
SIMULATION OF COUPLED RIGID AND DEFORMABLE SOLIDS

AND MULTIPHASE FLUIDS

A DISSERTATION

SUBMITTED TO THE PROGRAM IN SCIENTIFIC COMPUTING

AND COMPUTATIONAL MATHEMATICS

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Tamar Shinar

July 2008

c© Copyright by Tamar Shinar 2008

All Rights Reserved

ii

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Ronald Fedkiw) Principal Adviser

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Scott Delp)

I certify that I have read this dissertation and that, in my opinion, it is fully

adequate in scope and quality as a dissertation for the degree of Doctor of

Philosophy.

(Charbel Farhat)

Approved for the University Committee on Graduate Studies.

iii

Abstract

This thesis presents methods for the physically-based simulation of various solid and fluid

phenomena, including coupled rigid and deformable bodies, multiphase incompressible

flow, and rigid and deformable volumes or shells coupled to incompressible flows.

First, we develop a hybrid deformable solid simulation framework for combining mesh-

based and point-based representations of deformable solids. Kinematic relationships be-

tween sets of points or simulation objects are defined by introducing hard bindings, provid-

ing a variety of capabilities such as the simulation of meshes with T-junctions and improved

collision resolution. Soft bindings are then introduced, allowing for additional degrees of

freedom while using spring-like forces to target an underlying state. We further apply this

framework to partially couple rigid and deformable bodies.

We then develop a framework for the full two-way coupling of rigid and deformable bod-

ies, which is achieved with both a unified time integration scheme as well as individual

two-way coupled algorithms at each point of that scheme. Thus we do not require special-

ized methods for dealing with stability issues or interleaving parts of the simulation. We

maintain the ability to treat the key desirable aspects of rigid bodies (e.g. contact, colli-

sion, stacking, and friction) and deformable bodies (e.g. arbitrary constitutive models, thin

shells, and self-collisions). In addition, our simulation framework supports more advanced

features such as proportional derivative controlled articulation between rigid bodies. This

not only allows for the robust simulation of a number of new phenomena, but also directly

lends itself to the design of deformable creatures with proportional derivative controlled

articulated rigid skeletons that interact in a life-like way with their environment.

iv

Next, we extend the particle level set method for the geometric representation of three or

more fluid regions. The method uses a separate level set function and a separate set of par-

ticles for each region. A novel projection algorithm is used to uniquely define the interface

at any given point, providing a dictionary for translating the vector-valued multiple level

set function into the standard single-valued level set representation. We use this method

to simulate multiple interacting liquids with varying densities and viscosities, viscoelastic

properties, surface tension forces and surface reactions such as combustion.

Finally, we present a novel scheme for the two-way coupling of incompressible fluids and

rigid or deformable volumetric solids or thin shells. The scheme uses an Eulerian represen-

tation for the fluid and a Lagrangian representation for the solid and enforces the no-slip

boundary condition at the solid/fluid interface in a momentum conserving way. The cou-

pling is treated implicitly, and the resulting linear system is symmetric indefinite.

v

Acknowledgments

I would like to thank my parents, Ruth and Joseph, for their constant support and encour-

agement, for striving to give me exceptional educational opportunities, and for creating an

environment that encouraged learning and achievement. I would also like to thank my dear

siblings, Anat, Yaeli, and Ron.

I would like to thank my advisor, Ron. I very much enjoyed being a part of the research

environment that he facilitates and learning from his fresh and unique perspective. I am

also grateful for his encouragment and his high expectations of me and for the many op-

portunities he has helped to give me. Thank you. It has been a rich time and I feel I will

continue to draw lessons from it going forward.

Ron’s research group has been a very fun and lively place to be a part of. I would like

to acknowledge my coauthors, Frank Losasso Petterson, Andrew Selle, Eftychis Sifakis,

Geoffrey Irving, Jeong-Mo Hong, Craig Schroeder, Avi Robinson-Mosher, Jon Gretarsson,

and Jon Su. I am grateful to have had the opportunity to work very closely with and learn a

lot in my collaboration with Craig. I also very much enjoyed and benefited from my close

collaborations with Frank, Avi, Eftychis and Jeong-Mo. I would also like to acknowledge

the other past and present members of the group. It was fun to work and interact with

them: Eran Guendelman, Rachel Weinstein, Nipun Kwatra, Michael Lentine, Kevin Der,

Igor Neverov, Joseph Teran, Zhaosheng Bao, and Robert Strzodka. I would like to thank

Joey for helping me with my next plans.

I would like to thank my very good friend, Katja. She has been a very welcome and

unexpected source of happiness in my life at Stanford. I would also like to thank my friend

vi

Nathan for his steadfast support and no-nonsense approach. I would like to thank my friend

and sister, Yaeli, for her love and support. Thanks also to my friend Geoffrey, for the gifts

that he’s given me and for our interaction.

I would like to acknowledge the SCCM/ICME program and the people involved for giving

me the opportunity to study at Stanford and contributing to my education here. Special

thanks to Gene Golub and Michael Saunders for their help and support.

vii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

2 Hybrid Solids 3
2.1 Introduction . 4

2.2 Hard Bindings . 6

2.2.1 T-Junctions . 10

2.2.2 Arbitrary Embeddings . 11

2.3 Soft Bindings . 12

2.3.1 Synchronized Coupling . 14

2.3.2 Coupling Through Binding Springs 14

2.3.3 Time Integration . 16

2.4 Results . 18

2.5 Extensions to Rigid Body Coupling . 20

2.5.1 Coupled Rigid/Deformable Simulation 23

3 Two-Way Coupling of Rigid and Deformable Bodies 24
3.1 Introduction . 25

3.2 Time Integration . 28

3.3 Step I: Advance Velocity . 29

viii

3.4 Step II: Collisions . 31

3.4.1 Second Order Rigid Body Evolution 33

3.5 Step III: Contact and Constraint Forces . 33

3.5.1 Improved Pre-stabilization . 34

3.6 Step IV: Advance Positions . 34

3.6.1 Interpenetration Resolution . 35

3.7 Step V: Advance Velocity . 37

3.7.1 Constrained Solve . 37

3.7.2 Final Velocities . 38

3.7.3 Enforcing Constraints in the Solve 39

3.8 Examples . 42

3.9 Conclusions . 42

4 Multiple Interacting Liquids 44
4.1 Introduction . 44

4.2 Multiple Level Sets . 47

4.2.1 Projection Method . 47

4.2.2 Particle Level Set Method . 50

4.3 Multiple Liquids . 51

4.3.1 Poisson Equation . 52

4.3.2 Viscosity . 53

4.3.3 Viscoelasticity . 54

4.4 Adding Air or Empty Regions . 55

4.5 Surface Tension . 56

4.6 Surface Reactions . 57

4.7 Examples . 59

4.8 Conclusions and Future Work . 60

5 Two-Way Coupling of Solids and Fluids 62
5.1 Introduction . 62

5.2 Motivation . 64

5.3 Solid/Fluid Interaction . 66

ix

5.3.1 Velocity Interpolation . 67

5.3.2 Force Distribution . 67

5.4 Conservation of Momentum . 68

5.4.1 Fluid Momentum . 68

5.4.2 Solid Momentum . 70

5.5 Linear System . 72

5.5.1 Solving the Linear System . 73

5.6 Time Integration . 74

5.7 Examples . 76

Bibliography 78

x

List of Tables

3.1 This table contains average times per frame and number of substeps re-

quired per frame for each example. † The individual times varied substan-

tially between frames, depending strongly on the degree of stress. + This

test was run as a convergence test with an artificially low time step. 43

xi

List of Figures

2.1 Parent particles (blue), hard bound target locations (red) and soft bound

particles (yellow). Soft bound duplication of a hard bound target location

(left), and three soft bound duplications of parent particles (right). 5

2.2 Resolution of hard bound particles (depicted in red) via refinement of the

parent element. 7

2.3 (Left) A coarse deformable ball is penetrated by a kinematic sphere. (Cen-

ter) Sprinkling hard bound particles on the surface of the sphere allows

one to resolve the collisions without requiring refinement of the tetrahedral

simulation mesh. (Right) Hard bound particles can be dynamically added

and removed based on proximity to collision objects. 9

2.4 Left: Two levels of non-graded red refinement leading to T-junctions (red).

The T-junctions do not have a complete one-ring of triangles. Our frame-

work treats the T-junction nodes as hard bound particles (red) embedded in

the parent mesh (blue). Right: An elastic sheet meshed with T-junctions

is quasistatically stretched without bindings (top) and using hard bindings

(bottom). 11

2.5 A ribbon is kinematically embedded in a point cloud. Instead of using a

standard mesh-free discretization of the point cloud, we endow the ribbon

with a constitutive model which is used to compute elastic forces that are

subsequently mapped to the point cloud. The first approach penalizes point

cloud deformation and has no direct knowledge of deformation artifacts

within the ribbon, while our approach directly penalizes distortions in the

ribbon (2.3 sec/frame). 12

xii

2.6 (Left) A coarse deformable ball collides with a kinematic sphere. (Middle)

Soft bindings enable subtetrahedron elasticity in response to the collision.

(Right) The dynamically refined surface mesh. 13

2.7 (Left) Several spheres stitched together using stiff implicit binding springs.

(Right) Lowering the binding spring stiffness leads to drift. The binding

springs are depicted as orange cylinders (30 sec/frame). 15

2.8 Allowing the hard bound target positions to drift, one can model sub-

tetrahedron plasticity resulting from collisions of soft bound particles (3

sec/frame). 16

2.9 Cloth pinched between two spheres. Conflicting constraints are resolved

by allowing drift of duplicate surfaces using soft bindings (2.8 min/frame,

150×150 mesh). 18

2.10 A coarse 320 tetrahedra cube mesh is cut into 289 sticks. Object collisions

and self-collisions are resolved by the soft bound embedded surface. 19

2.11 An adaptive red-only BCC mesh for embedded simulation of a muscle-

driven face model. Hard bindings are used for T-junctions, and soft bind-

ings are used for collisions and boundary conditions (18 min/frame). 20

2.12 Coupled simulation of rigid plates and cloth sheets, where cloth particles

have been hard bound to the rigid plates. Each of the three rigid plates as

well as the two constrained rigid bodies depicted in orange are represented

by single rigid body particles. 21

2.13 Simulation of a cloth curtain with a number of particles hard bound on rigid

rings that are used to suspend the cloth from a curtain rod. Each of the ten

rings is modeled with a single rigid body particle. 22

2.14 A net is constructed using binding springs to create simple point joints

between hard bound particles on different rigid bodies. 22

3.1 Chain composed of both rigid and deformable tori, as well as loops of

articulated rigid bodies. The leftmost torus is static, and the rightmost torus

is kinematically spun to wind and unwind the chain. 25

xiii

3.2 Silver rigid boxes and orange deformable boxes are arranged to form a

stack, which is knocked down by a rigid ball. 26

3.3 A row of silver rigid balls and yellow deformable balls are impacted by a

rigid ball. The yellow balls are modeled as deformable and incompressible

materials. 28

3.4 Ten rigid balls and ten deformable tori fall on a cloth trampoline. The tram-

poline is constructed by embedding the cloth in a kinematically controlled

torus, which tosses the objects after they have landed and then allows them

to settle. 30

3.5 The four silver boxes are rigid, and the deformable blue bar is attached

to the boxes using the embedding framework of [78]. The far left box is

kinematically rotated, causing the bar to twist and subsequently turn the

box to its right, which is attached to the static box to the right of it by a

twist joint. The free box on top falls off as the bar is twisted. 31

3.6 1600 bodies are dropped on a 5×5 grid of static rigid pegs to form a pile.

There are 160 colored deformable balls, 160 colored deformable tori, 160

rainbow-colored articulated loops with six rigid bodies each, 160 silver

rigid balls and 160 blue rigid rings. 32

3.7 A snake constructed by embedding a 12-joint articulated rigid body skele-

ton in a deformable body. The snake sidewinds up and down stairs using

PD-control on its skeleton. 35

3.8 One step of the interpenetration resolution algorithm processes a central

body along with all the interpenetrating outer bodies. 36

3.9 Objects sliding down an inclined plane with friction. From left to right:

analytic solution, rigid box, deformable box and a single particle. 38

3.10 Maggots constructed by embedding a two-joint PD-controlled articulated

rigid body skeleton into a deformable body. From left to right: a maggot on

the ground, a maggot trapped under a large rigid body, 20 maggots dropped

into a bowl wriggling and interacting with each other, and 20 maggots in-

teracting with 20 rigid tori. 39

xiv

3.11 A deformable fish constructed by embedding a four-joint PD-controlled

articulated rigid body skeleton. The fish is dropped on the ground and

flops back and forth interacting with its environment. 40

4.1 A kinematically controlled sphere splashing into a multi-layer pool (300×
300×200 grid, 4 phases). 45

4.2 Each of the three regions is independently evolved in time, after which

the interface locations do not agree. There are vacuums where all φi are

positive, and overlaps where more than one φi is negative. The dotted black

line shows the new interface locations after our projection step. 47

4.3 (Left) Two level sets initialized so that properties 1 and 2 hold. (Right)

After evolving in time, we obtain the solid lines with overlap (both negative

in the middle). The dotted lines show an example result after projection.

Not only has the overlap been removed, but the interface location is preserved. 48

4.4 (Left) The solid lines have overlap on the left (two φi negative) and a vac-

uum on the right (all φi positive). The average of the smallest two level

sets at any point is subtracted from ~φ to obtain the dotted lines. Not only

has the overlap and vacuum been removed, but the smallest φi is preserved

and negative at each point preserving interface locations and inside/outside

information. (Right) Results after reinitializing each level set to a signed

distance function. 49

4.5 Rayleigh-Taylor instability (3003 grid, 4 phases). 51

4.6 Viscous letters splash into a pool of water, then change into low density

inviscid fuel bubbling up and burning when they hit the surface (350×
200×350 grid, 10 phases). 52

4.7 Different viscosity liquids interacting on an inclined plane. (300× 150×
240 grid, 5 phases). 53

4.8 (Left) One-way coupling from liquid to air. (Right) Two-way coupling of

liquid and air. Note the surface ripples and the unstable stream of liquid in

the fully coupled simulation. 55

xv

4.9 Two submerged liquids meeting and reacting to create air (1503 grid, 4

phases). 56

4.10 Two drops with high surface tension collide. Green has low density, red

high density (3503 grid, 3 phases). 57

4.11 Oil pouring into water, then catching on fire. Note that the fiery ball is a

separate phase of fluid, and that it deforms into the shape of a droplet as it

falls (2003 grid, 4 phases). 58

4.12 An armadillo that starts out viscoelastic, becomes viscous and more dense

than the water, then inviscid and lighter than the water, and finally vis-

coelastic again before another viscoelastic liquid is dropped onto it (250×
275×250 grid, 4 phases). 61

5.1 We demonstrate that our method handles buoyancy correctly by releasing

rigid spheres of varying density in a pool of water (200× 75× 50 fluid grid). 63

5.2 (Left) A two-dimensional drawing of a dual cell containing two materials

of different densities. (Right) A graph of the pressure profile on a cross-

section through the cell connecting pi to pi+1, i.e. xi to xi+1. 65

5.3 The MAC grid used in the Eulerian fluid simulation is depicted, with blue

circles representing pressure samples and red and green x’s representing the

x and y components of the velocity, respectively. The yellow line represents

the boundary of the Lagrangian solid. The mixed x-component dual cells,

i.e. those containing both solid and fluid, are highlighted in light blue. . . . 66

5.4 A light sphere and then a heavy sphere are dropped into a thin shell rigid

boat floating in a pool of water (160 × 120 × 160 fluid grid). The light

sphere barely rocks the boat, while the heavy sphere sinks it, and the light

sphere bobs back to the surface. 68

5.5 24 rigid spheres of varying density are dropped into a pool of water, demon-

strating scalability to many bodies (225 × 300 × 150 fluid grid). 69

xvi

5.6 Our method supports coupling to both volumetric and thin deformable

solids. Left: a soft torus is dropped into a pool of water, showing two-

way coupling with a deformable body (100 × 100 × 100 fluid grid, 44k

tetrahedra). Right: sheet of cloth is pulled out of a tank of water (140 ×
140 × 70 fluid grid, 2.5k triangles). 71

5.7 Many rigid bodies circulate in a turbulent fountain, demonstrating scalabil-

ity and dynamic interactions between rigid bodies (i.e. collisions) (100 ×
150 × 100 fluid grid). 73

5.8 A stream of water pours into an elastic cloth bag suspended by its rim (100

× 375× 100 fluid grid, 1k triangles). The bag deforms under the impact of

the water and then recovers, filling and expanding until the water overflows

and runs down its sides. 74

5.9 An elastic cloth bag is submerged in and then quickly pulled from a pool

of water, carrying fluid with it (140 × 210 × 140 fluid grid, 1k triangles).

The bag bounces as it is raised, expanding and contracting, which causes

water to splash out. The bag eventually settles. 75

5.10 A balloon is filled by a jet of fast-moving smoke, reaching a state of strong

tension (100 × 150 × 100 fluid grid, 1k triangles). The balloon is then

released and expels smoke at a very high speed, accelerating upwards, and

passes through the edge of the domain without any discontinuities. The

high tension and fast velocities highlight the stability of our fully coupled

method. 76

5.11 Water is two-way coupled to a fish with an embedded proportional deriva-

tive controlled articulated skeleton and a deformable exterior (192 × 216

× 144 fluid grid, 42k tetrahedra). 77

xvii

Chapter 1

Introduction

Physically-based simulators employ a wide variety of geometric representations and algo-

rithmic techniques for a multitude of materials and phenomena. For example, complex

fluid motion is often simulated using Eulerian methods, while Lagrangian methods are pre-

ferred for solids. And while mesh-based methods are effective for modeling the elastic

deformation of solid materials, collisions between objects may be efficiently processed in

a particle-based fashion. Simulations of materials such as rigid bodies, deformable solids,

cloth, smoke and free surface flows have achieved impressive results using such disparate

techniques.

The physically-based simulation of coupled interactions between different materials is also

of great interest with numerous applications in science, engineering, medicine, and enter-

tainment. In developing such a system, it is desirable to use the most advantageous repre-

sentations and techniques for each individual material or phenomenon rather than choose

a least common denominator and sacrifice quality. The advantages of heterogeneity, com-

bined with the complexity of individual systems or even lack of access to source code,

often lead to a partitioned approach to coupling. In this approach, the individual subsys-

tems are interleaved using the results of the previous step as boundary conditions for the

next. The main problem with such an approach is that the straightforward implementation

treats the interaction forces explicitly, degrading the stability of the simulation. Various

1

CHAPTER 1. INTRODUCTION 2

techniques can be employed to improve the straightforward treatment including predictor

steps and specialized stabilization techniques. Although in theory the subsystems can be

iterated to achieve fully implicit coupling, this is often intractable, and in practice it can

be difficult to devise partitioned approaches that have good stability properties for highly

complex interactions. An alternative to the partitioned approach is the strongly coupled

or monolithic approach where the equations for the various materials are combined into

one system and solved simultaneously allowing for fully implicit integration of interaction

forces. The increased stability this provides often enables significantly larger time steps,

resulting in increased efficiency and a broader variety of phenomena that can be tractably

simulated. The challenge in this approach lies in maintaining the desirable representations

and techniques for each individual material while unifying their potentially disparate time

integration methods.

This thesis presents several methods for the simulation of coupled phenomena emphasizing

a unified approach and implicit treatment of coupling forces. In Chapter 2, an embedding

framework is developed which allows for multiple geometric representations of deformable

solids taylored to different aspects of the computation. This framework has application in

both rigid/deformable solid coupling as well as in solid/fluid coupling. In particular, al-

though the fluid and solid use different geometric representations, embedded points col-

located with fluid variables can be introduced for the solid, allowing coupling forces to

be applied to both the fluid and solid at these points. Chapter 3 develops a fully unified

approach to the two-way coupling of rigid and deformable bodies, allowing for complex

interactions while maintaining important features for the individual phenomena. Chapter 4

treats the geometric problem of the interface representation of multiple fluid regions using

a hybrid particle/level set based method, and discusses the simulation of various physical

interactions at fluid/fluid boundaries. Finally, Chapter 5 presents a method for two-way

coupling of rigid or deformable solids or shells to incompressible fluids. This approach

draws inspiration from the rigid body contact problem, introducing an unknown impulse

that enforces the contact constraint in a momentum-conserving way. The material pre-

sented in this thesis is based on the previously published works [52] and [78] as well the

works to appear [73] and [69].

Chapter 2

Hybrid Solids

The hybrid solids simulation framework introduces the concepts of hard and soft bindings

and first appeared in [78]. Hard bindings are used to embed a point in a simulation mesh,

rigid body, or point cloud. The embedded point is fully constrained based on its embedding,

and forces or impulses applied to it are propagated to the degrees of freedom of the simula-

tion in a physically consistent way. Soft bindings relax the hard constraint, transforming the

embedded particle into a true degree of freedom while targeting an underlying state. The

framework is shown to facilitate a variety of phenomena, including simulation of meshes

with T-junctions, dynamic point sampling for improved collision resolution, resolution of

nonphysical conflicting constraints, subelement elasticity and plasticity, and methods for

fracture and cutting. We furthermore extend the framework to enable the implicit integra-

tion of forces between rigid and deformable bodies. We also note that the hard binding

principles are used in coupling an Eulerian fluid to a Lagrangian solid in Chapter 5.

3

CHAPTER 2. HYBRID SOLIDS 4

2.1 Introduction

Mesh-based methods require the generation of an initial simulation mesh, which can be

conforming (e.g. [1, 56]), or non-conforming when used in conjunction with an embed-

ded simulation technique (e.g. [11, 12, 55, 57, 61]) in which case a simple cube or BCC

background mesh can be used. Generation of a conforming simulation mesh is typically

non-trivial and is best suited to applications that require no changes to the initial mesh.

However, if the mesh needs to be adapted on the fly, e.g. for fracture [63], remeshing can

be prohibitively expensive and can introduce poor quality elements. [55] proposed a partial

solution that uses embedded simulation technology to fracture tessellated objects without

continuous remeshing, allowing elements to be modeled as partially full of material. Lim-

itations, including the restriction that edges cannot be fractured twice, prevent this method

from being completely general. Collision processing can often require more surface reso-

lution than is present in the initial simulation mesh. While some have considered adaptive

frameworks [12,17,31], it is wasteful to refine the full volumetric mesh in the vicinity of the

boundaries solely for collisions. Although not as efficient as mesh-based methods for the

simulation of elastic deformation, point-based methods provide added flexibility making

them attractive for applications involving fracture, virtual surgery, resampling for collision

handling, etc., see e.g. [58, 59, 66, 81, 88].

Starting with either a conforming or non-conforming mesh, we propose a method for em-

bedding an arbitrary point in this mesh. We call this a hard binding. To derive the re-

lationships between physical quantities of the embedded point and the mesh, we start by

considering a hypothetical refinement of the mesh that resolves the embedded point. We

compute internal finite element forces for these hypothetical subelements and illustrate how

to redistribute these forces to the parent mesh. The mass of the embedded particle is re-

distributed to the parent mesh as well. This redistribution is shown to be independent of

the chosen refinement. Notably, this approach results in automatic and natural handling

of T-junctions, as masses and forces of T-junction nodes can be redistributed to the parent

mesh. This specific handling of T-junctions is similar to that in [53]. We then generalize

this approach to arbitrary embeddings. Hard bound particles have their mass and any forces

CHAPTER 2. HYBRID SOLIDS 5

Figure 2.1: Parent particles (blue), hard bound target locations (red) and soft bound parti-
cles (yellow). Soft bound duplication of a hard bound target location (left), and three soft
bound duplications of parent particles (right).

or impulses applied to them redistributed to the parents in a natural fashion while maintain-

ing the notion of an effective mass so that they can fully participate in various numerical

algorithms.

A hard binding constrains an embedded particle to its barycentrically determined location

(a similar heuristic was given in [28]). Thus, hard bound particles are not particles at all

(i.e. they do not possess any degrees of freedom), but merely target locations that live on

the parent mesh. In order to transition to a fully particle-centric simulation framework,

we create the notion of a soft binding. A soft binding is an abstract connection between

a real particle with full degrees of freedom and a hard binding target location enabling

full two-way interaction. Soft bound particles are free to interact with each other and the

parent mesh constituting a fully particle-centric framework. Soft bindings can be created

between any particle and any target location even duplicating the original degrees of free-

dom in the mesh itself (see Figure 2.1). The soft binding mechanism is responsible for

the two-way interaction between the particle-based system and the mesh-based framework.

Although one could implement this connection using simple springs, we have designed a

more sophisticated soft binding interface which is notably fully implicit allowing one to

stiffen the two-way interaction to the point where the soft bound particle always lies on its

CHAPTER 2. HYBRID SOLIDS 6

target location up to numerical precision, without stability issues or additional time step

restrictions.

Novel contributions of our work include the tight integration of hard binding constraints

and unconditionally stable binding spring forces into the semi-implicit Newmark time inte-

gration scheme, lag-free duplication of degrees of freedom through soft bindings by force

transfer from parent particles, and integration of rigid/deformable coupling into the New-

mark scheme and conjugate gradient solver. We present these contributions as part of a

broad hybrid simulation framework building on simple, physically motivated principles.

We demonstrate the features of this framework with examples that include dynamically

adapting the surface sampling density for collisions, duplicating parent mesh particles to

resolve conflicting constraints caused by the nonphysical pinching of cloth, the facilitation

of fracture and cutting algorithms, and an extension of our framework to two-way interac-

tions with rigid bodies.

2.2 Hard Bindings

The simulation mesh is subject to internal forces, from e.g. finite elements, as well as

external forces from gravity, friction, collisions, etc., and we want these forces to act on

the hard bound particles as well. We motivate our approach for propagating forces to

the parent mesh by considering a refinement that resolves all the hard bound particles.

Figure 2.2 shows three hard bound particles along with an associated refinement. Although

this refinement is not unique, it turns out that the propagation of physical properties from

the hard bound particles to the parent mesh is independent of the tessellation used and can

be performed without explicitly refining the parent element. Internal forces are defined on

the subelements in standard fashion, but must be mapped to the parent particles since the

hard bound particles are not free to move independently.

Conservative forces can be defined in terms of the gradient f =−∂Ψ(x)/∂x of the potential

energy Ψ(x). The potential energy of the parent triangle is Ψ = ∑Ψi, where Ψi is the

potential energy of subtriangle ti. Each Ψi is naturally defined in terms of the positions

CHAPTER 2. HYBRID SOLIDS 7

Figure 2.2: Resolution of hard bound particles (depicted in red) via refinement of the parent
element.

of the vertices of triangle ti rather than the positions of the parent particles, although the

former are fully determined by the latter through the binding constraint. Let xi denote

the positions of the vertices of triangle ti, e.g. x2 is composed of the positions of particles

{x2,x5,x6} in Figure 2.2. The parent triangle vertices {x1,x2,x3} are represented by x.

Using this notation, the three forces on the parent particles are

f =−∑
i

∂Ψi

∂x
=−∑

i

(
∂xi

∂x

)T
∂Ψi

∂xi
= ∑

i

(
∂xi

∂x

)T

fi (2.1)

where fi = −∂Ψi/∂xi are the three vertex forces computed on each subtriangle ti. The

Jacobian ∂xi/∂x is constant for each triangle ti and contains the barycentric coordinates of

xi with respect to the vertices x of the parent triangle. Equation (2.1) can be extended to

the computation of elastic force differentials for implicit or quasistatic time integration via

δ f|
δx = ∑

i

(
∂xi

∂x

)T

δ fi|δxi
(2.2)

Equation (2.2) is obtained by taking the directional derivative of (2.1), assuming that the

Jacobian ∂xi/∂x is constant (i.e. the binding constraint is linear), which is always the case

for the barycentric embeddings used here. Nonlinear binding constraints would result in

CHAPTER 2. HYBRID SOLIDS 8

additional terms in Equation (2.2).

From equations (2.1) and (2.2) we can write the net force and force differential on a single

parent particle as

fk = ∑
ti

∑
x j∈ti

w j
k f i

j and δ fk|δx = ∑
ti

∑
x j∈ti

w j
k δ f i

j
∣∣
δxi

(2.3)

where w j
k is the barycentric weight of particle j with respect to particle k of the parent

triangle and f i
j is the force on particle j from subtriangle ti. In practice we implement

Equation (2.3) by accumulating all forces on both parent and hard bound particles from all

their incident elements and subsequently distributing the force on each hard bound particle

to its parents weighted by its barycentric weights. Note that the final force distribution

does not depend on the tessellation used but only on the barycentric weights of the hard

bound particles. We also note that an alternate derivation is possible using virtual work as

in Section 5.3.2.

We use Equation (2.3) for velocity dependent damping forces as well noting that it pre-

serves the symmetry and definiteness of the linear damping forces allowing for our semi-

implicit time integration framework. We consider the linear damping model f̄ = Ḡv̄ where

Ḡ is symmetric negative definite, and the force f̄ and velocity v̄ refer to all particles, includ-

ing hard bound particles. The velocities of this extended set of particles are expressed in

terms of the velocities of the parent particles, v̄ = Wv. Using this notation, Equation (2.1)

reduces to f = WT f̄ = WT ḠWv = Gv where G = WT ḠW preserves both symmetry and

negative definiteness of the original damping matrix Ḡ. A similar derivation shows that

the distribution scheme for force differentials given in equation (2.3) preserves symmetry

and negative definiteness of the elastic stiffness matrix, which is an important property for

schemes that use an implicit or quasistatic treatment of elastic forces as well.

After forces have been computed and distributed to the parent particles, accelerations are

computed via a = M−1f where M is diagonal in a typical lumped mass formulation. We

store the lumped masses of the parent particles in a vector m, which is the diagonal of M. In

analogy to our force derivation, we write the mass vector as the gradient of total momentum

CHAPTER 2. HYBRID SOLIDS 9

Figure 2.3: (Left) A coarse deformable ball is penetrated by a kinematic sphere. (Center)
Sprinkling hard bound particles on the surface of the sphere allows one to resolve the
collisions without requiring refinement of the tetrahedral simulation mesh. (Right) Hard
bound particles can be dynamically added and removed based on proximity to collision
objects.

with respect to velocity, i.e. m = ∂P/∂v. Let m̄ be the masses of all particles. As is typical,

one could compute the initial mass of hard bound particles by refining the parent mesh as

in Figure 2.2 and assigning one third the mass of each triangle to its vertices, although

any scheme for assigning mass (including uniform mass) is allowed. The total momentum

is then given as P = m̄T v̄, thus m = ∂

∂vP = ∂

∂v
(
m̄T v̄

)
= ∂

∂v
(
m̄T Wv

)
= WT m̄ indicating

that masses of hard bound particles should be redistributed to the parents based on the

barycentric weights, i.e. the same as for force redistribution. More generally in a non-

lumped mass formulation, the mass matrix is given by the Hessian of the kinetic energy as

M = WT M̄W (see [74]).

Although hard bound particles have no mass or momentum, an effective mass is useful for

many numerical algorithms. We define the effective mass as the ratio of an applied force to

the resultant acceleration of the hard bound particle, i.e. fe = meae. Denoting the binding

weights by wi, the applied force is distributed to the parent particles via fi = wi fe and the

acceleration of the bound particle is ae = ∑wiai. Combining these equations gives

fe

me
= ae = ∑wiai = ∑wi

fi

mi
= fe ∑

w2
i

mi
⇒ 1

me
= ∑

w2
i

mi
(2.4)

The effective mass is used in the determination of stability restrictions for forces defined on

CHAPTER 2. HYBRID SOLIDS 10

the hard bound particle, e.g. if a hard bound particle is connected to a spring, the effective

mass would be used to compute the harmonic mass.

One often needs to apply impulses to hard bound particles, e.g. for collisions. An impulse

je applied to a hard bound particle is the result of a force fe acting on the particle for

an infinitesimal interval ∆t, i.e. je = fe∆t, and from Equation (2.3) we obtain ji = wi je.

Furthermore, changes in velocity are governed by ∆vi = ji/mi = wi(me/mi)∆ve, and dis-

placements follow ∆xi = wi(me/mi)∆xe assuming that ∆xe = ∆tve.

Figure 2.3 illustrates the utility of hard bindings in processing collisions. A typical ap-

proach to collision processing (due to its simplicity) is to collide the points (possibly only

the surface points) of a deformable object with implicitly represented collision geometry,

and we collide each tetrahedral mesh node from the sphere’s surface with the ground and

the kinematically controlled red sphere. While ground collisions are sufficiently resolved,

the kinematically controlled red sphere passes directly through the deformable object, miss-

ing any potential collisions with surface particles. Although one might adaptively refine

tetrahedra near the colliding red sphere, this increases the total tetrahedra that need to be

simulated and the smaller edge lengths lead to a stiffer time step restriction. Our hard bind-

ing framework allows us to simply sprinkle particles on the surface of the sphere at a higher

density than the tetrahedral mesh for the sake of collisions. This can be done statically or

even adaptively based on proximity to collision objects.

2.2.1 T-Junctions

Figure 2.4 (left) depicts four coarse triangles undergoing up to two levels of non-graded

red refinement leading to a number of T-junctions. Structured adaptive meshing schemes

such as [56] resolve these T-junctions via a combination of red and green refinement. This

produces both more elements increasing computational cost as well as lower quality green

elements which adversely affect the time step restriction. Additional savings may be re-

alized by exploiting the regularity of adaptive red-only refinements where all elements in

CHAPTER 2. HYBRID SOLIDS 11

Figure 2.4: Left: Two levels of non-graded red refinement leading to T-junctions (red).
The T-junctions do not have a complete one-ring of triangles. Our framework treats the
T-junction nodes as hard bound particles (red) embedded in the parent mesh (blue). Right:
An elastic sheet meshed with T-junctions is quasistatically stretched without bindings (top)
and using hard bindings (bottom).

the mesh are identical up to rotation and scaling requiring only the storage of a scale fac-

tor per element to encode the rest state. For every T-junction, we compute its parents by

recursively tracking the endpoints of refined segments. This leads to the barycentric em-

bedding of hard bound particles on segments or triangles in two spatial dimensions, and on

segments, triangles or tetrahedra in three spatial dimensions. Figure 2.4 (right) illustrates

that the straightforward simulation of a T-junction mesh leads to gaps in the mesh (top),

while treating T-junction particles as hard bound particles properly constrains them to their

incident edges (bottom).

2.2.2 Arbitrary Embeddings

Although our framework is described in the context of a parent simulation mesh outfitted

with a number of embedded particles that will be extended into a fully particle-centric sim-

ulation framework (in section 2.3), here we give an example to illustrate that our framework

is more general than this. That is, we switch from the notion of a parent simulation mesh

with an embedded set of particles to a parent point cloud simulation system with an em-

bedded mesh. In the context of free-form deformations, one might use a nearest neighbor

approach to compute a mesh-free discretization of internal forces on the point cloud, and

CHAPTER 2. HYBRID SOLIDS 12

Figure 2.5: A ribbon is kinematically embedded in a point cloud. Instead of using a stan-
dard mesh-free discretization of the point cloud, we endow the ribbon with a constitutive
model which is used to compute elastic forces that are subsequently mapped to the point
cloud. The first approach penalizes point cloud deformation and has no direct knowledge
of deformation artifacts within the ribbon, while our approach directly penalizes distortions
in the ribbon (2.3 sec/frame).

subsequently move the embedded mesh kinematically. Of course, this can lead to poten-

tially severe distortions of the embedded mesh, especially since the point cloud sampling

of deformation is very different from that perceived by the embedded mesh. This can be

alleviated by computing the internal forces on the embedded mesh itself, as we do in the

elastic ribbon shown in figure 2.5, and then mapping the resultant forces to the point cloud.

Using these forces, we still time integrate the point cloud particles and kinematically en-

slave the embedded mesh, but the deformation of space is now sampled more adequately

for the purpose of simulating the embedded mesh. Note that the kinematic motion of the

ribbon is dictated by the k closest parent particles of the point cloud.

2.3 Soft Bindings

The hard bound particle framework is limited because the hard bound particles are kine-

matically constrained to the parent mesh rather than possessing real degrees of freedom.

Thus, specialized algorithms would be required for collision processing, etc. We over-

come these issues by introducing the notion of a soft binding which couples a new, fully

simulation capable particle with an existing parent particle or hard bound particle target lo-

cation as illustrated in Figure 2.1. We can then ignore hard bound particles for the purpose

of collisions and apply collision processing uniformly to parent particles and soft bound

CHAPTER 2. HYBRID SOLIDS 13

Figure 2.6: (Left) A coarse deformable ball collides with a kinematic sphere. (Middle)
Soft bindings enable subtetrahedron elasticity in response to the collision. (Right) The
dynamically refined surface mesh.

particles.

Under no external influence such as collisions or soft bound particle intrinsic forces, soft

bound particles should follow their target positions. This is achieved by applying the force

that leads to a matching acceleration between the soft bound particle and its target, i.e.

the soft bound particles inherit elasticity and similar forces from the parent mesh. If the

acceleration of a hard bound particle is ae = ∑wiai = ∑wi(fi/mi), the force that is applied

to the soft bound particle to match this acceleration is fs = ms ∑wi(fi/mi) where ms is the

mass of the soft bound particle. Note that we only use this process to map elastic forces,

since applying it to damping forces would compromise the symmetry of the damping matrix

in our implicit time integration scheme.

The mass of each soft bound particle is set to the effective mass of its target (which is just

the mass for parent particles). This duplication of mass does not change the effective total

mass of the object as measured by applied forces, because our mapping of forces from the

parent mesh to the soft bound particles properly accelerates those particles. However, a

mass assignment stemming from a consistent physical principle would be desirable.

The coupling strategy between soft bound particles and their targets depends on whether

short term or long term drift is desired. Therefore we give separate algorithms for short

term and long term drift below.

CHAPTER 2. HYBRID SOLIDS 14

2.3.1 Synchronized Coupling

The most straightforward way to transfer information from the target particle to the soft

bound particle is by directly copying the target state. At first glance, this appears to nul-

lify the desired properties of soft bound particles effectively reducing them to hard bound

particles. However, in contrast with hard bound particles which are kept consistent with

their target state at all times, soft bound particles are synchronized to their target state at

specific points of the time integration loop allowing drift between two subsequent synchro-

nizations. Apart from collision processing, additional forces may also be used to cause drift

in soft bound particles, e.g. a soft bound copy of the surface of a volumetric object could

be endowed with shell elastic forces. We subsequently propagate any drift from their target

locations back to their parents, prior to the next synchronization of soft bindings with their

target state.

To propagate drift from a soft bound particle to its target, we compute the discrepancy in

position ∆x = x−xe and velocity ∆v = v−ve, where xe and ve are the position and velocity

of the (possibly hard bound) target particle. If the target particle is part of the parent mesh

these increments are directly applied to its position and velocity, while if it is hard bound we

use the formulas in section 2.2 to propagate these increments to the hard bound particle’s

parent particles.

2.3.2 Coupling Through Binding Springs

The synchronized coupling scheme only allows for short term drift of the soft bound par-

ticles limiting their added simulation capabilities. If long term drift is desired, we instead

employ a spring-like force between the soft bound particle and its respective target particle

(similar in spirit to a PD controller). This binding spring force is

f b =− f b
e =−k(x− xe)−b(v− ve). (2.5)

CHAPTER 2. HYBRID SOLIDS 15

Figure 2.7: (Left) Several spheres stitched together using stiff implicit binding springs.
(Right) Lowering the binding spring stiffness leads to drift. The binding springs are de-
picted as orange cylinders (30 sec/frame).

Note that the binding spring has zero rest length and thus linearizing about the rest state

results in a multidirectional (as opposed to the typical directional) damping term. We will

capitalize on this fact in our time integration scheme. Binding springs more readily allow

for full simulation capabilities in the soft bound particles. One no longer needs to explicitly

propagate information from the soft bound particles to the parents or to synchronize the soft

bound particles, but rather the soft bound particles and parents are now implicitly coupled

in a two-way fashion via these binding springs. We emphasize that the important prop-

erties of soft bindings depend on the combination of binding springs with force mapping,

and would not be achieved through springs alone. Note that a limitation of our approach

is that damping forces are not mapped from parents to soft bound particles (to preserve

symmetry). Even in the absence of collisions, this leads to drift that has to be corrected via

the binding springs.

In Figure 2.6 a coarse tetrahedralized volume has its surface mesh adaptively and dynami-

cally refined based on proximity to collision geometry, and the soft bound particles present

at every vertex of the surface mesh provide for subtetrahedron deformation.

CHAPTER 2. HYBRID SOLIDS 16

Figure 2.8: Allowing the hard bound target positions to drift, one can model subtetrahedron
plasticity resulting from collisions of soft bound particles (3 sec/frame).

2.3.3 Time Integration

Our time integration scheme is a variant of the semi-implicit modified Newmark integration

scheme of [42]. The deformable object is evolved from time tn to tn+1 as follows:

1. ṽn+ 1
2 = vn + ∆t

2 a(tn+ 1
2 ,xn, ṽn+ 1

2)

2. x̃n+1 = xn +∆tṽn+ 1
2

3. Process collisions (x̃n+1,vn)→ (xn+1, ṽn)

4.∗ vn+1 = ṽn + ∆t
2

(
a(tn+ 1

2 ,xn+ 1
2 , ṽn)+a(tn+ 1

2 ,xn+ 1
2 ,vn+1)

)
where xn+1/2 = (xn +xn+1)/2. Our scheme deviates from that of [42] in that the trapezoidal

velocity update in step 4∗ uses xn+1/2. This substitution retains second order accuracy

and allows for fully implicit integration of our binding spring forces. Under the common

assumption that the velocity dependent forces are linear, we can rewrite step 4∗ as

4. vn+ 1
2 = ṽn + ∆t

2 a
(

tn+ 1
2 ,xn+ 1

2 ,vn+ 1
2

)
5. vn+1 = 2vn+ 1

2 − ṽn

CHAPTER 2. HYBRID SOLIDS 17

The version of trapezoidal rule in step 4∗ can suffer from loss of precision when the two

acceleration terms are rather large but of opposite sign, whereas steps 4 and 5 use a robust

backward Euler update followed by extrapolation. That is, in the limit of a large time step

the first acceleration term in step 4∗ pushes a positive coefficient c of an eigenvector toward

−∞ while the second acceleration term brings that value back from −∞ to −c, possibly

failing due to loss of precision. However, in the same large time step limit, step 4 damps c

to 0 and step 5 robustly extrapolates c through 0 to −c.

The time step restriction imposed by a single binding spring is ∆t < (b +
√

b2 +4µk)/k

where µ is the reduced mass. As is typical, this drives the time step to zero as the spring

constant is increased, and thus we propose a fully implicit treatment of the binding springs

leveraging the fact that our binding springs are fully linear in both position and velocity

(which is not the case for nonzero rest length springs).

Equation (2.5) can be written in matrix form as fb = −Kx−Bv, where the stiffness and

damping matrices K and B are symmetric positive semi-definite. We apply our time inte-

gration scheme to this force, with the modification that in step 1 we use the half time step

position x̃n+1/2, making this step fully implicit:

ṽn+ 1
2 = vn +

∆t
2

ab(tn+ 1
2 , x̃n+ 1

2 , ṽn+ 1
2) (2.6)

= vn +
∆t
2

(
−M−1Kx̃n+ 1

2 −M−1Bṽn+ 1
2)
)

. (2.7)

Substituting x̃n+1/2 = 1
2(xn + x̃n+1) = xn + ∆t

2 ṽn+1/2, where the last equality comes from

step 2, gives (
I+

∆t
2

M−1B+
∆t2

4
M−1K

)
ṽn+ 1

2 =vn− ∆t
2

M−1Kxn (2.8)

which is a true backward Euler step implicit in both position and velocity with no time step

restriction. We emphasize that Equation (2.6) only replaces step 1 in our time integration

loop, and step 4 still requires the use of xn+1/2. Our modifications to [42] are crucial for

unconditional stability, e.g. using xn+1 instead of xn+1/2 in step 4 leads to a time step

restriction of ∆t < (b+
√

b2 +8µk)/2k (see [74]). We stress that this implicit treatment of

elastic forces is only used on the binding springs and that all other elastic forces are treated

CHAPTER 2. HYBRID SOLIDS 18

Figure 2.9: Cloth pinched between two spheres. Conflicting constraints are resolved by
allowing drift of duplicate surfaces using soft bindings (2.8 min/frame, 150×150 mesh).

explicitly in order to more accurately resolve dynamic motion.

2.4 Results

We used critical damping for the soft binding springs in our examples. The stiffness param-

eters were set experimentally. Figure 2.7 shows eight deformable spheres stitched together

using implicit binding springs as described in section 2.3.2. On the left the binding springs

are made sufficiently stiff to retain coincidence of the connecting points without incurring

additional time step restrictions. The binding springs are visible on the right where their

stiffness is reduced. In Figure 2.8 we begin with a coarse deformable block. We then create

a duplicate copy of the top surface, which is refined and hard bound to the block. Next,

we use binding springs to attach a soft bound duplicate of this refined surface for collision

with a stamp. When collisions stretch these binding springs to a length beyond a prescribed

threshold the hard bound target particles are moved in material space (and a new barycen-

tric embedding is computed) to bring the length back down to this threshold, analogous to

typical plastic yield. We are careful not to move any hard bound target particle outside the

material.

Using a variant of the virtual node algorithm [55], we cut a coarse cube mesh consisting

of 320 tetrahedra into 289 sticks as shown in Figure 2.10. Each stick is composed of a

number of tetrahedra that are only partially filled with material and the polygonization of

the material surface is augmented with soft bindings to resolve self-collisions and object

collisions. See [75] which is enabled by our new hybrid simulation framework.

CHAPTER 2. HYBRID SOLIDS 19

Figure 2.10: A coarse 320 tetrahedra cube mesh is cut into 289 sticks. Object collisions
and self-collisions are resolved by the soft bound embedded surface.

Figure 2.9 shows cloth pinched between two kinematically controlled spheres producing

contradictory collision constraints (see [5]). For each particle in the cloth mesh that is

pinched between the two spheres, we create two duplicate soft bound particles which each

collide with only one of the two spheres. Collisions with the sphere pull these soft bound

particles away from their hard bound target locations on the cloth surface resulting in bind-

ing spring forces that pull the cloth mesh in both directions equilibrating in a steady state.

In the absence of any other forces, the soft bound particles would slide along the sphere

in an attempt to minimize the length of the underlying binding springs. However, we map

the mesh-based constitutive model forces of the cloth to the soft bound particles making

them behave in a fashion similar to their hard bound counterparts, i.e. resisting stretching.

Figure 2.9 (lower right) is a visualization of the effect of mapping the constitutive model

forces from the hard bound target locations to their soft bound counterparts. That is, it is

similar to creating a mesh which connects all the drifted soft bound particles to each other

and to the parent mesh as depicted schematically by the orange wireframe. In fact, one

could envision this as simulating three distinct meshes: the parent mesh given by the cloth

itself, the orange wireframe mesh, and a second wireframe mesh which agrees with the

bottom half of the orange wireframe but is concave up elsewhere resolving collisions with

the top sphere. However, we do not need to construct these duplicate meshes, and instead

automatically inherit these properties from the parent simulation mesh.

Figure 2.11 depicts the dynamic simulation of a muscle-driven facial model for speech

articulation from [76]. The surface geometry is embedded in a non-graded adaptive red-

only BCC mesh with 135K tetrahedral elements, an 85% reduction from the mesh size in

[77] enabled by the features of the binding framework. Hard bindings are used to simulate

CHAPTER 2. HYBRID SOLIDS 20

Figure 2.11: An adaptive red-only BCC mesh for embedded simulation of a muscle-driven
face model. Hard bindings are used for T-junctions, and soft bindings are used for collisions
and boundary conditions (18 min/frame).

the resulting T-junctions, while soft bound particles are used to model the high resolution

surface and also used for collisions, self-collisions and boundary conditions. Since the

simulation mesh does not conform to the geometry of the cranium and jawbone, we use

soft bound particles on the high-resolution surface to enforce bone attachments as well.

A higher stiffness was used to attach the embedded free skin surface to its hard bound

counterpart, and a lower stiffness was used for the connections between soft-bound bone

attachments and their hard bound targets.

2.5 Extensions to Rigid Body Coupling

Various authors have considered the two-way coupling of rigid and deformable bodies us-

ing a variety of schemes, see e.g. [3, 43, 50, 64]. We present preliminary results showing

that our hybrid framework can be applied to these types of problems as well.

We consider the rigid body frame (xc,q), twist (vc,ω) and inertia tensor I(q)= R(q)I0R(q)T ,

where I0 is a diagonal inertia tensor and R(q) is the rotation matrix associated with the cur-

rent orientation. To facilitate our hybrid formulation, we define a rigid body particle with

the same state as a rigid body. A rigid body hard binding is defined by embedding a particle

onto a fixed object space location r0. Consequently, the kinematic state of the bound parti-

cle is given as xe = xc +r(q) and ve = vc +ω×r(q) where r(q) = R(q)r0 is the world space

displacement of the embedded particle from the center of mass of the rigid body. We can

write ve = W (q)(vc,ω) with the aid of the interpolation matrix W (q) = (I r(q)∗T) where

CHAPTER 2. HYBRID SOLIDS 21

Figure 2.12: Coupled simulation of rigid plates and cloth sheets, where cloth particles
have been hard bound to the rigid plates. Each of the three rigid plates as well as the two
constrained rigid bodies depicted in orange are represented by single rigid body particles.

I is the 3×3 identity matrix and r(q)∗ is the cross product matrix. Although xe cannot be

written in similar form, a linearized change in the frame of the rigid body particle admits a

similar mapping, i.e. ∆xe = W (q)(∆xc,∆q), where ∆xc is the displacement of the center of

mass and ∆q is the vector whose cross product matrix is the linearized rotation satisfying

R(q(t +∆t)) = R(q(t))+∆q∗+O(∆t2).

Applying a force fe to the hard bound particle results in a wrench (fc,τ) = W (q)T fe where

fc = fe is applied to the center of mass and τ = r(q)× fe is the torque. Next consider

a velocity-dependent damping force fe = Geve on a hard bound particle, which results

in (fc,τ) = W (q)T GeW (q)(vc,ω) = G(vc,ω) where G = W (q)T GeW (q) maps twists to

wrenches directly and retains the symmetry and definiteness of the damping matrix Ge.

Similarly elastic wrench differentials are given by (∆ fc,∆τ) = W (q)T KeW (q)(∆xc,∆q) =

CHAPTER 2. HYBRID SOLIDS 22

Figure 2.13: Simulation of a cloth curtain with a number of particles hard bound on rigid
rings that are used to suspend the cloth from a curtain rod. Each of the ten rings is modeled
with a single rigid body particle.

Figure 2.14: A net is constructed using binding springs to create simple point joints be-
tween hard bound particles on different rigid bodies.

K(∆xc,∆q) where K = W (q)T KeW (q) is the stiffness matrix expressed in terms of the rigid

body particle and Ke = ∂ fe/∂xe is the stiffness matrix expressed in terms of the hard bound

particle. We use these results to treat rigid body particles in the same fashion as other par-

ent particles in our time integration scheme. Note that the definition of the global damping

matrix G = WT ḠW and global stiffness matrix K = WT K̄W trivially extends to the case

of rigid body bindings, by incorporating the interpolation matrix W (q) into the global ma-

trix W used in these equations. Finally, the global mass matrix M is augmented with the

diagonal entry diag(mI, I) for each rigid body particle.

CHAPTER 2. HYBRID SOLIDS 23

2.5.1 Coupled Rigid/Deformable Simulation

[78] described a preliminary algorithm for coupling the rigid body particles to a state-of-

the-art rigid body simulation system. The scheme interleaves the rigid body time integra-

tion with the hybrid deformable solids simulator augmented with rigid body particles as

follows:

1. Copy the state of the rigid bodies to the rigid body particles

2. Compute ṽn+ 1
2 as in section 2.3.3

3. Compute x̃n+1 using x̃n+1
c = xn

c +∆tṽn+ 1
2

c and q̃n+1 = q(∆tωn+ 1
2)qn

4. Process collisions for deformable objects only

5. Compute vn+1 using steps 4 and 5 from section 2.3.3

6. Copy momentum only from the rigid body particles to the rigid bodies

7. Separately, time integrate and collide the rigid bodies

This last step evolves the rigid bodies forward in time using a standard scheme as in [32],

and the two-way coupling is integrated into the standard rigid body solver using steps 1

through 6 where only the effects of momentum are preserved. Figure 2.14 shows the use

of implicitly integrated binding springs to enforce a simple point joint articulation between

rigid body hard bound particles. Figures 2.12 and 2.13 illustrate two-way coupling between

cloth and rigid bodies. In Chapter 3, the interleaved rigid/deformable coupling described

above is extended to a fully two-way coupled rigid/deformable time integration scheme

allowing for more complex scenarios involving contact, stacking, friction, and articulation.

Chapter 3

Two-Way Coupling of Rigid and
Deformable Bodies

In Chapter 2, a preliminary coupling of rigid and deformable bodies was demonstrated

which interleaves the rigid body and deformable solid simulators. While this approach

allows for some two-way interactions, it treats collisions and contact in a one-way fashion

and generally does not allow for the two-way interaction of the full capabilities of the rigid

and deformable simulators. In this chapter (based on [73]), we develop a framework for

the full two-way coupling of rigid and deformable solids, which is achieved with both

a unified time integration scheme as well as individual two-way coupled algorithms at

each point of that scheme. Thus we do not require specialized methods for dealing with

stability issues or interleaving parts of the simulation. We maintain the ability to treat the

key desirable aspects of rigid bodies (e.g. contact, collision, stacking, and friction) and

deformable bodies (e.g. arbitrary constitutive models, thin shells, and self-collisions). In

addition, our simulation framework supports more advanced features such as proportional

derivative controlled articulation between rigid bodies. This not only allows for the robust

simulation of a number of new phenomena, but also directly lends itself to the design of

deformable creatures with proportional derivative controlled articulated rigid skeletons that

interact in a life-like way with their environment.

24

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 25

Figure 3.1: Chain composed of both rigid and deformable tori, as well as loops of artic-
ulated rigid bodies. The leftmost torus is static, and the rightmost torus is kinematically
spun to wind and unwind the chain.

3.1 Introduction

A number of authors have proposed methods for simulating two-way coupling between

rigid and deformable bodies, see e.g. [3,43,50,64,78]. Although coupling deformable and

rigid bodies is interesting from the standpoint of simulating new phenomena as demon-

strated by those authors, it is also quite interesting from the standpoint of designing crea-

tures. Typically creatures are designed as articulated rigid bodies with some sort of joint

or muscle control with notable examples being Luxo Jr. [89], athletes from the 1996 Sum-

mer Olympics [35], and the virtual stunt man of [19]. However, creatures are more life-like

when their internal skeleton can be used to drive a deformable exterior, such as the tentacles

for Davy Jones [16, 85]. The difficulty with wrapping a rigid skeleton with a deformable

exterior is that the creature can only interact with its environment if environmental forces

deform the exterior, and the deformable exterior subsequently applies forces to the rigid

interior. That is, modeling deformable creatures with rigid skeletons requires two-way

rigid/deformable interaction [25].

For the two-way coupling of physical phenomena, there are two common approaches. One

approach is to start with the best methods for each phenomenon and subsequently design

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 26

Figure 3.2: Silver rigid boxes and orange deformable boxes are arranged to form a stack,
which is knocked down by a rigid ball.

methods for linking these disparate simulation techniques together. Typically interleav-

ing is necessary, where each simulation is run using the results of the previous one in an

alternating one-way coupled fashion. This leads to stability issues as one system cannot ad-

equately predict what the other system will do–similar to explicit time integration. Various

ad hoc tricks can be applied to increase the stability making the system semi-implicit (e.g.

solving for the effect of damping forces between rigid and deformable bodies implicitly,

and subsequently mapping the momentum back to the rigid body simulator [78]). Addi-

tionally, specialized techniques for increasing the stability of partitioned approaches have

been investigated in the computational physics literature (see e.g. [44], [67]). Still, stability

issues remain. The other approach is to design a fully two-way coupled system, and there

are essentially two ways to accomplish this. One could use the same type of simulation for

both types of phenomena (e.g. SPH for both solids and liquids [60] or cloth as an articulated

net of rigid bodies [8]). Unfortunately, this typically leads to inferior methods for at least

one of the two phenomena being simulated. For example, one could imagine extending the

mass-spring simulation framework to the rigid limit and simulating rigid bodies with very

stiff springs. We take the alternative approach and fully hybridize the simulation frame-

works in a manner that maintains the ability to use the more advanced techniques for each

physical phenomenon. That is, we want to retain the ability of our rigid body framework to

accurately model contact, collision, stacking, friction, articulation, proportional derivative

(PD) control, etc., and our deformable object framework to handle arbitrary constitutive

models, finite elements, masses and springs, volumes or thin shells, contact, collision, self-

collision, etc. In addition, we would like to maintain stability and avoid ad hoc methods for

interleaving the simulations.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 27

Full two-way coupling of state of the art rigid body and deformable object time integration

schemes, though seemingly straightforward, is more difficult and subtle than it appears.

Robust rigid body systems tend to be sensitive to the time integration scheme, because a

minor change in the scheme can, for example, cause blocks to tumble rather than slide

down an inclined plane. In contrast, deformable object Newmark schemes are far less

sensitive and allow more freedom in the way collisions are processed but utilize separate

position and velocity updates as well as implicit solves. Our approach demonstrates that

we can fully integrate these disparate methods without losing their individual capabilities.

Notably, this can be done by coupling together standard rigid body and standard deformable

body simulation systems using our newly proposed techniques instead of requiring one to

design a unique simulation system from scratch.

We propose a unified time integration scheme, where the rigid and deformable bodies are

integrated forward together in every manner, not only with position and velocity evolu-

tion, but such that collision, contact, interpenetration resolution, etc. are all handled at the

fine-grained level with fully two-way coupled algorithms. On the rigid body side, we were

guided by the time integration scheme proposed by [32], which proposes a clean separa-

tion of contact and collision and handles both simple and more complex scenarios ranging

from a block sliding down an inclined plane to large-scale stacking behaviors. We also

wanted our rigid body simulator to include the effects of articulation and internally torque

controlled joints [86,87]. On the deformable side, we required a Newmark-style algorithm

as in [78], which cleanly separates the evolution of position and velocity. The deformable

algorithm should at least be implicit on the damping forces as in [9] but could also be fully

implicit as in [4]. We propose such a time integration scheme, which evolves every object

synchronously using fully coupled algorithms at each step.

We describe in detail the steps of our unified time integration scheme below. We note,

however, that the approach does not depend on our particular choice of algorithms for

the various subsystems but rather serves as a proof of concept of the benefits of a unified

approach. Other choices of specific algorithms, e.g., for contact and collision, can be sub-

stituted. Much of what we incorporate is optional, including the incompressibility of [41],

the articulation of [87], the PD control of [86], and the bindings of [78]. We include them

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 28

Figure 3.3: A row of silver rigid balls and yellow deformable balls are impacted by a rigid
ball. The yellow balls are modeled as deformable and incompressible materials.

to demonstrate the breadth of phenomena that can be incorporated.

3.2 Time Integration

The basic structure of our time integration scheme is that of a Newmark method. New-

mark methods are characterized by separate position and velocity updates. In particular,

the velocity used in the position update can be distinct from the final velocity, and we take

advantage of this to treat the position and velocity updates differently. For example, one

might add constraint violating components to the velocity during the position update to

correct drift, while projecting out these components in the final velocity update (e.g. as

in [41]). Moreover, maintaining the Newmark structure allows us to incorporate a wide

range of algorithms from computational mechanics. For example, we can enforce the in-

compressibility of materials, deal with contact and collisions, self-collisions, friction, etc.

For background on the Newmark family of methods see e.g. [38].

We begin by outlining our time integration scheme as composed of five major steps:

I. Advance velocity vn→ ṽn+ 1
2

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 29

II. Apply collisions vn→ v̂n, ṽn+ 1
2 → v̂n+ 1

2

III. Apply contact and constraint forces v̂n+ 1
2 → vn+ 1

2

IV. Advance positions xn→ xn+1 using vn+ 1
2 , v̂n→ vn

V. Advance velocity vn→ vn+1

Adhering to the time integration scheme proposed in [32], we cleanly separate position and

velocity updates from contact and collision. Collisions are done with time tn velocities

so that objects in contact do not bounce, and contacts are performed only on a subset

of pairs processed by collisions so that one does not inaccurately apply contact forces to

objects before they collide. The algorithmic ordering of collisions followed by contact

followed by position updates followed by velocity updates is exactly as in [32] except

for the initial advancement of velocities to vn+1/2. In fact, their algorithm would have been

more accurate if it had done this, as opposed to using the full ∆t for the predictive velocities,

obtaining xn+1 = xn +∆tvn +∆t2a. [86] took special measures to deal with this inaccuracy,

changing parameters to get the desired solution. Using vn+1/2 as in the Newmark scheme

automatically alleviates this issue.

Each of the five major steps of the time integration scheme is further described in the five

sections that follow.

3.3 Step I: Advance Velocity

Typically the first step in a Newmark iteration scheme is to predict the velocity that will be

used to update the positions. We accomplish this as follows:

1. Advance velocities vn+ 1
2

? = vn + ∆t
2 a(tn+ 1

2 ,xn,vn+ 1
2

?)

2. Apply volume correction vn+ 1
2

? → vn+ 1
2

??

3. Apply self-repulsions vn+ 1
2

?? → ṽn+ 1
2

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 30

Figure 3.4: Ten rigid balls and ten deformable tori fall on a cloth trampoline. The trampo-
line is constructed by embedding the cloth in a kinematically controlled torus, which tosses
the objects after they have landed and then allows them to settle.

Here and in the remainder of the chapter we use starred variables to denote intermedi-

ate states that do not carry over from section to section. When using semi-implicit time

integration with implicit, linear damping forces as in [10], step 1 requires the solution

of a linear system, which we solve using the conjugate gradient method. One could

instead use the fully implicit method from [4]. In that case step 1 becomes vn+1/2
? =

vn + ∆t
2 a(tn+1/2,xn+1/2,vn+1/2

?), where xn+1/2 is replaced with xn+1/2 = xn + ∆t
2 vn+1/2

? . The

resulting nonlinear equation is subsequently solved via Newton-Raphson iteration. During

the solve, the acceleration in step 1 is projected to satisfy equality constraints such as joint

velocity equality constraints, but we avoid applying constraints that may lead to undesirable

sticking artifacts at this stage.

If we are simulating incompressible solids, as in Figure 3.3, step 2 adjusts the velocities

such that local volume errors will be corrected when positions are advanced [41]. One

could also make the velocity field inextensible as in [30]. Step 3 applies self-repulsions as

in [9].

While we include steps 2 and 3 here, the only essential part of Step I is to advance the

velocity to time tn+1/2 as required by the Newmark structure.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 31

Figure 3.5: The four silver boxes are rigid, and the deformable blue bar is attached to the
boxes using the embedding framework of [78]. The far left box is kinematically rotated,
causing the bar to twist and subsequently turn the box to its right, which is attached to the
static box to the right of it by a twist joint. The free box on top falls off as the bar is twisted.

3.4 Step II: Collisions

Once the time tn+1/2 velocities have been computed, we correct them for rigid/rigid, rigid/deformable

and deformable/deformable collisions. As in [32], collisions are processed before contact

to allow elastically colliding rigid bodies to bounce. The main goal of this step is to adjust

velocities for collisions, and other collision algorithms may be used. The steps we use for

our collision processing are

1. Process collisions vn→ vn
?

2. Apply post-stabilization vn
?→ v̂n

3. Re-evolve velocities v̂n+ 1
2 = v̂n +(ṽn+ 1

2 −vn)

For collision detection, all positions are evolved forward in time to look for interferences

between pairs of rigid/rigid, rigid/deformable, or deformable/deformable bodies using the

update formula xn+1
? = xn + ∆tṽn+ 1

2 (see Section 3.4.1 for rigid body orientations). As

in [32], collisions are processed using vn so that objects in contact do not bounce even

when they have nonzero coefficient of restitution. For details on rigid/rigid collisions,

see [32]. Rigid/deformable collisions are processed by iteratively colliding each particle of

the deformable body against the rigid body. Each rigid/particle pair is processed using the

rigid/rigid collision algorithm treating the particle as a rigid body (with an infinite inertia

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 32

Figure 3.6: 1600 bodies are dropped on a 5× 5 grid of static rigid pegs to form a pile.
There are 160 colored deformable balls, 160 colored deformable tori, 160 rainbow-colored
articulated loops with six rigid bodies each, 160 silver rigid balls and 160 blue rigid rings.

tensor) and a zero coefficient of restitution. For deformable/deformable pairs, one could

use tetrahedral collisions as in [82], however we instead use the self-collisions of [9] after

the position update as described in Section 3.6.

In Gauss-Seidel fashion, we iteratively process the collisions one pair at a time and re-

update the post-collision position of each body via xn+1
? = xn + ∆t(vn

? + (ṽn+1/2− vn))

where ṽn+1/2− vn includes the forces added in step 1 of Section 3.3. If no collision was

applied, then vn
? = vn, and the position is unchanged. Note that the positions computed

here are only used to resolve collisions, and are subsequently discarded. We also explicitly

save a list of all pairs processed so that contact later considers only those pairs already

processed by collisions. This ensures that newly colliding objects will have an opportunity

to bounce before being processed for contact. After processing collisions, we apply the

post-stabilization algorithm of [87] to ensure that the collision velocities do not violate

joint constraints. Finally, step 3 applies the effects of collisions v̂n− vn to the time tn+1/2

velocities ṽn+1/2.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 33

3.4.1 Second Order Rigid Body Evolution

Given a rigid body in a certain orientation with a certain kinetic energy and angular momen-

tum, the number of states the rigid body is allowed to evolve to is limited by conservation of

both energy and momentum. Not every orientation will conserve both quantities, and typ-

ical simulators only conserve momentum, allowing kinetic energy to rise or fall. [87] used

the first order update qn+1 = q̂(∆tω)qn where q̂ = (cos(|ω|/2),sin(|ω|/2)ω/|ω|) is the unit

quaternion which rotates by |ω| around the vector ω . To reduce errors in kinetic energy,

we instead propose using the second order update qn+1 = q̂(∆tω +(1/2)∆t2I−1(L×ω))qn.

A straightforward Taylor expansion can be used to verify that this formula is second order

accurate, and we note that it essentially uses a time tn+1/2 angular velocity ω similar to

Newmark methods. The Taylor expansion is simplified by observing that q̂(ω) is equiva-

lent to eω∗ , where ω∗ is the cross product matrix of ω .

3.5 Step III: Contact and Constraint Forces

The main purpose of this section is contact and contraint processing. Articulation and PD

are optional, and other contact processing algorithms could be substituted. The steps used

for the contact and constraint forces stage are

1. Compute contact graph using v̂n and v̂n+ 1
2

2. Apply PD to velocities v̂n+ 1
2 → vn+ 1

2
?

3. Apply contact and pre-stabilization vn+ 1
2

? → vn+ 1
2

We compute a contact graph for the rigid bodies similar to [32] which also includes the

order in which articulated rigid bodies will be processed for pre-stabilization as in [87].

We also apply PD control, see [86]. Proceeding in the order determined by the contact

graph, each rigid body is processed in turn for contact with all rigid and deformable bodies

it interpenetrates. For rigid/rigid pairs, we perform contact as in [32]. Rigid/deformable

pairs are treated in the same manner as they were treated for collisions, since we always

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 34

treat deformable body collisions inelastically. This process is iterated as in [32]. If one

were using tetrahedral collisions for deformable/deformable pairs [82], they would also

be processed at this stage. We instead apply the self-collisions of [9] after the position

update as described in Section 3.6 to resolve deformable/deformable contact. The stack

in Figure 3.2 demonstrates the effectiveness of the two-way contact algorithm, standing

upright until being struck at its base by a rigid ball.

3.5.1 Improved Pre-stabilization

[87] performed pre-stabilization on orientations by solving a quaternion equation of the

form f (jτ) = qp(jτ)−qc(jτ) = 0 using Newton-Raphson iteration. To alleviate issues with

quaternion subtraction, we instead solve g(jτ) = qpq−1
c = (±1,0). g(jτ) consists of both

a scalar and vector part, and it turns out to be enough to solve the nonlinear equation that

sets the vector part equal to 0.

3.6 Step IV: Advance Positions

In the preceeding steps, we made all the desired adjustments to the velocities. The purpose

of Step IV is then to evolve the bodies to their final positions, which we do as follows:

1. Advance positions x̂n+1 = xn +∆tvn+ 1
2

2. Interpenetration resolution x̂n+1→ xn+1

3. Post-stabilization v̂n→ vn

Since our rigid/rigid and rigid/deformable contact algorithms do not guarantee that the bod-

ies are completely interpenetration free, we apply an interpenetration resolution method

(similar in spirit to [2]), as described in detail below. Finally, since steps 1 and 2 changed

rigid body orientations, rigid body angular velocities also changed, and thus post-stabilization

of velocities for articulated rigid bodies must be applied.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 35

Figure 3.7: A snake constructed by embedding a 12-joint articulated rigid body skeleton
in a deformable body. The snake sidewinds up and down stairs using PD-control on its
skeleton.

3.6.1 Interpenetration Resolution

One might consider an approach to resolving penetration that operates by iterating pairwise

algorithms. This approach suffers from the messenger problem, where a large amount

of momentum must be exchanged through low-capacity messengers. Consider a row of

colliding objects, with the outer two objects being massive and the objects between them

being light. The collision must be resolved by moving the massive outer bodies, which

requires the exchange of a large impulse. Because the objects in between are light, they

are unable to transfer large impulses without obtaining high velocities. Each collision

processing step is only able to transfer an impulse across the chain one body at a time, so a

large number of iterations are required to complete the momentum transfer.

With this in mind, we propose a novel method to remove small interpenetrations between

bodies. Rather than process pairwise as was done for the contact and collision algorithms,

we consider one central object (either a rigid body or a particle of a deformable body) at a

time and push out every outer object (rigid or deformable) intersecting it simultaneously in

a fully two-way coupled fashion. This helps address the messenger problem by allowing a

single step to transfer impulses two links at a time instead of one and by avoiding the prob-

lem entirely when there is only one such light body. This approach is not easily applied to

the full contact and collision problems, primarily because of the complications introduced

by friction. The central body c exchanges an impulse jo with an outer body o resulting in a

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 36

Figure 3.8: One step of the interpenetration resolution algorithm processes a central body
along with all the interpenetrating outer bodies.

change in relative velocity at the pair’s intersection point of

m−1
c j+ r∗o

T I−1
c jτ −Kojo = vo (3.1)

where Ko = m−1
o δ +qo

T I−1
o qo, ro and qo are the vectors from the center of masses of body c

and body o to the point of application of jo, respectively, and j =−∑o jo and jτ =−∑o r∗ojo

are the net linear and angular impulses applied to body c. Solving Equation (3.1) for jo and
plugging the result into the expressions for j and jτ gives the symmetric 6×6 systemmcδ +∑

o
K−1

o ∑
o

K−1
o r∗o

T

∑
o

r∗oK−1
o Ic +∑

o
r∗oK−1

o r∗o
T

(m−1
c j

I−1
c jτ

)
=

 ∑
o

K−1
o vo

∑
o

r∗oK−1
o vo

. (3.2)

Once Equation (3.2) is solved for the net impulse j and jτ on the central body, each jo is

obtained from substitution into Equation (3.1). To achieve a desired separation distance do,

we take vo = do/∆τ and integrate positions with the velocity change due to the computed

impulses for a pseudo-time of ∆τ . The above procedure is iterated over the bodies and is

both more accurate and converges faster than an analogous pairwise method.

Equations (3.1) and (3.2) apply generally to both rigid bodies and deformable particles,

with the simplification that ro = 0 for a central deformable particle (reducing Equation (3.2)

to a 3×3 system) and that qo = 0 for an outer deformable particle. When the central body

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 37

is static or kinematic (having infinite inertia) the equations for the outer bodies decouple as

the first two terms in Equation (3.1) vanish. When any outer bodies are static or kinematic

the system must be decomposed into the degrees of freedom determined by the static bodies

and the remaining degrees of freedom corresponding to the nullspace of the equations for

the static bodies. Afterwards, the system can be reassembled and solved. For more details

see [71].

3.7 Step V: Advance Velocity

The second half of the Newmark time integration scheme is the velocity update, which we

do as follows:

1. Make incompressible vn→ vn
?

2. vn+1
? = vn

? +∆t â(tn+ 1
2 , 1

2(xn +xn+1), 1
2(vn

? +vn+1
?))

3. vn+1
?? = vn

? +∆t a(tn+ 1
2 , 1

2(xn +xn+1), 1
2(vn

? +vn+1
?))

4. Apply constraints: post-stabilization, PD control, contact, post-stabilization and self-

repulsions vn+1
?? → vn+1

We project the velocity field for incompressibility before our velocity evolution as in [41].

In step 2, we use a variant of trapezoid rule to solve for the velocities. In practice, we break

this step into a backward Euler solve followed by extrapolation as in [78]. We note that one

could instead use backward Euler, which introduces more damping. We discuss steps 2-4

in more detail below.

3.7.1 Constrained Solve

The linear system in step 2 is solved using conjugate gradients. We include as many linear

constraints as possible in the conjugate gradient solve, accounting for post-stabilization

of joints between rigid bodies and two-way contact. This is desirable because it allows

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 38

Figure 3.9: Objects sliding down an inclined plane with friction. From left to right: analytic
solution, rigid box, deformable box and a single particle.

the effects of constraints to propagate instantly during the implicit solve. Note that â has

been used instead of a in step 2 above to indicate that these forces are modified during the

conjugate gradient solve by applying projections to satisfy constraints as in [4].

3.7.2 Final Velocities

As shown in [4], the unprojected residual of the converged system in step 2 gives the

net normal force due to all constraints. [4, 72] use the unprojected residual to compute

frictional forces due to contact between particles and a single immovable body. They are

able to postprocess each particle independently based on the normal force it feels because

they enforce contact in a one-way fashion. That is, computing the frictional forces on a

particle results in a change in the particle’s tangential velocity relative to the body, but does

not affect the body’s velocity. Thus, the particle/body interactions are decoupled, with the

body acting as though it had infinite inertia.

In contrast to [4, 72], the interactions we compute are fully two-way. Thus, we cannot

postprocess constrained particles for friction independently after the solve, since these con-

straints are not decoupled. Furthermore, the residual only yields the net force, so we would

not be able to untangle the effects of multiple interactions. Therefore, we propose a novel

framework of incorporating the constraints into conjugate gradients only for the purpose

of determining damping forces (and elastic forces if they are treated implicitly) and apply

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 39

Figure 3.10: Maggots constructed by embedding a two-joint PD-controlled articulated rigid
body skeleton into a deformable body. From left to right: a maggot on the ground, a maggot
trapped under a large rigid body, 20 maggots dropped into a bowl wriggling and interacting
with each other, and 20 maggots interacting with 20 rigid tori.

friction, contact, etc. as a postprocess. Step 3 uses the result of step 2 to compute the accel-

eration a as opposed to the projected acceleration â. Thus, all of the projections in step 2

only help to determine what velocity vn+1
? will be used to evaluate the damping forces in

step 3. This approach produces accurate friction as illustrated in Figure 3.9.

An issue in our approach is that the postprocess of the velocities for constraint forces does

not allow the damping forces to act on forces applied during the postprocess until the next

time step. Thus, one needs to realize that there are undamped velocities, e.g. when com-

puting a CFL condition. In addition, those velocities may get damped based on a smaller

time step than the time step in which they were applied. We have nevertheless found that

we can work around this by simply moving the postprocesses after applying explicit forces

but before the conjugate gradient solve (the postprocesses still see explicit forces but not

implicit forces and will thus be less accurate). We note that this was only done for the large

pile example, and all other examples were run as described above.

3.7.3 Enforcing Constraints in the Solve

We enforce the linear constraints in the conjugate gradient solve in a momentum-conserving

way. Let the constraints be written as CT v = 0, where C is a matrix of coefficients and v is a

vector containing the linear and angular velocities of all particles and rigid bodies. If M−1 is

the block-diagonal mass matrix, the projection to be applied is δ−M−1C(CT M−1C)−1CT ,

where δ is the identity matrix. This general form for the projection matrix holds for both

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 40

Figure 3.11: A deformable fish constructed by embedding a four-joint PD-controlled ar-
ticulated rigid body skeleton. The fish is dropped on the ground and flops back and forth
interacting with its environment.

rigid bodies and individual particles. When there are multiple constraints, we iterate these

projections using forward and backward sweeps to ensure our projection step is symmetric

even if it has not fully converged as in [41]. The resulting matrix is always symmetric

positive semidefinite and can be solved with conjugate gradients provided the residual is

properly projected at each iteration.

An alternative approach would be to solve the augmented system (or KKT system), which is

symmetric and indefinite. This system was solved efficiently in [2] for the case of explicitly

integrated applied forces and a loop-free set of constraints. In the case of loops, such

as those introduced by loops of articulated rigid bodies or implicitly integrated damping

forces, this approach is no longer efficient. Another possible approach is to solve the KKT

system with an iterative Krylov solver for indefinite systems, avoiding the projections at

the cost of potentially inferior convergence characteristics.

Post-stabilization The post-stabilization algorithm of [87] is included in our conjugate

gradient solve to project the rigid body velocities in a momentum-conserving fashion so

that they satisfy joint constraints. Since step 3 discards these velocities, they are reapplied

in step 5.

Rigid/rigid contact We incorporate rigid/rigid contact constraints into the solve by cre-

ating joints just prior to the solve and removing them afterwards. In this fashion, we are

able to use the articulated rigid body post-stabilization algorithm for projecting contact

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 41

constraints during the conjugate gradient solve. When computing contact (during step 3

of Section 3.5) we record all points on the surface of one rigid body processed for contact

against another. For each such point, we use its time tn+1 location and the level set normal

from the other body at that point. We then construct a joint that only constrains motion in

the normal direction and leaves the other two prismatic degrees of freedom and all angular

degrees of freedom unconstrained.

Rigid/deformable contact Rigid/deformable contact projection is performed in a man-

ner similar to interpenetration resolution as described in Section 3.6.1. We process a rigid

body against all particles in contact with it simultaneously. However, we restrict impulses

to the normal direction no during this contact processing phase. We target a relative change

vo that will cancel out the relative velocities in the normal direction of the particle and the

body at the intersection point po. If the central body is kinematic, the particles are given

an impulse in the normal direction that cancels the relative normal velocity between the

particle and the rigid body. Otherwise we apply impulses jono (where jo is a scalar) to

each outer body c at po so that

nT
o (m−1

c j+ r∗o
T I−1

c jτ −Ko jono) = nT
o vo. (3.3)

Using Lo = nonT
o (nT

o Kono)−1, we can express these equations in the formmcδ +∑
o

Lo ∑
o

Lor∗o
T

∑
o

r∗oLo Ic +∑
o

r∗oLor∗o
T

(m−1
c j

I−1
c jτ

)
=

 −∑
o

Lovo

−∑
o

r∗oLovo

 (3.4)

where the net linear and angular impulses applied to the central body are j =−∑o jono and

jτ = −∑o r∗o jono. This 6× 6 system is symmetric positive definite and can be solved to

obtain j and jτ , from which jo is obtained by substitution into Equation (3.3).

Self-repulsions Self-repulsions apply forces between edge-edge and point-triangle pairs

to help avoid collisions [9]. In the conjugate gradient solve, we use the projection algorithm

proposed in [41] to enforce these constraints.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 42

3.8 Examples

Figure 3.5 illustrates that we can use the embeddings of [78] in our fully two-way cou-

pled approach. Note that [78] was unable to handle two-way collisions and contact and

more generally used an interleaved, semi-implicit approach to rigid/deformable coupling.

Figure 3.1 demonstrates the robustness of the algorithm which allows stable two-way inter-

action between many types of competing constraints. Figure 3.4 demonstrates the ability

of the two-way contact and collision algorithms to handle both volumetric objects and

thin shells. Figure 3.6 demonstrates the ability of the algorithm to handle simulations

with large numbers of two-way coupled bodies. One of the major applications of two-way

rigid/deformable coupling is the simulation of skeleton-controlled deformable objects that

can interact with their environment as shown in Figures 3.7, 3.10 and 3.11. Table 3.1 pro-

vides timing information for all of the examples in this chapter. Most of the examples were

fast enough that we simply ran them with conservative time steps, whereas the large pile

was expensive enough to warrant performance tuning.

3.9 Conclusions

We propose a novel time integration scheme for two-way coupling rigid and deformable

bodies that retains the strengths of deformable object simulators and rigid body simulators.

We build upon existing algorithms for rigid/rigid and deformable/deformable interaction

and where necessary propose new fully-coupled algorithms. The resulting scheme handles

two-way coupled contact, collision, stacking, friction, articulation, and PD control. We use

our framework to simulate life-like creatures that interact with their environment.

CHAPTER 3. TWO-WAY COUPLING OF RIGID AND DEFORMABLE BODIES 43

Ave. Time Ave. Substeps
Per Frame Per Frame

Twisting Chain (Figure 3.1) 92.2 sec† 123
Stack (Figure 3.2) 10.0 sec 35
Row of Spheres (Figure 3.3) 35.3 sec 94
Deformable Bar (Figure 3.5) 4.1 sec 51
Trampoline (Figure 3.4) 14.5 sec 32
Large Pile (Figure 3.6) 40 min 14
Snake (Figure 3.7) 1.8 sec 38
Friction (Figure 3.9) 6.4 sec 2515+

Single Maggot (Figure 3.10) 0.6 sec 30
Maggot and Ring (Figure 3.10) 7.7 sec 100
Bowl of Maggots (Figure 3.10) 19.1 sec 30
. . . with Rings (Figure 3.10) 62.2 sec 59
Fish (Figure 3.11) 52.8 sec 117

Table 3.1: This table contains average times per frame and number of substeps required
per frame for each example. † The individual times varied substantially between frames,
depending strongly on the degree of stress. + This test was run as a convergence test with
an artificially low time step.

Chapter 4

Multiple Interacting Liquids

This chapter presents an extension of the particle level set method for the geometric rep-

resentation of three or more fluid regions, and first appeared in [52]. The method uses a

separate level set function and a separate set of particles for each region. A novel projection

algorithm is used to uniquely define the interface at any given point, providing a dictionary

for translating the vector-valued multiple level set function into the standard single-valued

level set representation. We use this method to simulate multiple interacting liquids with

varying densities and viscosities, viscoelastic properties, surface tension forces and surface

reactions such as combustion.

4.1 Introduction

Earlier works on fluid simulation focused on single phase flows such as smoke [22, 24, 80]

or free surface flows such as water [18, 23]. More recently, researchers have considered

more complex phenomena including fire [48, 62], bubbles [37], viscoelasticity [29], etc.

Although the level set method allows for the simulation of two distinct fluids, such as

fuel and products [62] or water and air [37], it does not handle the complex phenomena

associated with the interactions of more than two fluids. We propose a novel method that

44

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 45

Figure 4.1: A kinematically controlled sphere splashing into a multi-layer pool (300×
300×200 grid, 4 phases).

allows one to simulate multiple (more than two) liquids (and gases), including complex

interactions between the different fluids.

A few researchers have begun to tackle the difficulties associated with using multiple level

sets (without particles) to represent multiple regions. One approach is to use a different

level set for each region as in [54, 70, 79]. Each level set is independently evolved forward

in time leading to contradictions in the representation of the interface, which are resolved

via projection (or slowly, via a penalty method as in [92]) eliminating points that have been

classified as inside more than one region or not inside any region. The other main approach

uses n level sets to represent up to 2n regions [84]. For example, two level sets can be used

to represent four regions classified via all possible sign combinations (i.e. “++”, “+−”,

“−+” and “−−”). This approach intrinsically removes the need for projection, but typi-

cally suffers from biasing artifacts especially where more than two regions intersect. So

while it is quite useful in computer vision especially when there are many regions, it has

not enjoyed similar success in physics-based applications where the number of distinct ma-

terials is typically small enough that it is not inefficient to use a separate level set for each

allowing for a non-biased simulation of the underlying physics. In fact, level set meth-

ods are typically only applied in a lower dimensional band near the interface making them

cheap as compared to the physical equations that need to be solved everywhere. Moreover,

regardless of the number of level sets used, the particle level set method still requires one

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 46

set of particles for each region, so its cost remains unchanged. Finally, we note that all

these approaches are predated by [26], which proposed a method for removing overlaps

of implicitly represented deformable objects, although gaps between objects were not ad-

dressed making the work inapplicable to fluids where vacuum regions need to be properly

addressed.

At each point in the domain, we have a vector ~φ(~x) = (φ1(~x), . . . ,φn(~x)). Since the individ-

ual level set functions (the φi’s) will generally give contradictory geometric information, a

consistent approach to interpreting the vector-valued level set function is needed. We do

this by creating a level set “dictionary” that translates between the vector ~φ and the tra-

ditional single level set representation at each point in the domain. Our novel projection

method makes this translation straightforward for both theoretical and practical purposes

(e.g. allowing the incorporation of previous level set simulation techniques). Moreover,

our method is purely geometric and thus does not interfere with the underlying physics.

It also preserves the signed distance property of the various level set functions (unlike for

example [54]).

Our method provides for the straightforward simulation of multiple liquids (and air) with

varying densities, viscosities, or viscoelastic properties. We also consider complex inter-

actions between fluids such as surface tension forces and reactions (e.g. the burning of

a premixed fuel as in [62]). Such interactions typically involve discontinuous material

properties across the interface, e.g. pressure jumps due to surface tension. [62] and [37]

advocated using the ghost fluid method (GFM) to avoid the visual errors associated with

nonphysically smearing out these discontinuities. We propose a novel paradigm that au-

tomatically detects when discontinuous information is combined across (any number of)

interfaces, computes jump conditions and ghost values “on the fly,” and returns appropriate

values. This reduces the memory requirements associated with storing ghost values for

multiple region interactions, and furthermore makes the implementation of the algorithms

straightforward. We note that it also simplifies the treatment of complex solid objects (see

e.g. [33]).

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 47

region 1

vacuum

overlap
region 2

region 3

good

Figure 4.2: Each of the three regions is independently evolved in time, after which the
interface locations do not agree. There are vacuums where all φi are positive, and overlaps
where more than one φi is negative. The dotted black line shows the new interface locations
after our projection step.

4.2 Multiple Level Sets

Each level set function is independently evolved in time, after which the interface locations

do not agree (because of numerical errors) as shown for example in Figure 4.2. We propose

a novel method for fixing the level set functions removing overlaps and vacuums while

preserving an accurate interface location.

4.2.1 Projection Method

We first make the following observations about an arbitrary vector ~φ of level set values at

a point~x. (O1) If φ j is the smallest element,~x is in region j. This assigns~x to the region it

is deepest inside when it is inside more than one region (overlap), or the region it is closest

to when it is outside every region (vacuum). (O2) If O1 holds and φk is the second smallest

element, only φ j and φk are needed to locally represent the interface. Basically, ~x is in

region j, and the closest point on an interface lies between region j and region k. Region k

is the region~x is closest to not counting the region it is in.

Given these observations, we desire the following properties for numerical robustness and

backward compatibility with the standard single level set function for two phases. (P1) If

φ j is the smallest element, it is the only negative element and its magnitude represents the

distance to the interface. This is consistent with observation 1, but also makes φi a signed

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 48

(a) (b)

Figure 4.3: (Left) Two level sets initialized so that properties 1 and 2 hold. (Right) After
evolving in time, we obtain the solid lines with overlap (both negative in the middle).
The dotted lines show an example result after projection. Not only has the overlap been
removed, but the interface location is preserved.

distance function in region i for all i. Moreover, it removes overlaps since only one φi is

negative, and removes vacuums since the smallest φi is negative. (P2) If P1 holds and φk is

the second smallest element, φk =−φ j. This is consistent with observation 2, and it makes

the level set for the region a point is closest to but not inside a signed distance function as

well. Moreover, all other φi are positive and bigger than φk and not relevant.

These observations and properties are consistent with the standard single level set function

methodology. A standard single level set function φ can be broken into two separate func-

tions φ1=φ and φ2 = −φ , and be shown to satisfy the above observations and properties.

This readily gives us a dictionary that translates between ~φ and φ . That is, once we take an

arbitrary level set vector ~φ and project it to satisfy properties 1 and 2, we can use φ j and

φk as if they were φ1 and φ2 in the appropriate order. The only discrepancy lies in how the

exact interface is handled where φ j = φk = 0. For the standard level set function, this is

equivalent to φ1 = φ2 = φ = 0 and is typically nominally assigned to the negative level set,

i.e. we define the regions via φ ≤ 0 and φ > 0. This is equivalent to assigning the point to

region 1 when φ1 and φ2 are both zero. To extend this to multiple level sets, we assign a

point where both φ j and φk are zero to region j or k depending on whether j < k.

We illustrate our method in one spatial dimension. Figure 4.3a shows two level set func-

tions that satisfy properties 1 and 2, and Figure 4.3b shows a property violating version

after evolving in time. Based on property 1, the interface location is defined as the point

where the minimum φi changes from one level set to the other. This is the location where

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 49

(a) (b)

Figure 4.4: (Left) The solid lines have overlap on the left (two φi negative) and a vacuum
on the right (all φi positive). The average of the smallest two level sets at any point is
subtracted from ~φ to obtain the dotted lines. Not only has the overlap and vacuum been
removed, but the smallest φi is preserved and negative at each point preserving interface
locations and inside/outside information. (Right) Results after reinitializing each level set
to a signed distance function.

the two level sets intersect in the figure, and we want our projection method to preserve

the interface location to avoid biasing. Thus, our projection method computes the aver-

age value of the two level set functions and subtracts this average from both of them. At

points where the two level sets intersect, their average equals their individual values, and

thus subtracting off their averages sets them both to zero preserving the interface location.

Otherwise, at points where one level set is larger than the other, subtracting their average

makes them the same magnitude but opposite sign preserving the region a given point is

inside. The result is shown as dotted lines in the figure. If both level sets are reinitialized

to signed distance functions, we obtain the result shown in Figure 4.3a which satisfies all

desired properties. The same projection method can be generalized to an arbitrary vector

of level sets by subtracting the average of the smallest two φi from all of the φi. An example

of this is shown in Figure 4.4.

Notably our method is unbiased preserving signed distance information. For example,

consider Figure 4.3a and Figure 4.4b where the level sets are all signed distance functions

to begin with. Because property 2 holds, the two smallest φi are equal and opposite in sign

making their average identically zero at every point. Thus, subtracting the average leaves

all the the φi unchanged preserving signed distance. This surprisingly simple algorithm has

all the properties we desire. Notably, [54] is similar in spirit to our own, but while they

preserve the interface location and inside/outside information, they do not preserve signed

distance thus introducing biasing into the algorithm.

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 50

For two regions (hence two level sets) the result produced by our method is identical to

that of the traditional single level set (or particle level set) method. If the two level set

functions at time n are negatives of each other, i.e. φ n
1 =−φ n

2 , after advection we still have

φ∗1 =−φ∗2 because they are evolved with the same method. Then projection leaves φ∗1 and

φ∗2 unchanged, since their identically zero average is subtracted off. This is also true for

more than two regions away from multiple junctions (e.g., triple points).

4.2.2 Particle Level Set Method

Each level set has an associated set of particles that are

seeded near the boundary of its interior region as shown

in the figure to the right. Following the standard particle

level set algorithm, for each level set function we rebuild

φ− using that level set’s particles, and rebuild φ+ using all

the particles from all other regions. For efficiency, we ig-

nore particles that are far from the interface of the region

in question. Typically, particles are used to correct the level set function both after advec-

tion and after reinitialization. We apply our projection method to every grid point after

each of these particle correction steps. Then for each grid point, all geometric information

can be computed from the level set function that is negative at that point. When level set

values are needed in between grid points, we interpolate ~φ to that location and apply our

projection method on the fly to find the resulting negative φi. Note that the first projection

step is important because reinitialization preserves the interface location of each level set

individually, but not their intersections which correspond to the pre-projected interface lo-

cations. The second projection removes any numerical drift introduced by reinitialization,

and we note that a method such as [54] could not be used for this step because it does not

preserve signed distance.

Advancing the incompressible velocity field to the next time step and particle advection are

the most expensive parts of our algorithm. These steps depend mostly on the fluid volume

and surface area, respectively, rather than the number of regions. The cost of advecting and

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 51

Figure 4.5: Rayleigh-Taylor instability (3003 grid, 4 phases).

reinitializing the level set functions remains fixed at twice the usual cost, since two level

sets are updated locally near each interface instead of one. Thus, the cost of updating the

level set function scales with the surface area just as in the standard single level set method

regardless of the number of regions.

4.3 Multiple Liquids

We model the fluids using the incompressible Navier-Stokes equations

∇ ·~u = 0 (4.1)

~ut +(~u ·∇)~u+∇p/ρ = (∇ · τ)/ρ +~f (4.2)

where ~u = (u,v,w) is the velocity, ρ is the density, τ is the viscous stress tensor, and ~f

accounts for body forces, e.g. gravity, vorticity confinement, etc. For simplicity, we first

consider the inviscid case. First, an intermediate velocity field ~u? is computed

(~u?−~un)/∆t +(~un ·∇)~un = ~f (4.3)

using a semi-Lagrangian advection scheme as in [80]. Next, we compute the pressure via

∇ · (∇p/ρ) = ∇ ·~u?/∆t. (4.4)

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 52

Figure 4.6: Viscous letters splash into a pool of water, then change into low density inviscid
fuel bubbling up and burning when they hit the surface (350×200×350 grid, 10 phases).

and use it to make the velocity field divergence free

(~un+1−~u?)/∆t +∇p/ρ = 0. (4.5)

4.3.1 Poisson Equation

We follow the method of [62]. For multiple fluid regions, equation (4.4) is a Poisson

equation with discontinuous coefficients. The equation is separable so we can consider

each dimension independently. A standard second order accurate discretization of the left

hand side in one spatial dimension at a grid node i is

(
βi+1/2(pi+1− pi)/∆x−βi−1/2(pi− pi−1)/∆x

)
/∆x (4.6)

where β = 1/ρ . For inviscid flow, [45] showed that the flux in equation (4.4) is continuous

across the interface satisfying

β
−p−x = β

+p+
x (4.7)

where the − and + superscripts represent values from different sides of the interface. Thus

if ρ (and hence β) varies across the interface then so must px. Consider the case where an

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 53

Figure 4.7: Different viscosity liquids interacting on an inclined plane. (300× 150× 240
grid, 5 phases).

interface lies between nodes xi and xi+1. We define θ = |φ(xi)|/(|φ(xi)|+ |φ(xi+1)|) and

approximate equation (4.7) with one-sided differences as

β
−(pI− pi)/(θ∆x) = β

+(pi+1− pI)/((1−θ)∆x) (4.8)

and solve for the interface pressure pI = (θβ+pi+1 +(1− θ)β−pi)/(θβ+ +(1− θ)β−)

which can be substituted into either the left or the right hand side of equation (4.8) to obtain

β̂ (pi+1− pi)/∆x where β̂ = (β−β+)/(θβ++(1−θ)β−). Thus, the discontinuity between

grid nodes i and i+1 is readily handled by replacing βi+1/2 with β̂ in equation (4.6). βi−1/2

is treated similarly.

4.3.2 Viscosity

The viscous stress tensor for incompressible flow is τ = µ(∇~u + (∇~u)T). As discussed

in [68], a spatially constant µ (within each region) implies that ∇ · τ = µ∆~u. Renaming

~un+1 in equation (4.5) to be ~u??, we next solve the three systems of linear equations given

by

~u??? =~u?? +∆t∇ · (ν∇~u???) (4.9)

where ν = µ/ρ . Note that we moved ρ under the divergence operator, under the assump-

tion that it is spatially constant in each region. Since the viscosity to density ratio is discon-

tinuous across the interface, we replace ν with ν̂ for differences that cross the interface in

the same manner as β is adjusted to β̂ when solving equation (4.4). Then, we again solve

for the pressure and make the flow divergence free using ~u??? in place of ~u? in equations

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 54

(4.4) and (4.5).

Each component of equation (4.9) should conserve momentum, so we require a unique flux

between every two velocity values. The physically correct flux in the incompressible flow

context is rather complicated (see its derivation in [45]). However, considering equation

(4.9) in isolation admits a simple approximation which [37] showed was sufficient for vi-

sual accuracy. In isolation, the flux is given by ν∇~u, and we assume ν−∇~u− = ν+∇~u+

which is not actually true.1 Instead, correction terms should be added for stencils that cross

the interface, but these terms couple the u, v, and w diffusion equations together making

them difficult to solve with a fully implicit method. For example, see [68] where variable

viscosity couples the three equations together.2 They explicitly add correction terms be-

fore solving for the velocity implicitly. We could take a similar approach allowing for a

larger time step than a fully explicit method, but it is still less efficient than a fully im-

plicit method. [45] showed that the viscosity jump causes a jump in the pressure and its

derivatives as well3, but [37] showed that these too can be ignored for graphical purposes.

4.3.3 Viscoelasticity

[29] incorporated viscoelastic effects by adding (µe/ρ)∇ · ε to the Navier-Stokes equa-

tions, where µe is the elastic modulus and ε is the elastic strain tensor evolved in time via

εt +~u ·∇ε = (∇~u+(∇~u)T)/2− εPlastic
t . They solved this last equation by first using semi-

Lagrangian advection, and then incorporating the right hand side which is the total strain

rate minus the plastic strain rate. [40] points out that this ignores the rotation of the strain

tensors, yielding incorrect results when the fluid rotates. Thus, [40] proposes rotating the

strain tensor by the curl of the velocity field after the advection step. This is accomplished

by computing an explicit rotation matrix in the center of each cell, and using it to rotate the

strain tensor also stored in the center of each cell. This has enabled high quality detailed

viscoelastic fluid computations, see e.g. Figure 4.12.

1 [45], equation (30) gives the jump across the interface
2 [68], equations (5)-(7)
3 [45], equations (19) and (32)-(34)

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 55

Figure 4.8: (Left) One-way coupling from liquid to air. (Right) Two-way coupling of liquid
and air. Note the surface ripples and the unstable stream of liquid in the fully coupled
simulation.

4.4 Adding Air or Empty Regions

Often times, only the liquid region is of interest and the gas flow can be ignored. Our

system allows for the standard treatment of this by setting an entire region to be empty,

and subsequently extrapolating velocity into that region from the liquid regions and using

Dirichlet boundary conditions during the pressure solve (see e.g. [18]). However, when the

gas flow is important, our method trivially extends to simulate gas regions just as though

they were other liquid regions. This allows for straightforward incorporation of smoke,

fire, and even reactive gases as in [39]. Besides empty regions and air regions, there is yet

a third way to model non-liquid regions. The animator may wish to simulate air, but not

have the air affect the liquid. This requires one-way coupling from liquid to air, but not

vice versa. Figure 4.8 shows one way coupling (left) as compared to two-way coupling

(right). One-way coupling is accomplished by using extrapolated velocities from the liquid

to the gas as boundary conditions for the liquid region, while gas advection is carried out

normally. In addition, these extrapolated velocities are used to overwrite the gas velocity

at any grid points that become liquid as the interface moves. The Poisson equation is first

solved for the liquid region setting Dirichlet boundary conditions in the gas so that it has

no effect (as is usual for empty regions), and then a second Poisson equation is solved for

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 56

Figure 4.9: Two submerged liquids meeting and reacting to create air (1503 grid, 4 phases).

the gas using Neumann fixed velocity boundary conditions in the liquid so that it properly

drives the gas.

In free surface flow, the air region is modeled as empty allowing it to

vanish. Thus, characteristics coalesce as shown in the single grid cell

in the figure to the right. Eventually, liquid rushes into the cell from

all sides, and the air should disappear. However, air particles faithfully

follow these characteristics ending up trapped in the center of the cell.

Since this cell should be a sink for air, we simply delete the air particles

as they approach the center of the sink. Note that these sinks are easily detected by finding

local minima level set values in empty regions.

4.5 Surface Tension

The ghost fluid method (GFM) of [21] uses the physically correct interfacial jump condi-

tions to define ghost values for discontinuous quantities which are then incorporated into

finite difference or interpolation stencils. [37] used the GFM to discretize the jumps in

pressure caused by surface tension effects, and [36]4 showed that the method produces far

4page 36

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 57

Figure 4.10: Two drops with high surface tension collide. Green has low density, red high
density (3503 grid, 3 phases).

better visual results than a smeared out delta function approach. Surface tension causes a

jump in pressure across the interface equal to σκ , where σ is a surface tension coefficient

(defined pairwise for the regions) and κ =−∇ · (∇φ/|∇φ |) is the interface curvature. Con-

sider the case where an interface lies between xi and xi+1. We adjust pi+1 in equation (4.6)

to account for the jump in pressure,(
β̂ ((pi+1 +σκΓ)− pi)/∆x−βi−1/2(pi− pi−1)/∆x

)
/∆x

where κΓ = θκi+1 + (1− θ)κi is computed with respect to the region containing xi, and

βi+1/2 has been replaced by β̂ as explained in section 4.3.1. The (β̂σκΓ)/∆x2 term can

be moved to the right hand side, so that the resulting matrix is unaffected allowing for the

use of fast symmetric linear system solvers such as the preconditioned conjugate gradient

method.

4.6 Surface Reactions

Our method incorporates surface reactions allowing one material to turn into another. One

example of this is the work on fire by [62], but our framework allows for a more generalized

treatment, e.g. Figure 4.9 shows two materials (submerged beneath a third) coming together

and reacting to form a fourth.

[62] used the GFM to model fire where the expansion of fuel into products admits jumps

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 58

Figure 4.11: Oil pouring into water, then catching on fire. Note that the fiery ball is a
separate phase of fluid, and that it deforms into the shape of a droplet as it falls (2003 grid,
4 phases).

in both velocity and pressure.5 As in the surface tension case, the pressure jump is incorpo-

rated directly into the Poisson equation. The velocity jump needs to be handled whenever

information is combined from different sides of the interface. They implement this by stor-

ing two velocity fields, one for fuel and one for products, that inherently store the jump

conditions. While this only doubles their storage, the storage requirements would scale

linearly with the number of different materials. We instead compute ghost values on the

fly by generalizing the concept of a scalar or vector field to encapsulate the application of

the jump condition. Our implementation wraps the data in a lookup class that maintains

a state variable indicating the region for which values are being looked up. For example,

when using semi-Lagrangian advection to update a face velocity in region i, we create a

lookup class instance and set its internal state to indicate that any queried values should be

returned with respect to region i. Then the lookup class ensures that any data used to con-

struct the ray or interpolate is retrieved with the proper jump conditions already applied. In

this manner, existing interpolation and discretization code is generalized with relative ease

to account for discontinuities. The lookup classes can also be used to incorporate object

intersections in the same manner as jump discontinuities. For example, for thin objects, a

nested lookup class can be used to check for object intersections and return the appropriate

5See equations (2) and (3) for the jump conditions

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 59

object ghost velocity as described in [33], simplifying object interaction implementations

significantly.

[62] used only the normal component of the velocity to advect the fuel level set, which is

sufficient for their WENO scheme that was applied without particles. We instead use semi-

Lagrangian advection for the level set equation, and this requires the tangential component

of velocity as well in order to properly trace characteristics. Since the tangential component

is continuous across the interface, we form the normal component as usual and simply

add the tangential component from the local fluid velocity. The tangential component is

required for particle advection as well.

4.7 Examples

To demonstrate the effectiveness of our approach, we simulated a number of examples

that range in resolution from 1503 to 3503 on a number of 4 processor Opteron machines.

The computational cost for the examples range from 5 to 50 minutes per frame. Surface

tension was the main cause for the examples with slower simulation times. We augmented

a standard ray tracer to use the same projection based querying of the level set functions

that the simulation uses, since rendering each level set independently can lead to multiple

intersections per interface (from numerical error).

Figure 4.10 depicts two drops suspended in liquid. The lower drop has a lower density

than the surrounding fluid and the upper drop has a higher density. Both drops have surface

tension. Figure 4.1 depicts a kinematic sphere splashing into a number of liquids. The air

region is simulated as a Dirichlet region, and the liquids are of increasing density from top

to bottom. Figure 4.5 shows four layers of fluid where the lower middle liquid is lighter

than the top middle liquid. This causes a Rayleigh-Taylor instability as the two liquids

switch places.

Figure 4.7 shows a number of different fluids on an inclined plane. The liquid with the

highest viscosity is blue, then green, then silver, and finally the clear water is simulated as

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 60

inviscid. Figure 4.12 depicts a viscoelastic armadillo in a pool of water. The viscoelastic

property is then removed making it viscous only, then the viscosity is turned off and the

density is turned down making it bubble up to the surface. The former armadillo is then

changed back to viscoelastic and a newly introduced viscoelastic liquid is dropped on top

of it.

Figure 4.11 depicts flammable oil being released into a tank of water. The oil rises to make a

layer on the surface, which is then ignited. This example uses a temperature based ignition

model where the temperature in actively burning regions is Tmax, but a lower Tignition is

needed to cause ignition of surrounding fluid. Figure 4.9 shows two viscous liquids that

react with each other creating a third (air) that bubbles up to the surface. In Figure 4.6,

eight letters with various high densities and viscosities splash into a pool of water and sink

to the bottom. The air is treated as an empty region. In the second part of the simulation,

the letters are changed to be low density fuels with surface tension, and the air is fully

simulated. The letters then rise through the water, bursting into flames as they break the

surface.

4.8 Conclusions and Future Work

Notably, the new technique does exacerbate the limitations of the original particle level

set method with regards to volume loss by facilitating increased scene complexity. This

is evident in the Rayleigh-Taylor simulation depicted in Figure 4.5. In that example, the

majority of the mass loss occurs away from triple points, in regions where our method is

identical to the original particle level set method (see section 4.2.1). Of course, this can

be addressed by increasing the particle count for the particle level set method or using an

adaptive octree or run length encoded type level set simulation, at the expense of increased

code complexity and/or CPU time.

CHAPTER 4. MULTIPLE INTERACTING LIQUIDS 61

Figure 4.12: An armadillo that starts out viscoelastic, becomes viscous and more dense
than the water, then inviscid and lighter than the water, and finally viscoelastic again before
another viscoelastic liquid is dropped onto it (250×275×250 grid, 4 phases).

Chapter 5

Two-Way Coupling of Solids and Fluids

We present a novel solid/fluid coupling scheme (see [69]), which is derived from the physi-

cal principle that momentum should be conserved at the solid/fluid boundary subject to the

constraint that the relative velocities are zero. In addition to conserving momentum and

enforcing the no-slip boundary condition, our approach utilizes the standard Cartesian Eu-

lerian grid for the fluid and Lagrangian mesh for the solid and results in a sparse, symmetric

linear system. The method is sufficiently general to treat rigid, deformable, volumetric and

thin solids coupled to multiphase incompressible flow.

5.1 Introduction

State-of-the-art solvers typically use Eulerian methods for fluids and Lagrangian methods

for solids, but it has proven difficult to couple these disparate simulation methods together.

Thus, many researchers have taken a fully Lagrangian approach [6,34,46,59,60,83,91], e.g.

using particle-based methods for both the fluid and the solid ([46, 59]). Alternatively, one

could use Eulerian methods for both the fluid and the solid, treating solids as high viscosity

or viscoelastic Eulerian fluids [13,29,52,68]. See also [20] for an interesting approach that

applies an Eulerian contact model based on implicitly integrated repulsion forces to various

62

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 63

Figure 5.1: We demonstrate that our method handles buoyancy correctly by releasing rigid
spheres of varying density in a pool of water (200 × 75 × 50 fluid grid).

simulation objects including Smoothed Particle Hydrodynamics fluid with thin deformable

shells and an Eulerian fluid with volumetric rigid and deformable solids.

Coupling an Eulerian fluid to a Lagrangian solid is typically accomplished using the solid

velocity as a boundary condition for the fluid while integrating the pressure force on the

surface of the solid, e.g. [14, 27, 33, 51, 90]. These approaches treat coupling in either

an explicit or semi-implicit fashion and thus stability and accuracy issues remain. For

example, [14, 33, 51] solve a Poisson equation with the solid density rasterized onto the

fluid grid alleviating some stability issues, but this rasterization does not account for the

rigidity of objects, internal elastic forces, etc. Afterwards, [14] projects the velocity field

pertaining to the rigid body to enforce rigidity, but this creates a discontinuous velocity

which allows fluid to leak into and out of the solid. [33, 51] instead only use the Poisson

equation to calculate forces on the solid, and afterwards project the fluid to be consistent

with the resulting solid velocity in order to prevent leaking – however, this makes the

method less stable.

[7, 15, 47] consider fully implicit stable two-way coupled interactions between solids and

fluids. [7, 47] are limited to rigid bodies, and although they add only a rank 6 update per

body to their fluid Poisson matrix, the resulting number of elements scales like a four spatial

dimensional problem instead of three. [15] addresses deformable objects, but obtains a non-

symmetric discretization. These methods do not address rigid shells or cloth.

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 64

The straightforward method of using Neumann boundary conditions on the fluid and inte-

grating the pressure force on the boundary of the solid as used in [33, 51] and the Eulerian

version of [15] does not conserve momentum. Thus even though [15] proposes a fully

implicit coupling, the Eulerian version of their method can still be unstable and yield non-

physical behavior. The key to fixing this is to properly and conservatively account for all

pressure forces that transmit momentum between fluid and solid, as our formulation does

while yielding a symmetrically coupled system. Unlike their Cartesian counterparts, Arbi-

trary Lagrangian-Eulerian (ALE) meshes can more readily be made to conserve momentum

as long as the solid/fluid boundary faces are treated in the same conservative fashion as in-

ternal fluid/fluid faces. However, ALE methods require moving meshes that can lead to

poor aspect ratios requiring frequent remeshing for interfaces subject to large deforma-

tions, and thus we prefer an Eulerian approach. Moreover, it would be difficult to create an

ALE fluid mesh that conforms to a deforming piece of cloth.

5.2 Motivation

In resolving solid/solid contact and interpenetration in Chapter 3, we first formulated the

velocity constraint for the interaction and then solved for an impulse that would conser-

vatively enforce the constraint. Similarly, for a fluid/fluid or fluid/solid contact, a given

interface boundary condition determines the velocity constraint, and we introduce an un-

known impulse that conservatively enforces this constraint. A simple example is discussed

here.

Consider a two-dimensional example of an axis-aligned interface, and a particular dual cell

(a staggered cell between two pressure samples in the standard MAC grid discretization)

which is half filled with each of two distinct materials with densities ρ1 and ρ2 (Figure 5.2).

This simple case degenerates into a one-dimensional problem. Assume that the materials

are initially in contact. Given the constraint that the materials remain in contact, moving

together, we can compute the pressure, pi+1/2, at the interface between the materials at

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 65

Figure 5.2: (Left) A two-dimensional drawing of a dual cell containing two materials of
different densities. (Right) A graph of the pressure profile on a cross-section through the
cell connecting pi to pi+1, i.e. xi to xi+1.

xi+1/2. Conservation of momentum gives

Du1

Dt
=

pi− pi+1/2

ρ1∆x/2
,

Du2

Dt
=

pi+1/2− pi+1

ρ2∆x/2
. (5.1)

The constraint that the interface remain in contact implies that Du1/Dt = Du2/Dt, and thus

pi+1/2 =
ρ2 pi +ρ1 pi+1

ρ1 +ρ2
. (5.2)

This interface pressure can be regarded as determining the constraint force enforcing the

contact constraint between the two materials.

When ρ1 = ρ2, the pressure profile is linear as illustrated by the red line in Figure 5.2.

When ρ1 is larger (smaller) than ρ2, the pressure profile instead looks like the black (green)

line. While the case considered here exhibits a monotonic, continuous pressure profile, in

general, the pressure profile need not be monotonic in the cell and can even have discon-

tinuous jumps, e.g., in the case of surface tension forces or thin shells.

In solving conservation of momentum for the two materials in the above example, we in-

troduced an additional unknown, pi+1/2, the pressure at the solid/fluid interface, and an

additional equation given by the velocity constraint. Similarly, we augment our solid/fluid

system for conservation of momentum with a set of unknown impulses and a corresponding

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 66

Figure 5.3: The MAC grid used in the Eulerian fluid simulation is depicted, with blue
circles representing pressure samples and red and green x’s representing the x and y com-
ponents of the velocity, respectively. The yellow line represents the boundary of the La-
grangian solid. The mixed x-component dual cells, i.e. those containing both solid and
fluid, are highlighted in light blue.

set of velocity constraint equations to close the system. These impulses are the momen-

tum exchanged at the solid/fluid interface in order to satisfy the velocity constraint at the

interface.

5.3 Solid/Fluid Interaction

The use of the Eulerian grid for the fluid and the Lagrangian mesh for the solid neces-

sitates the definition of operators for transferring physical quantities between these dis-

parate meshes. We define the physical quantities associated with solid/fluid interaction to

be collocated with the fluid velocities. Thus we require operators for transferring quantities

between the fluid velocity locations and the solid’s nodal degrees of freedom.

In the MAC grid discretization, x, y, and z velocity components are sampled in dual cells at

the corresponding faces of the MAC grid cells (see Figure 5.3). In coupling the solid and

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 67

fluid, we deal with each dimension independently. We distinguish between dual cells that

are fully fluid, fully solid, or mixed, as illustrated in Figure 5.3. The solid/fluid interaction

occurs in the mixed dual cells.

5.3.1 Velocity Interpolation

In order to discretize the velocity constraint at the solid/fluid inter-

face, we define a velocity interpolation operator, WDC which maps solid

nodal velocities to a dual cell velocity, uDC, as

uDC = WDCV, (5.3)

where V is a column vector containing all the solid velocities, and

WDC is a row vector whose entries sum to one. For example, in the

dual cell depicted to the right, the three velocity samples at the solid

nodes are interpolated to the center of the cell to determine uDC. In

our implementation, the weights were chosen according to the relative

areas of the solid faces in the dual cell.

5.3.2 Force Distribution

In order to apply a force, fDC, to the Lagrangian solid at the mixed dual cell, we need to

find an equivalent set of forces, F, on the solid’s degrees of freedom. Consider an arbitrary

virtual displacement δX of the solid nodes. By equation (5.3), the corresponding virtual

displacement at the dual cell is δXDC = WDCδX . Equating the virtual work done by F and

fDC for the virtual displacement δX , we get

F ·δX = fDC ·δXDC = fDC ·WDCδX ,

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 68

Figure 5.4: A light sphere and then a heavy sphere are dropped into a thin shell rigid boat
floating in a pool of water (160 × 120 × 160 fluid grid). The light sphere barely rocks the
boat, while the heavy sphere sinks it, and the light sphere bobs back to the surface.

from which it follows that

F = W T
DCfDC. (5.4)

Thus whenever a force or impulse is applied at the dual cell, equation (5.4) gives the ex-

pression for the equivalent force or impulse on the solid nodes. See [49] for a discussion of

virtual work and equivalent forces.

5.4 Conservation of Momentum

5.4.1 Fluid Momentum

Consider an x-component dual cell indexed by i+1/2, j,k. If the dual cell was fully fluid,

the momentum update equation (in control volume form) for that dual cell would be

miun+1
i+1/2−miu?

i+1/2 +∆t(Ai+1 pi+1−Ai pi) = 0,

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 69

Figure 5.5: 24 rigid spheres of varying density are dropped into a pool of water, demon-
strating scalability to many bodies (225 × 300 × 150 fluid grid).

where mi is the mass of the fluid in the dual cell, u?
i+1/2 is the intermediate velocity (see

Section 4.3), Ai is the area of the dual cell face at i, and the subscripts for the y and z dimen-

sions have been omitted for brevity. Now assume that the dual cell is mixed, containing

both fluid and solid. The update equation for the fluid in that dual cell is then given by

miun+1
i+1/2−miu?

i+1/2 +∆t(Ai+1 pi+1−Ai pi)+ Ii+1/2 = 0, (5.5)

where Ii+1/2 is an impulse representing the net momentum exchanged between the fluid

and solid. Note that Ai and Ai+1 may be between 0 or the full face area, ∆y∆z, depending

on how much of the face is occupied by the fluid. In our implementation, we approximate

Ai as

Ai =

{
A, for pi in the fluid

0 otherwise
(5.6)

where A is a constant giving the area of a face of the uniform grid. Let V be the constant

giving the volume of a dual cell, so that V = ∆xA. We then write equation (5.5) as

miun+1
i+1/2−miu?

i+1/2 +∆tV Gi+1/2 p+ Ii+1/2 = 0. (5.7)

where Gi+1/2 denotes a gradient operator taking into account the criteria in (5.6).

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 70

Next, we write down the vector form of equation (5.7) for all the fluid velocities as

MFun+1−MFu? +∆tV Gp+ I = 0 (5.8)

where MF is the diagonal mass matrix for the fluid, u is the vector of all the fluid dual cell

velocities, G is the gradient operator for all the dual cells, and I is the vector containing all

the momentum quantities exchanged between the solid and fluid in the mixed dual cells (or

zero for fully fluid dual cells).

5.4.2 Solid Momentum

Ignoring the solid/fluid interaction, the solid momentum equation is given by

MSVn+1 = MSV? +∆tDVn+1,

where MS is the mass matrix of the solid, V? incorporates explicitly integrated forces, and

D is the symmetric coefficient matrix for the implicitly integrated damping forces.

Now consider a mixed dual cell, again at i + 1/2, j,k. From equation (5.7), the fluid loses

a momentum quantity Ii+1/2, and thus the solid gains the equivalent momentum quantity,

given by equation (5.4), W T
i+1/2Ii+1/2. We define W to be the matrix whose non-zero rows

are the row vectors WDC of equation (5.3). Taking into account the solid/fluid interaction

through the mixed dual cells, the solid momentum equation is then given by

MSVn+1 = MSV? +∆tDVn+1 +W T I. (5.9)

Solving for I in equation (5.8) and substituting into equation (5.9), we get

MSVn+1 = MSV? +∆tDVn+1−W T (MFun+1−MFu? +∆tV Gp).

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 71

Figure 5.6: Our method supports coupling to both volumetric and thin deformable solids.
Left: a soft torus is dropped into a pool of water, showing two-way coupling with a de-
formable body (100× 100× 100 fluid grid, 44k tetrahedra). Right: sheet of cloth is pulled
out of a tank of water (140 × 140 × 70 fluid grid, 2.5k triangles).

Rearranging and using the fact that W T MFun+1 = W T MFWVn+1, we have

(MS +W T MFW)Vn+1 +W T
∆tV Gp = MSV? +∆tDVn+1 +W T MFu?.

We regard MS +W T MFW as the combined lumped mass of the solid and fluid in the mixed

dual cells, and denote it by M̃S. Moving all the unknowns to the left hand side, we get

(M̃S−∆tD)Vn+1 +W T
∆tV Gp = MSV? +W T MFu?. (5.10)

as the final form for the solid momentum equation.

Combined Solid/Fluid Mass

In [69], equation (5.10) was derived by considering the lumping of the fluid mass and

momentum onto the solid separately, rather than substituting the value I from equation

(5.8). In particular, M̃S was determined by lumping the fluid mass mDC in each mixed

dual cell onto the solid nodes using WDCmDC, resulting in a diagonal matrix rather than

the symmetric expression above. All of the examples discussed below were run with the

diagonal M̃S.

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 72

Solid Time Integration

The time integration for the solid can be explicit, semi-implicit, or fully implicit. For fully

explicit time integration of the solid, such as in the rigid body approach of [47] or [7],

D = 0 and all forces are accounted for in V?. This is also true for deformable objects if

both elastic and damping forces are handled explicitly. In the semi-implicit approach of

[10] the elastic forces are handled explicitly but the damping forces are handled implicitly,

and D is a symmetric negative definite matrix. Our formulation also allows for a fully

implicit approach, as in [4], where D is a linearization of both the elastic and damping

forces (notably, in the [4] approach D is also symmetric, and thus we will assume here

that it is symmetric). Note when using the fully implicit scheme that D represents the

linearization for one Newton-Raphson iteration, and thus repeated solves are required if

more iterations are necessary.

5.5 Linear System

The system of linear equations for the fluid is typically derived by enforcing incompress-

ibility via

∇ ·un+1 = 0 (5.11)

where in our formulation the components uDC of u are given by

un+1
DC =

{
u?

DC−∆tGDC p/ρ all fluid dual cell

WDCVn+1 mixed solid/fluid dual cell
(5.12)

This is identical to a voxelized solid formulation, except that in the latter WDCVn+1 is

replaced with the known solid velocity. For convenience, we use a scaled pressure of

p̂ = p∆t and for symmetry we scale the divergence by V . Using Equations (5.10), (5.11)

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 73

Figure 5.7: Many rigid bodies circulate in a turbulent fountain, demonstrating scalability
and dynamic interactions between rigid bodies (i.e. collisions) (100 × 150 × 100 fluid
grid).

and (5.12) we write our linear system as(
V GT 1

ρ
G −V GTW

−W TV G −M̃S +∆tD

)(
p̂

Vn+1

)
=

(
V GT u?

−MSV?−W T MFu?

)
(5.13)

where G is the gradient operator and GT is minus one times the divergence operator.

5.5.1 Solving the Linear System

Independently, the solid and fluid systems can be made at least symmetric positive semidef-

inite, but the coupled system (5.13) is symmetric indefinite. However, it can still be solved

quite efficiently with MINRES [65], since it is symmetric. We use an Incomplete Cholesky

preconditioner for the pressure rows of our system, and a block diagonal mass-inverse pre-

conditioner for the solid velocity rows. See [69] for further discussion of the solution of

related indefinite systems.

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 74

Figure 5.8: A stream of water pours into an elastic cloth bag suspended by its rim (100 ×
375 × 100 fluid grid, 1k triangles). The bag deforms under the impact of the water and
then recovers, filling and expanding until the water overflows and runs down its sides.

5.6 Time Integration

Our two-way coupled time integration scheme hybridizes fluid evolution with a Newmark

method for solid integration [10]. Typically Newmark iteration requires one to solve a

linear system for the solid velocities twice per time step, and these solves are replaced with

Equation (5.13). The first coupled solve is done with the positions frozen at time tn and

thus all fluid forces are used except convection (i.e. except u ·∇u). The second solve is

used to update the momentum, and there convection is applied. Our method proceeds as

follows:

F1: Use all non-pressure based and non-advection based fluid forces (i.e. external forces

and viscosity) to advance the fluid velocity to time tn+1/2,

un+1/2 = un +(∆t/2)(f+ν∆un+1/2). (5.14)

S1: Integrate all explicit solid forces to time tn+1/2, Vn → V n+1/2?. Solve Equation

(5.13) for the coupled system to obtain Vn+1/2. The resulting Vn+1/2 is then used to update

the solid positions, for collisions, etc., just as in a standard Newmark algorithm (e.g. as

described in Chapter 3). This step follows the standard position update procedures for

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 75

Figure 5.9: An elastic cloth bag is submerged in and then quickly pulled from a pool of
water, carrying fluid with it (140 × 210 × 140 fluid grid, 1k triangles). The bag bounces
as it is raised, expanding and contracting, which causes water to splash out. The bag
eventually settles.

deformable bodies and rigid bodies, except that the velocity solve incorporates the fluid

pressure. After the solve, the fluid pressure and the results of F1 are discarded.

F2: Following [33], we prevent leaking by forcing the fluid to move with the solid effective

velocity, calculated as the change in the position of the solid during S1. A standard fluid

Poisson equation is solved using the solid effective velocity mapped onto the Eulerian grid

by W as Neumann boundary conditions to project un. The resulting projected velocity is

our leak-proof advection velocity uADV .

F3: We calculate the intermediate fluid velocity via

(u?−un)
∆t

+uADV ·∇un = f+ν∆u?. (5.15)

Note that the advection velocity uADV is used to formulate the rays in the typical semi-

Lagrangian scheme [80], but the advected quantity is the actual fluid velocity un. uADV

is also used to advect all other fluid scalar quantities to time tn+1. Since this advection

velocity exactly conforms to the effective velocity of the solid, it prevents leaking.

S2: Integrate all explicit solid forces to time tn+1, Vn→ V?. Solve Equation (5.13) to find

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 76

Figure 5.10: A balloon is filled by a jet of fast-moving smoke, reaching a state of strong
tension (100 × 150 × 100 fluid grid, 1k triangles). The balloon is then released and expels
smoke at a very high speed, accelerating upwards, and passes through the edge of the do-
main without any discontinuities. The high tension and fast velocities highlight the stability
of our fully coupled method.

Vn+1, and otherwise carry out the standard algorithms for deformable and rigid bodies (see

Chapter 3). Note that this time the fluid pressure is not discarded.

F4: Using the fluid pressure from S2, project the intermediate fluid velocity u? to be diver-

gence free, u?→ un+1.

In summary, there are three implicit solves, two for the coupled system (using MINRES)

and one for the fluid (using conjugate gradients). This is the typical situation even in inter-

leaved computations as Newmark time integration requires two conjugate gradient solves

and fluids require one. The additional cost here is that the two conjugate gradient solves for

the solid have the added coupling to the fluid in the linear system and now require MINRES

due to indefiniteness.

5.7 Examples

We demonstrate coupling of volumetric and thin shell rigid and deformable bodies to both

water and smoke. Our examples were simulated in parallel on four to sixteen processors

across a number of four processor Opteron machines and took anywhere from a few min-

utes per frame to several hours in some extremely high velocity cases. The solid was

simulated on a single processor and the fluid was split up across the remaining processors.

CHAPTER 5. TWO-WAY COUPLING OF SOLIDS AND FLUIDS 77

Figure 5.11: Water is two-way coupled to a fish with an embedded proportional derivative
controlled articulated skeleton and a deformable exterior (192 × 216 × 144 fluid grid, 42k
tetrahedra).

Figures 5.1 and 5.5 demonstrate coupling to rigid bodies with varying density ratios. Fig-

ure 5.6 (left) shows a volumetric deformable object coupled to water. Figures 5.6 (right),

5.8 and 5.9 show cloth coupled to water. Figure 5.10 shows stability under high tension

and high velocities and coupling of cloth to smoke. Figures 5.5 and 5.7 show scalability to

large numbers of objects. Figure 5.4 shows interaction between volumetric and thin shell

rigid bodies and water. Figure 5.11 offers an example of the potential for combining our

method with other state-of-the-art simulation techniques.

Bibliography

[1] P. Alliez, D. Cohen-Steiner, M. Yvinec, and M. Desbrun. Variational tetrahedral

meshing. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):617–625, 2005.

[2] D. Baraff. Linear-time dynamics using Lagrange multipliers. In Proc. of ACM SIG-

GRAPH 1996, pages 137–146, 1996.

[3] D. Baraff and A. Witkin. Partitioned dynamics. Technical report, Carnegie Mellon

University, 1997.

[4] D. Baraff and A. Witkin. Large steps in cloth simulation. In ACM SIGGRAPH 98,

pages 43–54. ACM Press/ACM SIGGRAPH, 1998.

[5] D. Baraff, A. Witkin, and M. Kass. Untangling cloth. ACM Trans. Graph. (SIG-

GRAPH Proc.), 22:862–870, 2003.

[6] Adam W. Bargteil, Chris Wojtan, Jessica K. Hodgins, and Greg Turk. A finite ele-

ment method for animating large viscoplastic flow. ACM Trans. Graph. (SIGGRAPH

Proc.), 26(3), 2007.

[7] Christopher Batty, Florence Bertails, and Robert Bridson. A fast variational frame-

work for accurate solid-fluid coupling. ACM Trans. Graph. (SIGGRAPH Proc.),

26(3):100, 2007.

[8] J. Bender. Impulse-based dynamic simulation in linear time. Computer Animation

and Virtual Worlds, 18:225–233, 2007.

78

BIBLIOGRAPHY 79

[9] R. Bridson, R. Fedkiw, and J. Anderson. Robust treatment of collisions, contact and

friction for cloth animation. ACM Trans. Graph., 21(3):594–603, 2002.

[10] R. Bridson, S. Marino, and R. Fedkiw. Simulation of clothing with folds and wrinkles.

In Proc. of the 2003 ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pages

28–36, 2003.

[11] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. Interactive skeleton-

driven dynamic deformations. ACM Trans. Graph. (SIGGRAPH Proc.), 21:586–593,

2002.

[12] S. Capell, S. Green, B. Curless, T. Duchamp, and Z. Popović. A multiresolution

framework for dynamic deformations. In ACM SIGGRAPH Symp. on Comput. Anim.,

pages 41–48. ACM Press, 2002.

[13] M. Carlson, P. Mucha, R. Van Horn, and G. Turk. Melting and flowing. In ACM

Trans. Graph. (SIGGRAPH Proc.), volume 21, pages 167–174, 2002.

[14] M. Carlson, P. J. Mucha, and G. Turk. Rigid fluid: Animating the interplay between

rigid bodies and fluid. ACM Trans. Graph. (SIGGRAPH Proc.), 23:377–384, 2004.

[15] N. Chentanez, T. G. Goktekin, B. Feldman, and J. O’Brien. Simultaneous coupling

of fluids and deformable bodies. In SCA ’06: Proceedings of the 2006 ACM SIG-

GRAPH/Eurographics symposium on Computer animation, pages 325–333, 2006.

[16] B. Criswell, K. Derlich, and D. Hatch. Davy jones’ beard: rigid tentacle simulation.

In SIGGRAPH 2006 Sketches, page 117, 2006.

[17] G. Debunne, M. Desbrun, M. Cani, and A. Barr. Dynamic real-time deformations

using space and time adaptive sampling. In Proc. SIGGRAPH 2001, volume 20,

pages 31–36, 2001.

[18] D. Enright, S. Marschner, and R. Fedkiw. Animation and rendering of complex water

surfaces. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):736–744, 2002.

BIBLIOGRAPHY 80

[19] P. Faloutsos, M. van de Panne, and D. Terzopoulos. Composable controllers for

physics-based character animation. In ACM Trans. Graph. (SIGGRAPH Proc.), pages

251–260, 2001.

[20] François Faure, Jérémie Allard, and Matthieu Nesme. Eulerian contact for versa-

tile collision processing. Technical report, INRIA, 2007. http://hal.inria.fr/inria-

00149706.

[21] R. Fedkiw, T. Aslam, B. Merriman, and S. Osher. A non-oscillatory Eulerian ap-

proach to interfaces in multimaterial flows (the ghost fluid method). J. Comput. Phys.,

152:457–492, 1999.

[22] R. Fedkiw, J. Stam, and H. Jensen. Visual simulation of smoke. In Proc. of ACM

SIGGRAPH 2001, pages 15–22, 2001.

[23] N. Foster and R. Fedkiw. Practical animation of liquids. In Proc. of ACM SIGGRAPH

2001, pages 23–30, 2001.

[24] N. Foster and D. Metaxas. Modeling the motion of a hot, turbulent gas. In Proc. of

SIGGRAPH 97, pages 181–188, 1997.

[25] N. Galoppo, M. Otaduy, S. Tekin, M. Gross, and M. C. Lin. Soft articulated characters

with fast contact handling. Comput. Graph. Forum (Proc. Eurographics), 26(3):243–

253, 2007.

[26] M.-P. Gascuel. An implicit formulation for precise contact modeling between flexible

solids. In Proc. SIGGRAPH 93, pages 313–320, 1993.

[27] O. Génevaux, A. Habibi, and J.-M. Dischler. Simulating fluid-solid interaction. In

Graph. Interface, pages 31–38, June 2003.

[28] M. Gissler, M. Becker, and M. Teschner. Local constraint methods for deformable

objects. In Proc. of the 3rd Workshop in VR Interactions and Physical Simulation

(VRIPHYS), pages 1–8, 2006.

BIBLIOGRAPHY 81

[29] T. G. Goktekin, A. W. Bargteil, and J. F. O’Brien. A method for animating viscoelastic

fluids. ACM Trans. Graph. (SIGGRAPH Proc.), 23:463–468, 2004.

[30] R. Goldenthal, D. Harmon, R. Fattal, M. Bercovier, and E. Grinspun. Efficient simu-

lation of inextensible cloth. ACM Trans. Graph., 26(3):49, 2007.

[31] E. Grinspun, P. Krysl, and P. Schröder. CHARMS: A simple framework for adaptive

simulation. ACM Trans. Graph. (SIGGRAPH Proc.), 21:281–290, 2002.

[32] E. Guendelman, R. Bridson, and R. Fedkiw. Nonconvex rigid bodies with stacking.

ACM Trans. Graph. (SIGGRAPH Proc.), 22(3):871–878, 2003.

[33] E. Guendelman, A. Selle, F. Losasso, and R. Fedkiw. Coupling water and smoke to

thin deformable and rigid shells. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):973–

981, 2005.

[34] S. Hadap and N. Magnenat-Thalmann. Modeling dynamic hair as a continuum. Com-

put. Graph. Forum, 20(3), 2001.

[35] J. Hodgins, W. Wooten, D. Brogan, and J. O’Brien. Animating human athletics. In

Proc. of SIGGRAPH ’95, pages 71–78, 1995.

[36] J.-M. Hong. Visual Simulation of Fluids with Discontinuous State Variables. PhD

thesis, Korea University, June 2005.

[37] J.-M. Hong and C.-H. Kim. Discontinuous fluids. ACM Trans. Graph. (SIGGRAPH

Proc.), 24(3):915–920, 2005.

[38] T. J. R. Hughes. The Finite Element Method: Linear Static and Dynamic Finite

Element Analysis. Dover, 2000.

[39] I. Ihm, B. Kang, and D. Cha. Animation of reactive gaseous fluids through chemical

kinetics. In Proc. of the 2004 ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 203–212, 2004.

BIBLIOGRAPHY 82

[40] G. Irving. Methods for the physically-based simulation of solids and fluids. PhD

thesis, Stanford University, June 2007.

[41] G. Irving, C. Schroeder, and R. Fedkiw. Volume conserving finite element simulations

of deformable models. ACM Trans. Graph. (SIGGRAPH Proc.) (in press), 26(3),

2007.

[42] G. Irving, J. Teran, and R. Fedkiw. Invertible finite elements for robust simulation of

large deformation. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 131–140, 2004.

[43] J. Jansson and J.S.M. Vergeest. Combining deformable and rigid body mechanics

simulation. The Vis. Comput. J., 2003.

[44] C. A. Felippa K. C. Park and J. A. DeRuntz. Stabilization of staggered solution

procedures for fluid-structure interaction analysis. In Belytshcko and Geers, editors,

Computational Methods for Fluid-Structure Interaction Problems, volume 26, pages

94–124. ASME Applied Mechanics Symposia Series, AMD, 1977.

[45] M. Kang, R. Fedkiw, and X.-D. Liu. A boundary condition capturing method for

multiphase incompressible flow. J. Sci. Comput., 15:323–360, 2000.

[46] R. Keiser, B. Adams, D. Gasser, P. Bazzi, P. Dutré, and M. Gross. A unified La-

grangian approach to solid-fluid animation. In Eurographics Symp. on Point-Based

Graph., 2005.

[47] Bryan M. Klingner, Bryan E. Feldman, Nuttapong Chentanez, and James F. O’Brien.

Fluid animation with dynamic meshes. In ACM Trans. Graph. (SIGGRAPH Proc.),

volume 25, pages 820–825, August 2006.

[48] A. Lamorlette and N. Foster. Structural modeling of flames for a production environ-

ment. ACM Trans. Graph. (SIGGRAPH Proc.), 21(3):729–735, 2002.

[49] Cornelius Lanczos. The Variational Principles of Mechanics. Dover, 1970.

BIBLIOGRAPHY 83

[50] J. Lenoir and S. Fonteneau. Mixing deformable and rigid-body mechanics simulation.

In Comput. Graph. Int., pages 327–334, june 16-19 2004.

[51] F. Losasso, G. Irving, E. Guendelman, and R. Fedkiw. Melting and burning solids into

liquids and gases. IEEE Trans. on Vis. and Comput. Graph., 12(3):343–352, 2006.

[52] F. Losasso, T. Shinar, A. Selle, and R. Fedkiw. Multiple interacting liquids. ACM

Trans. Graph. (SIGGRAPH Proc.), 25(3):812–819, 2006.

[53] R. Loubère and E. J. Caramana. The force/work differencing of exceptional points

in the discrete, compatible formulation of Lagrangian hydrodynamics. J. Comput.

Phys., 216:1–18, 2006.

[54] B. Merriman, J. Bence, and S. Osher. Motion of multiple junctions: A level set

approach. J. Comput. Phys., 112:334–363, 1994.

[55] N. Molino, Z. Bao, and R. Fedkiw. A virtual node algorithm for changing mesh

topology during simulation. ACM Trans. Graph. (SIGGRAPH Proc.), 23:385–392,

2004.

[56] N. Molino, R. Bridson, J. Teran, and R. Fedkiw. A crystalline, red green strategy for

meshing highly deformable objects with tetrahedra. In 12th Int. Meshing Roundtable,

pages 103–114, 2003.

[57] M. Müller and M. Gross. Interactive virtual materials. In Graph. Interface, pages

239–246, May 2004.

[58] M. Müller, B. Heidelberger, M. Teschner, and M. Gross. Meshless deformations

based on shape matching. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):471–478,

2005.

[59] M. Müller, R. Keiser, A. Nealen, M. Pauly, M. Gross, and M. Alexa. Point based

animation of elastic, plastic and melting objects. In Proc. of the 2004 ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim., pages 141–151, 2004.

BIBLIOGRAPHY 84

[60] M. Müller, S. Schirm, M. Teschner, B. Heidelberger, and M. Gross. Interaction of

fluids with deformable solids. J. Comput. Anim. and Virt. Worlds, 15(3–4):159–171,

July 2004.

[61] M. Müller, M. Teschner, and M. Gross. Physically-based simulation of objects repre-

sented by surface meshes. In Proc. Comput. Graph. Int., pages 156–165, June 2004.

[62] D. Nguyen, R. Fedkiw, and H. Jensen. Physically based modeling and animation of

fire. ACM Trans. Graph. (SIGGRAPH Proc.), 21:721–728, 2002.

[63] J. O’Brien and J. Hodgins. Graphical modeling and animation of brittle fracture. In

Proc. of SIGGRAPH 1999, pages 137–146, 1999.

[64] J. F. O’Brien, V. B. Zordan, and J. K. Hodgins. Combining active and passive simu-

lations for secondary motion. IEEE Comput. Graph. Appl., 20, 2000.

[65] C. C. Paige and M. A. Saunders. Solution of sparse indefinite systems of linear equa-

tions. SIAM Journal on Numerical Analysis, 12(4):617–629, 1975.

[66] M. Pauly, R. Keiser, B. Adams, P. Dutré, M. Gross, and L. Guibas. Meshless ani-

mation of fracturing solids. ACM Trans. Graph. (SIGGRAPH Proc.), 24(3):957–964,

2005.

[67] S. Piperno and C. Farhat. Partitioned procedures for the transient solution of coupled

aeroelastic problems - part ii: Energy transfer analysis and three-dimensional appli-

cations. Computer Methods in Applied Mechanics and Engineering, 190:3147–3170,

2001.

[68] N. Rasmussen, D. Enright, D. Nguyen, S. Marino, N. Sumner, W. Geiger, S. Hoon,

and R. Fedkiw. Directable photorealistic liquids. In Proc. of the 2004 ACM SIG-

GRAPH/Eurographics Symp. on Comput. Anim., pages 193–202, 2004.

[69] A. Robinson-Mosher, T. Shinar, J. Gretarsson, J. Su, and R. Fedkiw. Two-way cou-

pling of fluids to rigid and deformable solids and shells, 2008.

BIBLIOGRAPHY 85

[70] S. Ruuth. A diffusion-generated approach to multiphase motion. J. Comput. Phys.,

145:166–192, 1998.

[71] C. Schroeder. PhD thesis, Stanford University, June 2011.

[72] A. Selle, J. Su, G. Irving, and R. Fedkiw. Highly detailed folds and wrinkles for cloth

simulation. IEEE Trans. on Vis. and Comput. Graph. (In Press), 2007.

[73] T. Shinar, C. Schroeder, and R. Fedkiw. Two-way coupling of rigid and deformable

bodies. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., 2008.

[74] E. Sifakis. Algorithmic aspects of the simulation and control of computer generated

human anatomy models. PhD thesis, Stanford University, June 2007.

[75] E. Sifakis, K. Der, and R. Fedkiw. Arbitrary cutting of deformable tetrahedralized

objects. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim. (in

press), 2007.

[76] E. Sifakis, I. Neverov, and R. Fedkiw. Automatic determination of facial muscle

activations from sparse motion capture marker data. ACM Trans. Graph. (SIGGRAPH

Proc.), 24(3), 2005.

[77] E. Sifakis, A. Selle, A. Robinson-Mosher, and R. Fedkiw. Simulating speech with a

physics-based facial muscle model. ACM SIGGRAPH/Eurographics Symp. on Com-

put. Anim., pages 261–270, 2006.

[78] E. Sifakis, T. Shinar, G. Irving, and R. Fedkiw. Hybrid simulation of deformable

solids. In Proc. of ACM SIGGRAPH/Eurographics Symp. on Comput. Anim., pages

81–90, 2007.

[79] K. Smith, F. Solis, and D. Chopp. A projection method for motion of triple junctions

by level sets. Interfaces and Free Boundaries, 4(3):263–276, 2002.

[80] J. Stam. Stable fluids. In Proc. of SIGGRAPH 99, pages 121–128, 1999.

BIBLIOGRAPHY 86

[81] D. Steinemann, M. A. Otaduy, and M. Gross. Fast arbitrary splitting of deforming

objects. In Proc. of the ACM SIGGRAPH/Eurographics Symp. on Comput. Anim.,

pages 63–72, 2006.

[82] J. Teran, E. Sifakis, G. Irving, and R. Fedkiw. Robust quasistatic finite elements and

flesh simulation. Proc. of the 2005 ACM SIGGRAPH/Eurographics Symp. on Comput.

Anim., pages 181–190, 2005.

[83] D. Terzopoulos, J. Platt, and K. Fleischer. Heating and melting deformable models

(from goop to glop). In Graph. Interface, pages 219–226, 1989.

[84] L. Vese and T. Chan. A multiphase level set framework for image segmentation using

the mumford and shah model. Int. J. of Comput. Vision, 50(3):271–293, 2002.

[85] R. Weinstein. Simulation and Control of Articulated Rigid Bodies. PhD thesis, Stan-

ford University, June 2007.

[86] R. Weinstein, E. Guendelman, and R. Fedkiw. Impulse-based control of joints and

muscles. IEEE Trans. on Vis. and Comput. Graph., 14(1):37–46, 2008.

[87] R. Weinstein, J. Teran, and R. Fedkiw. Dynamic simulation of articulated rigid bodies

with contact and collision. IEEE Trans. on Vis. and Comput. Graph., 12(3):365–374,

2006.

[88] M. Wicke, D. Steinemann, and M. Gross. Efficient animation of point-sampled thin

shells. In Proc. of Eurographics, volume 24, 2005.

[89] A. Witkin and M. Kass. Spacetime constraints. In Comput. Graph. (Proc. SIGGRAPH

’88), volume 22, pages 159–168, 1988.

[90] G. Yngve, J. O’Brien, and J. Hodgins. Animating explosions. In Proc. of ACM

SIGGRAPH 2000, pages 29–36, 2000.

[91] Cem Yuksel, Donald H. House, and John Keyser. Wave particles. ACM Trans. Graph.

(SIGGRAPH Proc.), 26(3):99, 2007.

BIBLIOGRAPHY 87

[92] H.-K. Zhao, T. Chan, B. Merriman, and S. Osher. A variational level set approach to

multiphase motion. J. Comput. Phys., 127:179–195, 1996.

