previously sent, do nothing).

Figure 1: The Oblivious Transfer Functionality FOT.

Definition A.1. Let FOT be the Oblivious Transfer functionality as shown in Fig. 1. We say that
a protocol π securely computes FOT with one-sided simulation if the following holds:

1. For every non-uniform PPT adversary R∗ controlling the receiver in the real model, there
exists a non-uniform ppt adversary Sim for the ideal model such that

REALπ,R∗(z)(s0, s1, b) ≈ IDEALFOT,Sim
R∗(z)(s0, s1, b)

where REALπ,R∗(z)(s0, s1, b) denotes the distribution of the output of the adversary R∗ (con-
trolling the receiver) after a real execution of protocol π, where the sender S has inputs s0, s1,
and the receiver has input b, IDEALFOT,Sim

R∗(z)(s0, s1) denotes the analogous distribution in an
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ideal execution with a trusted party that computes FOT for the parties and hands the output to
the receiver.

2. For every non-uniform PPT adversary S∗ controlling the sender it holds that:

{viewR
π,S∗(z)(s0, s1, 0)}z∈{0,1}∗ ≈ {viewR

π,S∗(z)(s0, s1, 1)}z∈{0,1}∗}

where viewR
π,S∗(z) denotes the view of adversary S∗ after a real execution of protocol π with the

honest receiver R.

Definition A.2. Let FOT be the Oblivious Transfer functionality as shown in Fig. 1. A protocol
π securely computes FOT with fully simulatability if π is one-sided simulatable and additionally
for every non-uniform PPT adversary S∗ controlling the sender in the real model, there exists a
non-uniform ppt adversary Sim for the ideal model such that

REALπ,S∗(z)(s0, s1, b) ≈ IDEALFOT,Sim
S∗(z)(s0, s1, b)

where REALπ,S∗(z)(s0, s1, b) denotes the distribution of the output of the adversary S∗ (controlling
the sender) and the output of the honest receiver, after a real execution of protocol π, where the
sender S has with inputs s0, s1, and the receiver has input b. IDEALFOT,Sim

S∗(Z)(s0, s1, b) denotes
the analogous distribution but in an ideal execution with a trusted party that computes FOT for the
parties and hands the output to the honest receiver.

Definition A.3 (Parallel Oblivious Transfer functionalitym× OT). The parallel Oblivious Transfer
functionality FmOT is a functionality that takes in inputm pairs of string from S (s0,1, s1,1, . . . , s0,m, s1,m)
and m bits from R, b1, . . . , bm and outputs to the receiver values (sb1,1, . . . , sbm,m) while the sender
receives nothing.

A.2 Extractable commitment schemes

Informally, a commitment scheme is said to be extractable if there exists an efficient extractor
that having black-box access to any efficient malicious sender S∗ that successfully performs the
commitment phase, is able to efficiently extract the committed string. We first recall the formal
definition from [PW09] in the following.

Definition A.4 (Extractable Commitment Scheme). A commitment scheme ExtCom = (S,R)
is an extractable commitment scheme if given an oracle access to any PPT malicious sender S∗,
committing to a string, there exists an expected PPT extractor E that outputs a pair (τ, σ∗), where
τ is the transcript of the commitment phase, and σ∗ is the value extracted, such that the following
properties hold:

• Simulatability: the simulated view τ is identically distributed to the view of S∗ (when inter-
acting with an honest R) in the commitment phase.

• Extractability: the probability that τ is accepting and σ∗ correspond to ⊥ is negligible.
Moreover the probability that S∗ opens τ to a value different than σ∗ is negligible.

Let SB = (com, rec) a statistically binding commitment scheme with non-interactive commit-
ment and decommiment phase, which uses one-way-permutation in a black-box manner. One can
construct an extractable commitment scheme ExtCom = (S,R) as shown in Fig. 2.
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Extractable Commitment

Commitment Phase:

1. (Commitment: ExtCom1 ) S on input a message σ, generates k random strings {r0
i }i∈[k]

of the same length as σ, and computes {r1
i = σ ⊕ r0

i }i∈[k], therefore {σ = r0
i ⊕ r1

i }i∈[k].
Then S uses SB to commit to the k pairs {(r0

i , r
1
i )}i∈[k]. That is, S and R produce

{c0
i =

〈
com(r0

i , ω
0
i ), rec

〉
, c1
i =

〈
com(r1

i , ω
1
i ), rec

〉
}i∈[k].

2. (Challenge: ExtCom2) R sends a random k-bit challenge string r′ = (r′1, . . . , r
′
k).

3. (Response: ExtCom3) S decommits {cr
′
i
i }i∈[k] (i.e., non-interactively opens k of previous

commitments, one per pair) R verifies that commitments have been opened correctly.

Decommitment Phase:

1. S sends σ and non-interactively decommits the other k commitments {cr̄
′
i
i }i∈[k], where

r̄′i = 1− r′i.
2. R checks that all k pairs of random strings {r0

i , r
1
i }i∈[k] satisfy {σ = r0

i ⊕ r1
i }i∈[k]. If so,

R takes the value committed to be σ and ⊥ otherwise.

Figure 2: Extractable Commitment.

B Proofs of Security

B.1 One-Sided Simulatable OT

In this section we give a formal proof that ΠR
OT (described in Prot. 2) is secure.

Theorem B.1 (One-side simulatability of ΠR
OT). If Com is a statistically binding commitment and

f is a TDP, then protocol ΠR
OT securely realized FOT with one-sided simulatability.

Correctness. If both parties play honestly, then R commits equivocally to all of the matrices
Mb,i corresponding to his input bit b. In this manner, he is able to control the outcome of the
“unfair” coin-flipping to be a vector for which he knows a preimage under f . This allows him to
successfully recover sb.

Indistinguishability Security Against Malicious Sender. It is easy to see that S’s view
during ΠR

OT leaks no information about R’s input bit b. Indeed, R’s decommitments (r̂0, r̂1) in step
3 are both random independent of b. The only dependency on b from S’s point of view is that
the matrices {Mb,i}i will have columns which sum to the same value while the {Mb,i}i will not.
Therefore, the hiding of Com ensures that S cannot distinguish these cases.

Simulateable Security Against Malicious Receiver. We construct an expected PPT ideal
world adversary who is able to simulate R’s view (up to computational indistinguishability) while
interacting only with R and the ideal functionality FOT. Our simulator SimΠR

OT
works as follows:
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1. Upon receiving R’s first message, SimΠR
OT

chooses a TDP (f, f−1)
R←− Gen(Zκq ), and sets a

counter variable count = 1.

2. If count = 3, SimΠR
OT

goes to step 4. Otherwise, it chooses random c
R←− {0, 1}3κ and r′

R←− Zκq ,
and sends (c, r′, f) to R.

3. SimΠR
OT

receives R’s third message. If the message is illegal and would cause S to abort, SimΠR
OT

returns to step 2. Otherwise SimΠR
OT

increments count, saves the values (r̂0, r̂1) and returns
to step 2. If count = 2, SimΠR

OT
saves the transcript so far as it will be part of the eventual

output.

4. At this point, SimΠR
OT

has collected two pairs of valid decommitments (the values (r̂0, r̂1)

when count = 1, 2). Denote these decommitments (d0,d1) and (e0, e1) (recall that we have
d0,d1, e0, e1 ∈ Z3κ

q ).

• If there does not exist a ∈ {0, 1} such that da = ea, SimΠR
OT

aborts and outputs the
transcript as is.

• If da = ea for both a ∈ {0, 1}, SimΠR
OT

chooses random w0,w1
R←− Zκq and outputs the

transcript so far with the final message (w0,w1).

• Otherwise, let b ∈ {0, 1} be the unique bit such that db 6= eb. SimΠR
OT

sends b to the
ideal functionality FOT and receives sb. Then SimΠR

OT
sets wb = sb − h

(
f−κ(zb)

)
where

zb ∈ Zκq is such that Azb = db + Ar′. SimΠR
OT

chooses wb
R←− Zκq randomly and outputs

the transcript so far with final message (w0,w1).

Note that SimΠR
OT

runs in expected polynomial time since we may assume that R completes the
protocol with non-negligible probability.

Lemma B.2. Any PPT algorithm R which can, with non-negligible probability, distinguish R’s view
in the real world from the output of SimΠR

OT
breaks the security of f as a trapdoor permutation.

Before proving Lemma B.2 we introduce some convenient notation.

Definition 2. Let ψ : Zqq −→ Zq−1
q be the linear map

ψ : x = (x0, . . . , xq−1) 7→ (x1 − x0, . . . , xq−1 − x0)

defined in ΠR
OT. During an execution of ΠR

OT, we say that R has committed equivocally to Ma,i if
the rows of Ma,i, xa,i0 , xa,i1 ∈ Zqq are such that ψ(xa,i0 ) + ψ(xa,i1 ) 6= 0.

Note the above definition is well defined after the first message of ΠR
OT whp as Com is statistically

binding.

Claim 1. Fix a first message of an execution of ΠR
OT and let

` = #{i : R commits equivocally to M0,i and M1,i}.

Then Pr
(
ΠR

OT completes successfully
)
≤ 2−`.
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Proof. Suppose during the first round of ΠR
OT that R commits equivocally to both M0,i and M1,i.

Write M0 and M1, surpressing i for convenience. For a = 0, 1, let xa0 (resp. xa1) be the top (resp.
bottom) row of Ma. Since R has commit equivocally to both Ma, no matter what vector, va, R
sent in the first round we will have that either ψ(xa0) 6= va or ψ(xa1) 6= −va. Now, let c ∈ {0, 1}
be the i−th bit of S’s challenge string sent in the second round of ΠR

OT, and suppose R parses c
into (c0, c1) such that c0 ⊕ c1 = c. In the first case, when ψ(xa0) 6= va, S will abort unless ca = 1.
Likewise, when ψ(xa1) 6= −va, S aborts unless ca = 0. It follows that when R commits equivocally
to M0 and M1 there exist values c∗0, c∗1 ∈ {0, 1} such that S aborts unless c0 = c∗0 and c1 = c∗1.
Therefore, when c 6= c∗0⊕ c∗1, R will not be able to keep S from aborting. Since c 6= c∗0⊕ c∗1 holds for
each coordinate, independently with probability 1/2, we see that if R commits equivocally to both
M0,i and M1,i for ` values of i, then S aborts except with probability at most 2−`.

Claim 2. Fix a first message of an execution of ΠR
OT. Suppose that there exists an a ∈ {0, 1} and

r̂ ∈ Im(A) ⊂ Z3κ
q such that

Pr
(
R decommits to (r̂0, r̂1) st r̂a = r̂

)
≥ ε,

for non-negligible value ε. Define a random variable u on Zκq as follows: draw a random r′ ∈ Zκq ,
set z ∈ Zκq to be the unique vector such that Az = r̂ + Ar′, set u = h

(
f−κ(z)

)
∈ Zκq . Then any PPT

algorithm R who can distinguish (z, u) from random, can break the security of the hardcore predicate
h.

Proof. The security of h says that no PPT algorithm can distinguish the pair (x,y) when x and y
are both random, from when x is random and y = h

(
f−κ(x)

)
. Now consider the pair (z,u), created

as in the statement of Claim 2. We have that u = h
(
f−κ(z)

)
so the claim follows immediately as

Az = r̂ + Ar′, where r′ ∈ Zκq is random. Indeed, Az is random in Im(A), or equivalently z is
random in Zκq .

Proof of Lemma B.2. Let R be a PPT algorithm which distinguishes between the output of SimΠR
OT

and a malicious R’s view during an execution of ΠR
OT with non-negligible advantage p = p(κ). Let

d0,d1, e0, e1 ∈ Z3κ
q be the decommitments SimΠR

OT
receives. Note that da 6= ea for all a = 0, 1

cannot happen except with negligible probability. If d0 and e0 are distinct vectors in Im(A) then
they disagree on at least a 2/3−fraction of their coordinates since the Reed-Solomon error-correcting
code with generator matrix A has distance greater than 2/3. This means that R has committed
equivocally to at least 2κ of the M0,i. Similarly, R has committed equivocally to at least 2κ of the
M1,i. This means that R has committed equivocally to both M0,i and M1,i to at least κ values of
i. By Claim 1, the probability of S not aborting in this case is at most 2−κ.

It must be that da = ea for some a ∈ {0, 1}. But by Claim 2, if da = ea then no PPT algorithm
can distinguish h

(
f−κ(za)

)
from a random wa ∈ Zκq , where za ∈ Zκq is the unique vector such that

Aza = da + Ar′. However, this is the only difference between SimΠR
OT
’s output and the malicious

R’s view in the real world. Therefore, they are indistinguishable and ΠR
OT is secure.

B.2 Fully Simulatable OT

In this section we provide the formal proofs of security for protocol ΠOT. We prove the following
theorem.
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Theorem B.3. If ΠR
OT is a one-sided simulatable OT against a malicious receiver, ExtCom is an ex-

tractable commitment scheme, then Protocol 3 is a fully-simulatable OT (i.e., as per Definition A.2).

B.2.1 Correctness.

We start with showing that if S and R are both honest, then R will receive the desired string sb
with probabiblity 1. Due to the correctness of ΠR

OT, R will obtain κ+ κ/2 shares for bit b and κ/2
shares for the bit 1 − b. Due to the correctness of Shamir’s secret sharing, R will be able to use
such shares to reconstruct a unique κ-degree polynomial from which R can compute xb. Due to the
correctness of the extractable commitment scheme, the test phase will pass with probability 1 and
R will not abort in the fourth round.

B.2.2 Security against a malicious Sender.

We show a PPT simulator that simulates that attack of any malicious sender S∗ having only oracle
access to S∗ and access to FOT.

Overview of the Simulation. The high-level strategy of the simulator is very simple. Sim plays
as an honest receiver but using a random bit σ. Then, if it obtains an accepting transcript such
that also the test phase passes, it proceeds with the extraction of the committed vectors a0,j , b0,j ,
a1,j , b1,j , using the extractability property of the extractable commitments. If Sim finds at least
κ + 1 consistent coordinates on which all vectors agree, then reconstructs x0, x1 and hence s0, s1,
otherwise it halts and outputs FAIL.

Informally, for the proof of indistinguishability to go through, we need to argue that: (1) the
probability that the test phase passes, is independent of the bit played in the underlying ΠR

OT and
that (2) if the test phase passes then the values that Sim obtains through the extraction of the
commitments are the same that receiver would have obtained via the oblivious transfer.

The first argument follows from the indistinguishability of the underlying ΠR
OT: If the probability

of aborting the test phase is related to the bits played in the 2κ executions of ΠR
OT, then we can argue

that the sender is actually distinguishing the bit played by the receiver in ΠR
OT. In this argument

we want to show not only that the test phase passes independently of the bit used but also that, if
the test phase passes, then the most of remaining OTs are good for both bit 0 and bit 1.

The second argument instead follows from the two tests that the receiver performs over the
vectors a0,j , b0,j , a1,j , b1,j committed by the sender. The first test, called check validity of
shares, guarantees that among the κ vectors committed via extractable commitment, there exists
at least one index j such that the vector ab,j + bb,j , is a vector of valid shares of a κ-degree
polynomial. In the second test, called Test Phase, we check that all the j vectors committed
before are consistent, in “most” of the coordinates. This is achieved by having the receiver check
that, for a coordinate i, all

for all vectors, ab,j ,bb,j and we want to check that for a given coordinate i, there exists a unique
value [vb]i such that [ab,j ]i + [ab,j ]i = [vb]i

The two checks combined guarantee that the consistent shares belong to a vector of valid shares
of a unique κ-degree polynomial,

Formal Description of the Simulator. We now describe the procedure of the simulator Sim.
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Round 1.
(
R −→ S

)
: Sim picks a random bit σ and plays the first message as an honest receiver

with input σ. Sim computes (OTmsg1[1], . . . , OTmsg1[2κ]) as honest receiver and send them
to S.

Round 3.
(
R −→ S

)
: Upon receiving messages acomb,j,i = ExtCom1([ab,j ]i)), bcomb,j,i =

ExtCom1([bb,j ]i); zb,j for b = 0, 1 and j ∈ [κ] and (OTmsg2[1], . . . , OTmsg2[2κ]). If S’s mes-
sage is not well formed Sim aborts. Otherwise, send (OTmsg3[1], . . . ,OTmsg3[2κ]), the second
message ExtCom2 for the extractable commitment, and a random string c1, . . . , cκ ∈ {0, 1}κ
as an honest receiver.

4. Verification and output Upon receiving

• the third round of the extractable commitments
{ExtCom3([ab,j ]i), {ExtCom3([bb,j ]i)}i∈2κ.

• proof of validity: a0,j ,a1,j if cj = 0; or vectors b0,j ,b1,j if cj = 1;

• OT messages:OTmsg4[i];

• ciphertexts C0, C1.

Sim performs all checks as the honest receiver. If the checks fail then send the pair (⊥,⊥)
to FOT and outputs the view of S∗. Else, Sim prooceds with the extraction of the vectors
committed, by rewinding S∗ and changing only the random strings used as challenge in the
extractable commitment scheme (i.e., message ExtCom2). From the extraction Sim obtains
vectors a0,j ,b0,j ,a1,j ,b1,j for all j. For each coordinate i, Sim computes [a0,j ]i + [b0,j ]i (resp.
[a1,j ]i + [b1,j ]i) and if they all agree on the same value [v0]i (resp. [v1]i), mark this coordinate
consistent.

If Sim obtains at least κ+ 1 consistent coordintes for v0 and v1, computes the secrets x0, x1

and sends the pair (C0 ⊕ x0), (C1 ⊕ x1) to FOT.

Otherwise it outputs FAIL.

Indistinguishability of the Simulation. The main differences between the strategy of the
honest receiver and the simulator are the following:

1. The honest receiver, playing with bit b, obtains the string sb by reconstructing the secret
key xb from the shares obtained through the OT. In contrast, the simulator uses the shares
that he extracts through the extractable commitments. Due to the statistically binding of the
commitments, the string obtained by the receiver would be the same as the string obtained
by Sim.

2. If the test phase passes the simulator extracts both strings x0, x1 via the extractable com-
mitments and plays the pair s0, s1 so extracted in the ideal functionality. Here we need to
argue that, if the Test Phase passes, then the most of the OT ΠR

OT are good for both bits 0
and 1.

Observe that, when the receiver is playing with bit b, if the Test Phase passes, then it trivially
follows that the string xb reconstructed from the κ + 1 shares obtained through the OT κ + κ/2
shares is the same as the string obtained by Sim via the extractable commitments. This follows
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from the fact that the receiver is choosing the test set T0 among κ+κ/2 possible coordinates. Thus,
even if a malicious S∗ distinguishes the coordinates for which R is asking the bit 0 (thus breaking
the OT), it cannot guess which coordinates will be used for the test phase. Hence, the only way to
pass the test phase is to provide consistent decommitment values in most of the OTs.

The problem instead comes when arguing about the string extracted for the other bit, i.e., the
bit that is not played in the OT. We want to argue that, if the Test Phase passes, then it holds
that for most of the remaining OT, the OT answers correspondent to bit 1− b are consistent with
the decommitments extracted by Sim.

Indeed, if this was not the case, namely, if the sender plays with many inconstistent shares for
the bit b−1, while still passing the Test phase, then the simulator would go ahead extract a string
for bit b− 1 that would have never been obtained by the receiver in the real world.

The argument for this case is that, the only way for the sender to pass the Test Phase for both
bits 0, 1 while playing inconsistently in most of the remaining shares for the bit 1 − b, is that it is
distinguishing the bits played by the receiver in the OT. Thus, we can use this malicious sender to
break the indistinguishability property of the underlying ΠR

OT protocol.
We prove indistinguishability through a sequence of hybrids.

H0. In this hybrid Sim knows the input bit b of the receiver. It plays as the honest receiver in the
protocol. If the protocol is successful, Sim sends (sb,⊥) to FOT and outputs the views of S∗.
The output of this experiment is distributed identically to the experiment with the real world
receiver.

H1. In this hybrid Sim knows the input bit b of the honest receiver, and it plays the protocol as
the honest receiver with bit b, except that it obtains the string sb by extacting xb from the
extractable commitments instead of looking at the decommitment obtained via the OT. More
precisely, it uses bit b in κ + κ/2 random positions and bit 1 − b in κ/2 random position.
If the Test Phase passes, then it obtains xb by extracting the commitments of vectors ab,j ,
bb,j and computing κ + 1 consistent shares. If the extraction fails, Sim aborts. Then, as the
honest receiver, he computes sb = Cb ⊕ xb. Finally, Sim plays in the ideal functionality the
pair (sb,⊥), and output the view of the sender S∗ to the distinguisher. Otherwise, if the Test
Phase fails, it sends the pair (⊥,⊥) to the ideal functionality.

We argue that the view obtained by the distinguisher is statistically close to the view obtained
from the execution of the honest real world receiver playing with S∗. The reason is that, the
only difference between the output of the simulator and the output of a honest receiver is
that the simulator obtains sb by reconstructing from the shares obtained in the extractable
commitments while the receiver obtains the shares from the OT (and the extraction fails
with negligible probability due to the extractability of the commitment scheme). Because the
test set used for the bit b is chosen from κ + κ/2 possible positions, the probability that the
sendere guessed the positions of the test set is negligible, and whp more then κ + 1 OT are
consistent with the extractable commitments. Finally, due to check validity of share test,
it is guaranteed that the shares reconstruct to a unique value and is the same value that Sim
would reconstruct.

Thus, the view generated by Sim is statistically close to the view generated in the execution
by a real execution.
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Hl: with l = 1, . . . , κ. In hybrid Hl the simulator plays with bit 1− b in l additional positions (i.e.
the size of T1−b is κ/2 + l).

The only difference between Hl and Hl−1 is that in Hl Sim plays with bit 1 − b in one more
position than in Hl−1.

Assume that there is a distinguisher between the Hl and Hl−1, then we can construct a
distinguisher A for the underlying ΠR

OT. A has oracle access to S∗ and communicates with an
external receiver of ΠR

OT. A plays as in Hl−1, except that for a randomly chosen position it
forwards the OT messages to the external receiver. Such coordinate is not used in the test
phase.

If the external receiver is playing with bit b, then the distribution generated by A is identical
to experiment Hl−1. Otherwise, if the external receiver is playing with input 1 − b, then the
distribution generared by A is identical to experiment Hl. The reason the distributions are
respectively identical, even if A is not using the “challenge coordinate” for the test phase is
that such coordinate is chosen at random at the beginning, and this is identical to choose it
at random in the test phase.

By noticing that Hκ is the hybrid where the simulator is playing with bit 1 − b (where b is
the actual bit of the honest receiver), we conclude that the view generated in the simulation
is indistinguishable from the view generated in the real world execution.

B.2.3 Security against a malicious Receiver.

Overview of the simulation. The simulator Sim runs each of the 2κ executions of OT using the
simulator SimΠR

OT
guaranteed by the one-sided simulatability of protocol ΠR

OT. The other messages,
i.e., the extractable commitments and the answers to the challenges c1, . . . , cκ are instead computed
following the honest sender procedure. After the third round is successfully completed, Sim obtains
the bits b1, . . . , b2κ played by R∗ in ΠR

OT from the simulator SimΠR
OT
, and it uses such knowledge to

compute the fourth round as follows. If the receiver plays the i-th OT with bit 0, Sim will play
the i-th OT with strings ([a0,j ,b0,j , ∀j],⊥) (resp. (⊥, [a1,j ,b1,j , ∀j]) if b = 1) using SimΠR

OT
Also,

by looking at the bits used by R∗ in the 2κ parallel OT it computes the bit to play in the ideal
functionality as follows. If there exists a bit b such that R∗ plays more than κ execution of OT, it
sends bit b to FOT and compue Cb = xb ⊕ sb and C1−b as a random string. Otherwise, it sends a
random bit to FOT, and sends C0, C1 computed as random string.

The indistinguishability of the simulation relies on the simulatability of ΠR
OT, the κ-hiding of

Shamir secret sharing and the hiding of the underlying commitment scheme. More specifically, we
need that the hiding of commitments that are unopened from the OT is still preserved given the
opening of the other commitments. This suggests that we need to use commitments that are secure
under selective opening attacks [DNRS99, BHY09], which are not implied by standard commitments.

Fortunately, in our case since the positions that will be opened by R∗ are committed already
in the first round of protocol ΠR

OT, we are able to use standard hiding by extracting the positions
of the commitment that will be opened, and place the challenge commitments received from the
oracle, in the positions that will not be opened. We will need to use a Goldreich-Kahan [GK95]
type of argument to extract the positions of the commitments that need to be opened, so that we
will be able to place the challenge committments received in the hiding game in such positions.
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Formal Description of the Simulator.

1. Upon receiving message (OTmsg1[1], . . . ,OTmsg1[2κ]) from R∗:

• Forward message OTmsg1[i] to the simulator SimΠR
OT

associated to ΠR
OT and obtain mes-

sage OTmsg2[i].

• Compute vectors a0,j ,b0,j , z0,j , a1,j ,b1,j , z1,j as the honest sender, and compute the
respective extractable commitments.

Send messages {OTmsg2[i]}i∈[2κ and the extractable commitments to R∗. If R∗ aborts, sends
a random bit to FOT, output the view of R∗ and halt.

2. Upon receiving (OTmsg3[1], . . . ,OTmsg3[2κ]), forward it to SimΠR
OT
. when SimΠR

OT
attempts

to rewind R∗ sending a fresh message {OTmsg2′[i]}i∈[2κ], Sim rewinds R∗ and changes only
the message {OTmsg2′[i]}i∈[2κ]. If SimΠR

OT
aborts, then Sim outputs FAIL and halts.

Otherwise, let b1, . . . , b2κ be the bits extracted by SimΠR
OT
.

If there exists a bit b such that more than κ bits agree on, then Sim sends b to FOT and
receives sb. Else, Sim sends a random bit to FOT and continues playing with two random
strings in place of s0, s1.

Then Sim computes the remaining messages as follows:

• It answers to the challenge c1, . . . , cκ as the honest sender would do.

• It computes message OTmsg4[i] as follows: if bi = 0, it invokes SimΠR
OT

on input 4

({[a0,j ]i, [b0,j ]i}j∈κ, {⊥}), otherwise if bi = 1, it invokes SimΠR
OT

on input ({⊥}, {[a1,j ]i, [b1,j ]i}j∈κ).

Finally, it outpus whatever R∗ outputs.

Indistinguishability of the Simulation. We prove that the output of Sim is indistinguishable
from the output of R∗ in the real world execution via a sequence of hybrids.

H0. In this hybrid Sim, on input s0, s1 runs as the honest sender.

H1. In this hybrid Sim computes the OT-messages by running SimΠR
OT

as sub-routine. However it
computes the remaining messages honestly and it computes encryption C0, C1 using string
s0, s1. The difference between hybrids H0 and H1 is that in H1 Sim is computing messages
for ΠR

OT using the simulator and therefore, for the i-th OT execution, instead of using the
openings for both vectors ([a0,j ]i, b0,j ]i), ([a]1,j ]i, [b1,j ]i), it will use ([abi,j ]i, bbi,j ]i,⊥) where bi
is the bit provided by SimΠR

OT
.

Assume that there is a distinguisher between H0 and H1, then one can construct an adversary
for the one-sided simulatability of protocol ΠR

OT.

H2. In this hybrid, Sim sets C1−b ← {0, 1}κ` instead of C1−b = x1−b⊕ s1−b, where b is the bit used
in the majority of the OT executions played by R∗. The only difference with the previous
hybrid is that C1−b is not computed using xb, where xb is the value that can be reconstructed

4For simplicity of notation we say [a0,j ]i, [b0,j ]i but we mean the opening of [a0,j ]i, [b0,j ]i.
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from the vectors a1−b,j + b1−b,j , (where ∀j,v1−b = a1−b,j + b1−b,j and x1−b = Recon(v1−b))
committed in the second round.

The difference between H1 and H2 is that in H2 C1−b is computed independently of the value
x1−b and therefore independently of the committed for vectors a1−b,j ,b1−b,j . Note that R∗

receives κ/2 coordinates of a1−b,j ,b1−b,j via the OT. However due to the security of Shamir
secret sharing we have that κ/2 shares are not enough to reconstruct x1−b. Thus, R∗ cannot
detect that x1−b was not used in computing C1−b just by using the knowledge of κ/2 shares.

Thus, assume that there is a distinguisher between H1 and H2, then we can construct an
adversary A for the hiding of the underlying commitment scheme.

This is done through a sequence of sub-hybrids H2,1, . . . ,H2,κ where in sub-hybrid H2,j A
replaces the j-th vectors for the coordinate i, A replaces the j-the vectors a1−b,j , b1−b,j , with
either vectors a1−b,j , b̃bi,j or ã1−b,j , b1−b,j (depending on the challenge cj), so that the sum
ã1−b,j + b1−b,j 6= v1−b but it still holds that for all i ∈ T1−b, [abi,j ]i + [bbi,j ]i = [vbi ]i.

Note that H1 = H2,0 and H2 = H2,κ.

The reduction in hybrid H2,j works as follows.

A runs R∗ for as in hybrid H2,j−1 using random vectors of shares for randomly choosen x0, x1

up to the third round. If R∗ provides an accepting transcript in the first 3 messages, A then
rewinds R∗ and, as per Goldreich-Kahan [GK95] strategy, A rewinds R∗ till it observes κ
accepting transcripts (in such attempts A is also able to extract the bits b1, . . . , b2κ played in
ΠR

OT by R∗, since in ΠR
OT the input of the receiver is fixed in the first round). Let t be the

number of attempts made by A. If t > 2n then A aborts.

Else, A has estabilished that R∗ will continue the protocol with non-negligible probability,
and mounts its attack as follows.

A has obtained b1, . . . , b2κ from SimΠR
OT
. Let T1−b be the set of coordinates for which R∗ plays

bit 1− b in the correspondent ΠR
OT.

A picks vectors v0,v1 which are the secret sharing of x0, x1. Then it picks a random bit cj
and proceeds as follows.

• Case cj = 0. A computes vectors a1−b,j ,b1−b,j , b̃1−b,j such that for all coordinates
i ∈ T1−b, it holds that [a1−b,j ]i + [b1−b,j ]i = [v1−b]i and [a1−b,j ]i + [b̃1−b,j ]i = [v1−b]i; and
that a1−b,j + b1−b,j = v1−b; a1−b,j + b1−b,j = ṽ and Recon(ṽ) 6= x1−b. It then computes
the commitments to aj and the commiments of the coordinates in position i ∈ T1−b
honestly (i.e.,she will commit to values [b̃1−b,j ]i = [b1−b,j ]i). Instead, for the remaining
coordinates i /∈ T1−b, it forwards the the values [b̃1−b,j ]i, [b1−b,j ] to an external challenger.
It sends all commiments so prepared to R∗.
Then, when receiving the challenges c1, . . . , cκ from the receiver. If cj = 0, then honestly
continue the protocol. Else abort and output a random bit. Finally A sends the view of
R∗ to the distinguisher and outputs whatever the distinguisher outputs.
Analysis. If the external challenger chooses vector vj then the view simulated to R∗ is
distributed as in hybrid H2,j−1 else if the external challenger chooses vector ṽ then the
view simulated to R∗ is distributed as in hybrid H2,j .

• Case cj = 1. A acts as before except using vectors aj , ãj instead that for bj .
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By observing that H2 corresponds to the experiment run by the simulator, we conclude the
indistinguishability proof.
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